Teoaesis

ON THE STABLE DETERMINATION OF SOME
EARTH’S RADIAL DENSITY MODELS
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(State University “Lviv Polytechnic”, Lviv, Ukraine)

Abstract. The regularization algorithm was developed on the basis of such fit of the normal operator, which is
closed lo a system of linear equations with scalar or umt matrix. The application of the famous theorem on the
spectral expansion of normal matrixes led to introducing of the simplest matrix norm (connected with the traditional
Euclidean norm) and allowed forim specral condition, which provides the determination of the regularization
parameter. Proposed approach yields the regularization parameter, which 1s responsible only for an accuracy of an
initial operator and therefore, provides a stable inversion. Numerical testing of the algorithm was performed Jor the

construction of piecewise density models of the Earth based on Roche’s, Gauss’, and Legendre-Laplace laws.

Introduction

As well-known, results of seismic radial tomography
of the Earth’s interior give importamt data for a deter-
mination of radial density distribution. One of the ba-
sic equations for such a determination is the famous
Williamson-Adams equation {Bullen, 1975):
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where p(¥¢) is the density on the distance ¢ from the
Earth's centre, @(#) is the combination of the seis-
mic wave velocities |, and 1, on the same distance
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Equation (1) with known values ®(#) was used

alone up to depth 670 ki for construction of the
PREM model (Dziewonski and Andersen, 1981)
where the Earth’s density was represented by pisce-
wise polynomials (in general up to degree 3):
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Here R is the Earth’s mean radius, £ 1s the geocentric
distance of :-th discontinuity of the Earth's density
(£,=0, ¢ _, =R) Usage of some additional data
{such as density jump across the inner-outer core
boundary, density at the base of the mantle, density
below the Mohorovichich disconumuity etc.) vielded
more or less stable inversion of M(£) . As a result. the

appropriate solution was found for the coefficients a,

within 13 shells separately.

Grid values of the function {2) in accordance
with the PREM were used (Marchenko, 1999) for the
construction of piecewise radial density distribution
based on Roche's model:
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Coefficients @, , b, were determined for 7 main shells

by means of the golden section technique. Stable solu-
tion was obtained by applving the additional con-
dittons for primary geodetic constants and ratios
llil{llfb(fi'f —e)/D(L, +¢).
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Recently piecewise radial density distributions
based on Gauss’ and Legendre-Laplace models
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were constructed (Marchenko, 2000a, 2000b) for the
same 7 shells. Coefficients a, for all discussed three
models are coincided that can be casily seen from
Taylor expansions of the functions (5) and (6)). Then
only the coefficients b, were determined from seismic

data for the models (5), (6) and the coefficients a,
were adopted i accordance with the piecewise
Roche’s distribution. In such a formulation, stable
solutions were obtained even without any additional
information. However, two additional conditions for
the Earth’s mass and mean moment of inertia were ap-
plied for the agreement with these global characteris-
tics of the planet.

Any attempt 1o determine either all coefficients a,

and b, or even coefficients ¢, only for any model (4)

- {6) withou! applying other additional conditions led
to the destruction of solution due to its instability
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{Marchenko, 2000b). For this reason, the goals of this
paper are the development and application of the
special technique for a stable determination of para-
meters of density distribution from seismic data.

1. Basic equations

Below we will suppose that the Earth’s interior is sira-
tified by M shells and in each shell the density is re-
presented by somie continuous function with » para-
melers

PAOY =P (PP P2, Pun)- ™
Rewriting the equation (1) as
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we can see that any @ (4) depends on /.n para-
melers and after traditional Tavlor linearization we
conte to a system of linear equations with the quasi
triangular block matrix
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where A, is (m, xn) matrix, which consists of the
derivatives (;(D:/apjk (=12 .1, 0,; is the zero
(m, x n) matrix. m, is the number of given {“measu-

red”) values of @ (¢) ini-th shell, X, is (nx 1) vec-

tor of corrections to parameters of the model (7) for

the current i-th shell, L 1s the vector of “observation

minus calculation™, V is the residual vector.
Deterinination of parameters of the piecewise den-

sity distribution (7) requires solution of the system of

non-linear equations (8) by iterations. On each one,
corrections to paramelers should be obtained as a solu-
tion of linear system (10). Obviously, such a solution

must be stable in order to provide a convergence of

such iterative process,

2. Application of regularization technique

It is well-known that most general approach to derive
a stable solution of a system of linear equations
AX=L+V (1n
is Tikhonov’s regularization (Tikhonov and Arsenin,
1986), which based on minimization of the next smoo-
thing functional
F,=V'C,V+yX;QX,, (12)

where X § is the stable estimation of the vector X,

C;n is the covariance matrix of measured data, Q is

the positive defined symmetric matrix called by a
stabilizer, v = 0 is the regularization parameter, the
superscript T denotes the transposition, For a given y
vector X, is the solution of the system

(ATC,A+y)X, =ATC L. (3
X, can be based (for v = 0} on the usual least squa-
res principle,

In the case of a given stabilizer © the main prob-
lem consists of the computation of an appropriate va-
lue y. In accordance with the general approach (Tikho-
nov and Arsenin, 1986), such value vy, m must be ag-
reed with the accuracy of measured data and corres-
ponding operator, which is represented here by the
normal matrix

=AT CmrA (14)
Standard dctsrmmatlon of y,, requires an iterative
process, which starts from the initial value v = () and
may lead to essential difficulties in a case of ill-condi-
tioned matrix N, . For this reason, we shall try to use

another approach based in particular on some spectral
properties of the normal matrix

N, =A"C]lA+vQ. (15)
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3. Some important properties of the normal matrix
Taking into account that both matrixes Q and N,
(y >0) are positive defined. we may apply well-
known theorem on the matrix spectral expansion
(Hom and Johnson, 1986) and transform the svstem
(13) to the system with diagonal matrix

(A+vDY, =U. (16)
Omitting some elementary details of these spectral ex-
pansions and corresponding transformations, note only

that I is unit (nx») matrix, # is the order of system
(13}, A is the diagonal matrix



A =diag(h, ,h,,- 0, ),
%y B0 ke 20, 1=03 (17)
hy,Ay, ok, are the eigenvalues of the matrix N, .

Now in view of (16) we can define (see Homn and
Johnson. 1986) a set of our possibie solutions by the
next matrix norm

[Noll = |Af = Trace(A) =34, > 0. (18)

1=1
because such norm is nothing else but the Euclidean
norm of the matrix of the initial system (11). In fact,
because C;": 1s a symmetric positive defined matrix,
we can apply its spectral expansion to form the matrix
B=C,,*A. Now it is evidenrt N, =B’B and

n [
) .
|."B||F = ZZb; =Trace(N, ). Asaresult, we come
R T
to the remarkable relationsllip
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Accordmg to the norm (18), we shall apply the
factor||A||/n and rewrile (16) in the form

(A + aI}Y = WU (20a)
n .
L S B Y, (20b)
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Further next relationships are valid:
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where the sum in (23) covers all combinations of
ndexes /,./,.--+f, . It is cvident that the norm
e i I~ -1
;iA +all mcreases and the norm ”(A +al) llf.
H ] |
decreases if the parameter a increases.

The polynomial m the denominator of right-hand
side (22) is nothing else but the determinant of the
matrix A +al:

[eonesis

Pa)=a" + ZJka"
k=1
and the polynomial in the numerator is the first order
derivative of (24) regarding o

% P (o) = P ()

“ zdet(A+al), (24)
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Now considering partial sums of the polynomial (24):

Somla)=a” + ZJka :
we can form the sequence
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Thus, we come to the expression of the norm (22) by
means of the logarithmic derivative

O<m<pn, (26)

(27)

“(K + a!)"l £@) = -c—i—ln det(A+al). (28)
| P (o) da
and to the fo]lomng inequalities:
Lol ® H(K +alf’ (29)
P (a) o

4. Determination of the regularization parameter

In spite of traditional regularization method (section 2)
we shall try to build on this step the regularization al-
gorithm withoul information about accuracy of measu-
red data. First, we should remember that our solution
belongs te such a set, which is defined by the matrix
norm (18) — (19). As a matter of faci. a most stable so-
lution of a system of linear equations in practice con-
nects with a possibility of its expansion into a set of
orthonormal vectors. This corresponds 1o the matrix of
a system represented by a scalar or the unit matrix I,
In such case the parameter of regularization o should
be equal to zero. Therefore. we may find the parame-
ter o from an agreement of the nitial matrix {14) with
the corresponding unit matrix. Considering below only
a problem of inversion of initial operator, we come 1o
the following “ideal” condition

(A+aD) ' =|A+all, (30)
| |

that leads to the non-linear equation, which in view of
(21) and (28) may be written as
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Due to the incqualities (29), we get

nl+a)< 2. 32)
o

that gives immediately the upper limit for o as

U5 5]

(XSCI.H 27—330618 (33)
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Next. in view of (27) we come to conclusion that
the solutions o, = of the non-linear equation

U (o S

nlva,, )= "2 (34
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for different m are connected by the inequalities

J5 i
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It is evident that equation (34) may be solved in the
closed form only for m < 2. Se, we can improve the
estimation (33), which corresponds » = (. Conside-
rng equation (34) for m =1 and taking into account
the expressions (23). we come to the equation

2a,, 2 2o, =a. (39

UN|
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and get the upper limit of o as a function of the order
n of the system (13):

n+l 2Wn*-n+4
Cpy =~ 3 - 3 X
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This expression yields the regularization parameter o
for the normal system of order n and rank !. In parti-
cular, the case # =1 leads to zero a:

G‘l.l = 0 N (38)
that reflects the obvicus fact: no regutarization for one
linear equation with one unknown only. In addition,
the estimation (37) goes to a, (32) if n—oo;

$H 1

lim @, =ay ==, (39)

that corresponds to the case of nfimte-dimensional
normal system of rank 1. Figure 1 shows behaviour of
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Fig.1. Upper limit of the parameter « for various »
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The solution of the non-linear equation (31) may
be based on the recursive formula
3 B
g o _ri:’___ 4 }i(c}m ) : (40)
r l+a, Plo,)

n

U‘mil =

with the imtal value o =wa,, Convergence of

iterations may be proved in elementary way on the
ground of above considered properties of polynomials
(24) and the inequalities (35).

5. Practical aspects

Taking into account that the norm of type (18) is inva-
riant of normal matrix. we must note that in practice
we need in spectral transformation only for stabilizer
0 (hat leads to the system

(N+yDz, =U. (41)

where

Al = [N} = Trace N (42)
Thus. the regularized solution Z ! of the system {41)

is nothing else but well-known quasi-solution (Tikho-
nov and Arsenin. 1986) of corresponding system of
linear equations
Using the normalization as in (29);
=l oo~
N = 1—N ;
N
we can rewrite recursive formuila (40) in most
appropriate form
> O'm

______________ " iiﬁ ’ (iml)'l!j (44)

(43)

IR ~
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and then compute such estimation of ¢ , for which the
condition

[ ]i - (45)
|

becomes valid with a given precision £>0

6. Numerical results

The equation (1) was used in the case of PREM model
only below the radius £=5701 k. In this study we
decided to use it within the whole Earth (up to #=R=
6371 km). Thus, our data sel was represented by 94
values of the function (2) 1n accordance with PREM.,
Stratification of the Earth's interior by 7 shells was
taken from the paper (Marchenko, 1999).

With the mentioned stratification, the simultancous
determination of 14 parameters {a,.b } was carried
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out for every piecewise model (4) — (6) separately. In
ail computations only two additional conditions (for
the mean density p=5514 gicm® and for the
dimensionless mean moment of inertia /=0 32998)
were applied. In spite of small order (7 =14) of the
normal system (13), a destruction of least squares
solution {y = () teck place for every model. There-
fore, the application of the developed regularization
algorithm became necessary.

Construction of a stabilizer for the Earth’s radial
density distribution is the complicated separate prob-
lem, which requires special investigations Thus, we
decided to use here the simplest case © = I, wlich is
famous in the regularization theory and leads to the
construction of the so-called quasi solution. Afier this
choice of the stabilizer we have formed the system

(41) in which N=A"C!

A 18 obtained without any
additional transformations.

Parameters of these models (from seismic data) ba-
sed on the proposed regularization algorithm are pre-
sented in the Table 1. Note agam that our algorithm is
connected only with the condition (29). which provi-
des the determination of the regularization parameter
in view of inversion of initial normal operator. There-
fore, we may say that stablization of our sojutions de-
pends on the total accuracy of the integral-differential
operator (1) and the corresponding density parameteri-
zation (4), (3), or (6). Such a conclusion is confirmed

by good agreement of the coefficients «, for different

models within the same shells, since these coefficients
can be treated as the analytical continuation of partial
models to the Earth’s center g, = p, (/ = 0).

Table 2 consists of the values of Earth’s density
and density jumps at the adopted discontinuity radii
according to constructed piecewise radial models. For
comparison, the table shows also such values compu-
ted from PREM model. All these characteristics of ra-
dial density distribution agree for different models and
we can sec better agreement of the density jumps for
two polvnomial models (PREM and Roche's ones)
and for two non-pelynomial models (Gauss® and
Legendre-Laplace ones). Such results may be explai-
nad by the adopted different parameterizanons of the
density. To our surprise, we found almost the same va-
lues of sum of jumps for all discussed models. These
sums are shown in the last row of the Table 2 together
with the accuracy estimations computed from the data
of Table 1. Note that the density jump 0.3 g/cm’ at the
radius 6356 km was taken into account for PREM
model in addition to the jumps shown in the Table 2.
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Table 1. Parameters of constructed models of Earth’s radial density distribution

Roche’s (4) Gauss’ (5) Legendre-Laplace (6)
e a,, g/em’ b .gem’® | a,,gem’ b, a, , glem’ b,
S s 13062 2.980 13.063 0.828 13.066 2,093
- +0.004 +0.004 +0.002 +0.002 +0.003 +0.003
! 12.451 2.916 12.338 0.867 12.274 2.074
1223.5< £ <3480.0 +0.016 +0.012 £0.008 +0.004 +0.014 +0.008
" 1. 6.386 1.595 6.600 0.697 6.571 1.632
B 31010 +0.030 £0.008 +0.015 0,003 +0027 0006
5.935 1.540 6.387 0.760 6 036 1.713
5701.0<£ <5970.0 +0.038 +0 017 +0.020 +0.010 +0.035 +0.016
5.680 1.585 6.071 0.820 5793 1.825
5970.0< £ <6151,0 +0.040 +0.023 +0.020 +0.014 +0.036 +0.023
: 5.933 1.670 6.424 0.877 6.086 1.911
6151.0< £ <6346.6 +0.041 +0 021 0,021 +0.014 40,037 +0.021
; : 6.592 2.106 6.662 1.029 6.625 2227
6346 6<£ <6371.0 +0.042 +£0.034 +0.021 +0.020 0038 0032
R.m.s. of seismuc data
: g 5. 533
fitting, km™/s” = 3 3.1
Regularization 0.48 0.49 0.48
_ parameter value
On the ground of obtained numerical results we Conclusions

can conclude that the application of the developed
regularization algorithm led to the reliable determina-
tion of the global trend of the Earth’s radial density
distribution from the seismic data with different
parameterizations. It is important that this algorithm
allowed to use the fundamental equation (1) within
whole Earth’s interior for a stable determination of
parameters of discussed piecewise radial models.

Thus. we developed the regularization algonthm based
on such fit of the normal operator, which is closed to a
system of linear equations with scalar or unit matrix.
The application of the famous theorem on the spectral
expansion of normal matrixes led to introducing of the
simplest matrix norm (18) and allowed form the con-
dition (30), which provides the determination of the
regularization parameter.

Table 2. Charactenistics of the Earth’s radial density distribution

o Values of the density p and density jumps 8p. g/cm’
I:lrﬁ : PREM P Roche's (4) Gauss (5) Legendre-Laplace (6)
bl ks lowhp s 5 p bp p Sp
0.0 13.088 13.062 13.063 13 066
X 12.764 12.735 12.738 12.741
‘ 5
12215 i 0.598 s ).557 ogy 97136 11584 D87
9.903 9.914 9.860 9812
00 4.2 7
348 i 4337 g 4287 s Al8 s93q 4078
4381 4.349 4472 4471
70 ¢ 3 :
5701.0 e 0 389 e 0.312 1697 | 1 D451 S o35 1 D536
: 3.724 3.853 3.845 3.758
5971.0 2 0. 37 '
' 3.543 ARl 3.474 @372 a3e) AnSAR: 3387 + o0 PG
3.436 3.339 3.243 3227
0 :
6151 e 0.076 Py 0.006 3135 . 0108 s 17 DSt
3.381 ; 3.165 2.993 . 3022
6346.6 000 0.481 o 0.973 2338 0665 S3gp 0641
6368.0 2.600 2.163 2311 2.360
Y sp 6.362 6.554 + 0.054 6.594 +0.032 6.498 +0.052
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Developed algorithm may be treated as those that
yields a best approximation of normal operator by an
orthogonal one in view of the norm (18) — (19).
Actually, assuming in (20) A=1, we come
immediately to the condition (30) in the form

JA+a)=1+a, (46)
that gives o=0, which coincides exactly with (38).
Thus, in addition to (38) we can see: no re gularization
for the normal system with the matrix proportional lo
the unit matrix. As a result, we can say that in view of
the general theory (Tikhonov and Arsenin, 1986), our
approach yields the regularization parameter, which s
responsible only for an accuracy of an initial operator
and therefore, provides a stable inversion.

Numerical testing of the algorithm was performed
for the construction of piecewise density models of the
Earth based on Roche’s, Gauss’, and Legendre-Lap-
lace laws. By the way. in processing of seismic data
the regularization is using traditionally, in particular,
for construction of inverse convolution operators
(Hatton, et al, 1986). Finally, we should note that be-
cause proposed regularization algorithm was develo-
ped on the basis of stable inversion of a normal opera-
tor, then it may be applied for wide spectrum of prob-
lems comnected with solution of ill-conditioned sys-
tems of normal equations,
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O. ABpurocos .
[IPO CTIAKE BH3HAYRHHSA JEAKUX PAIAJIBHUX MO JEJIEN I'YCTUHA 3EMII
Pesrome

Peryaapusyoumit anroprrs po3po6aeHuii Ha OCHOBI ANpOKCUMAILT HOPMATEHOTO oneparopa, ska € OJHIBKOK 10
CMCTEMH MIHIHHUX PIBHSHD i CKATAPHOIO 400 OIMHMYHOK MATPHLEIO. 32CTOCYBAHHS TCOPEMHE NPO CIEKTPANBLHIIT
POSKIa ROPMAAbHUX MATPHIb TIPH3BCIO A0 BBEICHHA HAMNPOCTILION MATPHYHOT HOPMH, HOB S3aHOI 3 Tpamuuiii-
HOK EBKIIN0BOI0 HOPMOKO, Ta CNENiabHOL YMOBM AT BH3HAIEHHA mapaMerpa perymipusamii. lapamerp peryns-
PH3ALIT BUSHAYEHO JMIIE 33 TOYHOCTIO BMXIAHOIO OMEpaTopa, L0 sabesnedye #oro crifiky iHBepcito, AnroputM
TNPOTECTOBAHO NpH MOOYA0BI KYCKORO-HENEPEPBHMX MOenell FYCTHHH 3emii 33 3aKOHAMM Poma, T'avca Ta
TNexanapa-Jlanmaca,

0. Abpuxocos
OB YCTOHYUBOM OINPEJEJEHWH HEKOTOPBIX PA/IMAJTBHBIX MO/EJEN TUIOTHOCTH 3EMITU
Pesrome

Perynsapusyrommit anropury pazpaboTan Ha 0CHOBE aNOPOKCHMALMH HOPMAJBLHOFO OnEpaTopa, 8IM3K0H K CHCTeMe
AHHEHHKIX YPABHEHMH CO CKATIPHON MAM CAMHIMHOH MaTpHieH. TlpumeneHn# TEOPEMBI O CIEKTPANLHOM PA3NI0-
HCHIM HOPMAIBHBIX MATPHI, NPHBCTIO K BBEACHHEO NMPOCTEHInell MATPIHON HOPMBI, CBA3AHHOH C TPaAMLHOHHOI
EBxiunosoit Hopumolt, 1 CrieuManbHOT0 YCIOBUS 15 ONPCACACHI MapaMeTpa pery/uipusauuu. [Tapamerp peryma-
PH3ALUH OTIPEACNEH TOILKO HA OCHOBE TOYHOCTH HCXOJHOIO OTIEPATOPA, YTO OGECHIEUMBACT €I0 YCTOMMHBYIO WH-
BEPCHIO. ANCOPUTM ANPOOMPOBAH MPH NOCTPOSHHM KYCOUHO-HCNPEPHIBHBIX MOENSH MIOTHOCTH 3eMIH To 3a-
xonam Poura, Caycca u Jlexanapa-Jlannaca.




