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Abstract: The paper substantiates the necessity of 
applying a new method for the formation of a set of basic 
equations in the problem of localizing solutions to an 
interval system of linear algebraic equations (ISLAE) on 
the basis of a “saturated block”. The method is based on  
solving the problem of optimization. Th e minimization of 
the maximal prediction error by using interval models the 
parameters of which belong to the localization area of 
ISLAE solutions is  chosen as a criterion. A comparative 
analysis of the effectiveness of the proposed method for 
finding the optimal “saturated block” and the methods of 
stochastic search, in particular with linear tactics and by 
best attempt is conducted. A significant advantage of the 
proposed method by the criterion of minimum 
computational complexity is shown. 

Key words: identification, interval analysis, 
solutions localization, “saturated block” of interval 
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1. Introduction 
The problem of identifying parameters of static 

systems’ models that is based on interval data is 
formulated as the problem of solving an interval system 
of linear algebraic equations (ISLAE) [1–3]. Unlike a 
regular system of linear algebraic equations, solutions to 
ISLAE are a set of parameter estimates of a static 
system’s model. For the model to be used conveniently 
in applied research, instead of “exact” ISLAE solution 
some estimate of the solutions set is widely employed, 
e.g. in the form of multidimensional parallelotope or 
ellipsoid. A method that involves selection of a 
“saturated block”, i.e. m interval equations (such 
equations are called basic equations) from ISLAE with m 
unknown values is distinguished among the existing 
methods for the estimation of an ISLAE solution area. 

The localization area of solutions to the whole ISLAE 
[1–3] is built on the basis of the basic equations selected. The 
detailed algorithm of the above mentioned method is 
described in paper [4]. It is noted that selection of the 
“saturated block” which would provide optimal estimates of 
the parameters of a static system’s model as a set is a 
computational problem of polynomial complexity [1–4]. 

It is obvious that the notion of optimality of a set of 
model parameter estimates is defined by the criterion of 

“saturated block” selection. Usually, this criterion 
minimizes the size of a parameter estimates area. 
However, such selection of a “saturated block” does not 
provide optimal prediction properties of the static 
system’s model. To select a “saturated block”, papers 
[5–8] propose to apply the criterion of minimization of 
the maximal prediction error of the model instead of 
using the methods of random search. To reduce the 
computational complexity related to realization of this 
approach, it is proposed to use the methods of the theory 
of design of optimal sequential experiments [9–10]. 

The comparison results of the methods of theory of 
design of optimal sequential experiments with those of 
stochastic search, in terms of their application, are 
represented in the paper. 

2. Statement of the problem 
Let us consider a static (non-inertial) system in 

which the dependence between “output” and “inputs” is 
represented in the form of the following algebrical 
equation: 

0 1 1( ) ( )m my x xβ φ β φ= ⋅ + + ⋅
r rK ,             (1) 

where 0y  is the uknown true value of the system 

“output”; mx R∈
r  is the vector of input variables; 

1( , , )T
mβ β β=

r
K  is the vector of unknown parameters, 

1( ) ( ( ), , ( ))T T
mx x xφ φ φ=

r r r rK  is the vector of known basis 
functions. 

To estimate the values of parameters, we use the 
experiment results in the form of matrix of input 
variables X and vector of output variable values with 
known limit values of errors:  
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where 0,5( ( ) ( )) ( )y x y x x+ −− = ∆
r r r  is some known limit 

value of the measurement error. 
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In this case, the following conditions are met: 

0 , 1, ,i i iy y y i N− +≤ ≤ = K ,                    (3) 

Based on conditions (1) and (3), ISLAE is obtained for 
the estimation of the vector of unknown parameters β

r
:  
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The set Ω  is the solutions to ISLAE (4): 

{ }mb R Y F b Y− +Ω = ∈ ≤ ⋅ ≤
r rr r

,                  (5) 

where { }( ), 1, , , 1, ,T
j iF x i N j mφ= = =

r r K K  is the known 

matrix of basis functions values, { }, 1, ,iY y i N− −= =
r

K  

and { }, 1, ,iY y i N+ += =
r

K  are the vectors formed from 

upper and lower bounds of the intervals [ ; ]i iy y− +  . 
If ISLAE (4) is non-degerate, then geometrically its 

area of solutions is a convex polyhedron [1–3]. However, 
instead of using the solution area in form (5), it is expedient 
to use its estimations in the form of multidimensional 
rectangular parallelepipeds or ellipsoids. The noted methods 
for the estimation of ISLAE solutions area are not always 
suitable for solving the applied problems of modeling due 
to low accuracy of the first one and high level of 
complexity of the second one.  

Recently, the methods of estimating the ISLAE 
solution area, which are based on the analysis of 
“informativeness” of each ISLAE interval equation, have 
become widely used. As known from [1–3], on the one 
hand there may be equations in ISLAE that do not define 
the solution area, and on the other hand there may be 
interval equations that do not change significantly the 
configuration and size of the solution area. One of such 
methods is described in  papers [11–13]. It consists in 
defining a solution area configuration at the initial stage. 
For this, it is necessary to select m equations from 
ISLAE and then change the size of the given 
configuration area taking into account the other 
equations from ISLAE. 

Example. Let ISLAE be in the following form: 

 

0 1

0 1

0 1

0 1

0 1

9,946 6 0,279 12,178
14,313 7 0,657 17,507
17,33 9 0,412 21,177
4,042 0,841 4,947
5,846 3 0,141 7,13

b b
b b

b b
b b
b b

≤ − ≤
 ≤ + ≤ ≤ + ≤
 ≤ + ≤
 ≤ + ≤

, (6) 

Let us select a “saturated block”, for example, a 
system consisting of the first and second equations from 
the given ISLAE: 

 0 1

0 1

9,946 6 0,279 12,178
14,313 7 0,657 17,507

b b
b b

≤ − ≤
 ≤ + ≤

. (7) 

According to the algorithm of realization of the 
method of “saturated block” selection, let us add, for 
example, the fifth equation: 

 0 15,846 3 0,141 7,13b b≤ + ≤ , (8) 

The result of the algorithm application is shown in 
Fig. 1. 

 
Fig. 1. Illustration of solutions to interval 

equations (7) and (8). 

In another case, let us choose a “saturated block” 
formed from the first and third equations from ISLAE (6): 

 0 1

0 1

9,946 6 0,279 12,178
17,33 9 0,412 21,177

b b
b b

≤ − ≤
 ≤ + ≤

. (9) 

And add equation (8) (Fig. 2). 

 
Fig. 2. Illustration of solutions to interval 

equations (8) and (9). 

As we can see in the Figures, system (7) defines the 
configuration in the form of parallelogram. Adding 
equation (8) does not change the size of the area, and 
adding equation (9) reduces the area of solutions. Thus, 
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we can see that the most difficult step is selection of 
basic equations that form a “saturated block”. 

Papers [11–13] propose the minimization of 
maximal prediction error in the range of values of input 
variables x χ∈

r  as the criterion of selecting the optimal 
“saturated block":  

max
1

1

( ) max 2 ( ) min,

( ) ( ) .

m
m F

m j j
x j

T T
m

F x

x x F

χ
α

α ϕ

∈ =

−

  ∆ = ⋅ ⋅∆ → 
  

= ⋅

∑r
r

r rr r
  (10) 

If all the equations in ISLAE (4) are numbered: 
1,...,i,...,N, respectively, then each equation in the 
“saturated block” has a unique number nj , where n is 
number of the equation from system (4), j=1,...,m is its 
index number in the “saturated block”. Then  expression 
(10) can be rewritten as:  

1
1 2( , ,..., ,..., )m j mF n n n nψ− = ,                  (11) 

And we obtain: 
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   (12) 

Expression (12) provides the minimization of 
maximal prediction error of the interval model among all 
possible “saturated blocks” selected from ISLAE (4). 

3. Methods of solving the problem of optimal 
“saturated block” selection 

Full combinatorial enumeration [1-3] and stochastic 
search [5–8] are distinguished among the known 
methods of solving the problem of optimal “saturated 
block” selection. 

Taking into account the fact that combinatorial 
enumeration of all possible “saturated blocks” is extremely 
consumable from the computational point of view, let us 
consider the methods of stochastic search in more detail. 

The random search method with linear tactics. This 
method is developed using two operators: random step 
and repetition of the previous step [5–8]. Using each of 
them may lead to one of two results: the value of a 
minimized function either gets reduced or remains 
unchanged. Depending on the result, one or the other 
operator is used. 

The random search algorithm with linear tactics is 
based on the following obvious assumption concerning the 
object of optimization: probability of a successful step in 
the direction that was successful in the previous iteration 
will be higher than the probability of a successful step 
chosen randomly. The linearity of the tactics of this 
procedure consists in simulation of linear behavior, i.e in the 
exact repetition of a successful step [5–8]. 

Let us interpret the algorithm of random search 
method for the formation of optimal “saturated block” in 
the problem of localization of ISLAE solutions. 

Let us illustrate the algorithm of the random search 
method with linear tactics for the two-dimensional case 
(m = 2, N = 6). The space of the objective function 
values for all possible “saturated blocks” is represented 
in the table in Fig. 3. 

 
Fig. 3. Table of objective function values for all possible 

“saturated blocks” in the case m = 2, N = 6. 

Let us select an initial “saturated block”, for 
example, (2,3)ψ  (circled in Fig. 4), and for the block 
define the values of the objective function 

max ( (2,3))ψ∆ . The size of the step is considered to be 
the difference between the equation numbers in the 
“saturated block”. For example, if the initial set of 
equations is 1 2( ; )n n , length of the step equals 1, then 
the following directions are obtained: 1 2( 1; )n n− , 

1 2( 1; )n n+ , 1 2( ; 1)n n − , 1 2( ; 1)n n + . Let 1 2( ; 1)n n + be 
chosen as a random direction. Therefore, the next 
“saturated block” is (2,4)ψ . 

Let us define the value of the objective function 
max ( (2,4))ψ∆  and check the condition 

max max( (2,4)) ( (2,3))ψ ψ∆ < ∆ . If the condition is met, 
then the calculations are continued in the same direction. 
Let us suppose that max max( (2,6)) ( (2,5))ψ ψ∆ < ∆ . In 
this case, according to the scheme of random search 
algorithm, it is necessary to change the direction of 
linear tactics. Among the directions available, we 
select 1 2( 1; )n n+ . The resulting “saturated block” is 

(3,5)ψ . Let us determine the value of the objective 
function max ( (3,5))ψ∆  and check the condition 

max max( (3,5)) ( (2,5))ψ ψ∆ < ∆ . If the condition is met, 
the direction is considered successful. Further) 
calculations are carried out according to the direction 
and by analogy with the previous steps. Fig. 4 illustrates 
the above-described sequence of calculations 
implemented in the space of ISLAE equation numbers.  

The method of random search by the best attempt. 
This method is based on two basic concepts: the 
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direction of calculation and step [5–8]. Firstly, let us 
choose the size of the step and find the values of the 
objective function for all the possible directions, and 
then select the minimal one.  From this point, again, let 
us carry out the calculations in all the directions 
according to the size of the step chosen. By analogy with 
the previous iterations, among the selected values, the 
minimal one is chosen. 

 
Fig. 4. Illustration of random search strategy  

with linear tactics. 

Let us interpret the algorithm of random search by the 
best attempt for forming the optimal “saturated block” in 
the problem of localization of ISLAE solutions. 

Let us illustrate the algorithm of the above method 
for the two-dimensional case from the table in Fig. 3. As 
an example, let (2,4)ψ be selected the initial “saturated 
block"(circled  in Fig. 5). Then, for this block, we define 
the value of the objective function max ( (2,4))ψ∆ . As 
noted above, the size of the step is considered to be the 
difference between the equation numbers in the 
“saturated block”. For example, if the initial set of 
equations is 1 2( ; )n n , length of the step is equal to 1, 
then, we obtain the following directions: 1 2( 1; )n n− , 

1 2( 1; )n n+ , 1 2( ; 1)n n − , 1 2( ; 1)n n + . If the step length 
equals 1, then, based on the table in Fig. 3, the following 
“saturated blocks” to be studied are (2,3)ψ , (1, 4)ψ , 

(2,5)ψ , (3, 4)ψ  (circled by a dotted line in Fig. 5). The 
values of the objective functions are defined for the 
blocks max ( (2,3))ψ∆ , max ( (1, 4))ψ∆ , max ( (2,5))ψ∆ , 
and max ( (3, 4))ψ∆ . Among the values obtained, let us 
find the minimal one, for example, max ( (2,5))ψ∆ . 
Accordingly, the further calculations are carried out 
concerning the “saturated block» (2,5)ψ . By analogy 
with the previous step, the value of the objective function 
is defined for the blocks max ( (1,5))ψ∆ , max ( (3,5))ψ∆  
and max ( (2,6))ψ∆ . Let us find the minimum of them, for 
example, for the “saturated block” (3,5)ψ . The next 

calculations must be carried out by analogy with the 
previous steps. The above-described sequence of 
calculations realizated in the space of ISLAE equation 
numbers is represented in Fig. 5. 

The method of forming a set of basic equations in 
the problem of localization of ISLAE solutions. Now, let 
us consider the proposed method of directed 
enumeration of “saturated blocks” developed according 
to the procedure of GI -optimal experiment design. The 
essence of the method consists in selecting some 
“saturated block”, obtaining the corridor of interval 
models and analyzing the predictive properties of these 
models that is the basis for planning the way of forming 
the next “saturated block”. 

 
Fig. 5. Illustration of random search strategy  

by the best attempt. 

Thus, let the structure of mathematical model of 
static system be defined by expression (1) with unknown 
parameters, interval data (2) be given and ISLAE be 
formed in the form of (4). 

Let us choose a “saturated block” from ISLAE 
randomly, calculate its solution area and build the 
corridor of prediction by interval models: 

( ) ( )

[ ( )]
1 1( ) ; ( )
2 2

T T
y x y x

y x

x b x bϕ ϕ

=

 = ⋅ − ⋅ ∆ ⋅ + ⋅ ∆  
r r) )

r)

r rr rr r     (13) 

Now, by analogy with the procedure of sequential 
GI -optimal experiment design, it is necessary to 

calculate the vector maxxr , which provides the maximal 
prediction error in the area of the experiment: 

max
1,..., 1

1

arg max 2 ( ) , , 1,..., ,

( ) ( ) .

i

m
j i j i

x N j

T T
i i m

x x x i N

x x F

α

α ϕ

= =

−

  = ⋅ ⋅∆ = 
  

= ⋅

∑r
r r r

r rr r
 (14) 

It should be noted that procedure (14) is simple as it is 
implemented for the finite set of points , 1,...,ix i N=

r . The 
vector obtained by expression (14) is a vector of values of 
input variables. This vector defines a certain interval equation 
in ISLAE (4). In accordance with the procedure of sequential 
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GI -optimal experiment design, it is exactly this point at 
which the next measurement should be conducted. 

Papers [11–13] prove that if the vector maxxr  coincides 
with the vector of values of the input variables of one of the 
interval equations of the ISLAE “saturated block”, then it 
specifies the point with the minimal value of prediction error. 
Hence, it is advisable to replace one of the interval equations 
in the current     “saturated block” by the interval equation of 
ISLAE with the vector of input variables values 

maxxr defined by expression (14). Thus, by analogy with the 
procedure of sequential GI -optimal experiment design, we 
“simulate” the procedure of additional measurement at the 
point maxxr  with the maximal prediction error of interval 

model. This procedure is conducted for each interval 
equation in the “saturated block” resulting in obtaining p 
(p=1,...,m) new “saturated blocks”. 

As a result, m values of maximal errors for the 
corresponding interval models are obtained for each of 
the m “saturated blocks”: 

max
, 1,..., 1

1

max 2 ( ) ,

( ) ( ) ( ), 1,...,

i

mp
jp i j

x i N j

T T
p i i m

x

x x F p p m

α

α ϕ

= =

−

  ∆ = ⋅ ⋅ ∆ 
  

= ⋅ =

∑
r

r rr
       (15) 

where p is the index which indicates a “saturated block” 
number, ( )mF p  is the matrix of basic functions values 
for the p-th block, ( )jp ixα

r  is the i-th component of  

vector αr  calculated for the p-th “saturated block”. 
It is obvious that for the optimal “saturated block” to 

be selected at this step, instead of using complex 
computational procedure (10), it is sufficient to select 
from the m “saturated blocks” the one that provides the 
least value of sequence (15): 

{ }max
1,...,

arg min , 1,...,opt p
m

p m
F p m

=
= ∆ = ,       (16) 

Using procedure (12), we obtain maxxr  – the vector 

for which the prediction error of the interval model is 
maximal. This interval model is defined by the solution 
to “saturated block” (16). The iterations then continue 
until the “saturated block” whose equations can be 
replaced without leading to a decrease in the maximum 
prediction error by interval models is obtained.  

As we can see from expression (12), the objective 
function in the problem of “saturated block” selection is 
discrete, since its value is defined by a specific set of interval 
equations. It is also obvious that this function is not unimodal. 

4. Example of estimating the time complexity of 
the methods 

Let us analyze the effectiveness of the proposed 
method on an example. Let the equation for 

developing an interval model have the following 
general form: 

 0 1( ) ln( )y x b x b x= ⋅ + ⋅ , (17) 

The parameters of the model are defined from the set 
of “experimental” data represented in Fig. 6. 

 
Fig. 6. Table of “experimental” data. 

Then, the interval system for finding the coefficients 
of the model is as follows: 

0

0 1

0 1

0 1

0 1

0 1

0 1

0 1

1,7 2,1
16,181 5 19,971
26,105 9 2,197225 31,902
28,332 10 2,302585 34,634
37,14 14 2,639057 45,379
41, 211 16 2,772589 50,384
47, 492 19 2,944439 58,037
55,471 23 3,135494 67,8

b
b b
b b

b b
b b
b b
b b
b b

≤ ≤
≤ + ≤

≤ + ≤
≤ + ≤

≤ + ≤
≤ + ≤
≤ + ≤

≤ + ≤

0 1

0 1

0 1

0 1

0 1

0 1

0 1

06
65,313 28 3,332205 79,845
67, 282 29 3,367296 82,25
73, 294 32 3, 465736 89,559
75,058 33 3, 496508 91,755
78,901 35 3,555348 96,456
82,855 37 3,610918 101, 266
88,62 40 3,688879 10

b b
b b
b b
b b
b b
b b

b b

≤ + ≤
≤ + ≤
≤ + ≤

≤ + ≤
≤ + ≤
≤ + ≤

≤ + ≤

0 1

0 1

0 1

0 1

0 1

8,309
92,353 42 3,73767 112,89
107,594 50 3,912023 131,506
120,705 57 4,043051 147,548
124,606 59 4,077537 152, 283
126,429 60 4,094345 154,523

b b
b b
b b
b b
b b



























≤ + ≤
 ≤ + ≤

≤ + ≤
 ≤ + ≤
 ≤ + ≤

.      (1) 

Let us number the equations in system (18). 
Accordingly, the interval equation 01,7 2,1b≤ ≤  is 
numbered 1, and the interval equation 

0 1126, 429 60 4,094345 154,523b b≤ + ≤  is numbered 20. 
According to expression (17), the values of the 

objective function are calculated and introduced into the 
table in Fig. 7. In the table (see Fig. 7), 1N  stands for the 
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number of the first equation in the “saturated block”, 
2N  is the number of the second equation. 

 
Fig. 7. Table of values of the objective function calculated 

using the method of full combinatorial enumeration.. 

As we can see, the objective function is discrete and 
has a great number of local minimums. Let us apply the 
algorithm of random search method with linear tactics to 
the example described above. At the first stage of 
calculations we select a “saturated block”, for 
example, (7,13)ψ : 

0 1

0 1

47, 492 19 2,944439 58,037
78,901 35 3,555348 96, 456

b b
b b

≤ + ≤
 ≤ + ≤

.       (19) 

The maximal prediction error of the interval model 
developed for this “saturated block” is 133,64. 

Let us generate a random direction – 1 2( 1; )n n− . 
Thus, we move to the point that corresponds to the 
“saturated block” (6,13)ψ . The maximal prediction error 
of the interval model for this “saturated block” is 119,54. 

Using the algorithm for the method of random search 
with linear tactics resulted in decreasing the value of the 
objective function. That is why the chosen direction is 
considered sucessfull. In the next iterations, the “saturated 
blocks” (5,13)ψ , (4,13)ψ  and (3,13)ψ , (2,13)ψ , 
respectively, are examined by turns. The results obtained 
while examining the  “saturated block” (2,13)ψ do not 
meet the conditions of the method. Therefore, in accordance 
with the algorithm of random search, it is necessary to 
generate a new direction of linear tactics with regard to the 
“saturated block” (3,13)ψ .  

Let us generate the random direction 1 2( 1; )n n+  and 
examine the “saturated block” (3,14)ψ . For the block 
above, the value of the function max ( (3,14))ψ∆  is equal to 
92, 2. Now let us check the condition 

max max( (3,14)) ( (3,13))ψ ψ∆ < ∆ . As the condition is met, 
the chosen direction is considered successful. By analogy 
with the previous steps, let us sequentially study  the 
“saturated blocks” (3,15)ψ , (3,16)ψ , (3,17)ψ , (3,18)ψ , 

(3,19)ψ  and (3, 20)ψ , respectively. 
The “saturated block” (3, 20)ψ  with the maximal 

prediction error 28,09 is considered the optimal 

“saturated block”. It provides a numeric value of the 
objective function as a minimum of maximal error for 
interval models is 28,09. 

The scheme of calculations based on the fragment of the 
table in Fig. 7 with appropriate marking is shown in Fig. 8. 

 
Fig. 8. Scheme of calculating the minimal value of the objective 
function using random search with linear tactics based on the 

fragment of the table in Fig. 7. 

Let us apply the algorithm of random search by the 
best attempt method to the example under consideration. 
At the first stage of calculation, the “saturated block” 

(7,13)ψ  (19) is selected. 
The maximal prediction error of the interval model 

developed for this “saturated block” is 133,64. The value  
of the step is 1. Let us define all possible calculation  
directions for the two-dimensional case 
proposed: 1 2( 1; )n n− , 1 2( 1; )n n+ , 1 2( ; 1)n n − , 1 2( ; 1)n n + . 

Therefore, it is necessary to analyze the value of the 
objective function for the “saturated blocks” (7,12)ψ , 

(7,14)ψ , (6,13)ψ , and (8,13)ψ  concerning the initially 
selected “saturated block” (7,13)ψ . This results in the 
following values: max ( (7,12)) 158,65ψ∆ = ; 

max ( (7,14)) 114, 25ψ∆ = ; max ( (6,13)) 119,54ψ∆ = ; 

max ( (8,13)) 164,71ψ∆ = . The minimal value among the 
obtained ones corresponds to the “saturated block” 

(8,13)ψ . Therefore, the calculations in the next iteration 
are carried out concerning to the block, without changing 
a step value and characteristics of the directions. 

Thus, realizing the algorithm of the method of 
random search by the best attempt, we obtained a 
sequential reduction of the objective function value in 
each iteration and found a local extremum for the 
“saturated block” (7,20)ψ . 

Such a “saturated block” provides the numeric value 
of objective function 28,09 as a minimum of maximal 
error for interval models. The scheme of calculations 
based on the fragment of the table in Fig.7 with 
appropriate marking is shown in Fig. 9. 

Now, let us apply the developed method for the 
selection of optimal “saturated block” for ISLAE (18). 
At the first step of algorithm realization, the “saturated 
block” (7,13)ψ  in the form of (19) is selected. 
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Fig. 9. Scheme of calculating the minimal value of the objective 

function using random search by the best attempt based 
 on the fragment of the table in Fig. 7. 

The maximal prediction error of the interval model 
developed for this “saturated block” is 133,64 (denoted 
by ellipse in Fig. 5). According to expression (14), it is 
necessary to define the vector for which the maximal 
value of the objective function is found. 

In the next iteration of the algorithm realization, the 
“contenders” are two “saturated blocks”: (7,20)ψ  
and (13, 20)ψ , respectively: 

0 1

0 1

47,492 19 2,944439 58,037
126,429 60 4,094345 154,523

b b
b b

≤ + ≤
 ≤ + ≤

,     (20) 

0 1

0 1

78,901 35 3,555348 96,456
126,429 60 4,094345 154,523

b b
b b

≤ + ≤
 ≤ + ≤

.     (21) 

The maximal prediction errors of interval model, the 
parameter areas of which were calculated from the 
solving of ISLAEs (20) and (21) are 28,09 and 28,09 
respectively. The values of the maximal errors are 
denoted by ellipse in Fig. 10. 

Thus, both ISLAE (20) and ISLAE (21), which 
provide the numerical value of the objective function 
28,09 as a minimum of maximal error for interval 
models, can be considered the optimal “saturated block”. 

As we can see, it was necessary to carry out only 3 
iterations to select the optimal “saturated block” by using 
the proposed method. These iterations correspond to the 
analysis of 3 variants of “saturated blocks”. 

Let us study the effectiveness of the method of 
forming a set of basic equations in the problem of 
ISLAE solutions localization based on a “saturated 
block”. The proposed method, method of full 
combinatorial enumeration and random search methods 
are compared. To do this, it is necessary to define the 
most complex operation for finding the objective 
function. This is the calculation of inverse matrix for 
ISLAE at each stage of the “saturated block” 
computation. 

Thus, in the example, for the same initial conditions, 
to define the set of basic equations, it was necessary to 
carry out the procedure of matrix inversion 190 times 
using the method of full combinatorial enumeration; 13 
times using the method of random search with linear 

tactics; 23 times using the method of random search by 
the best attempt. Applying the new method proposed in 
this paper, it was necessary to carry out matrix inversion 
only 3 times.  

 

 
Fig. 10. Scheme of calculating of minimum value  

of objective function by the proposed method based  
on the fragment of table in Fig.7. 

Therefore, by the criterion of computational complexity 
the proposed method for the given test example is 63 times 
more efficient than the full combinatorial enumeration 
method; 4 times more efficient than the method of random 
search with linear tactics; almost 8 times more efficient than 
the method of random search by best attempt. It should be 
noted that the considered problem has a small 
dimensionality. However, increasing the dimensionality of 
the problem leads to increasing the effectiveness of the 
proposed method. 

5. Conclusions 
The method of forming a set of basic equations in 

the problem of localization of ISLAE solutions based on 
a “saturated block” is proposed. The proposed method, 
unlike the existing ones, is based on solving the 
optimization problem with the criterion of minimization 
of maximal prediction error for interval models. The area 
of parameter estimations of these models is localized by 
the ISLAE solutions area in the form of a “saturated 
block”. 

A comparative analysis of the methods of random 
search of optimal “saturated block” and the proposed one 
in terms of their effectiveness is conducted. Its 
significant advantage by the criterion of computational 
complexity is represented. In the test example, it is 
shown that by the criterion of computational complexity 
the proposed method is 3 times more effective than that 
of random search with linear tactics.  
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МЕТОД ОЦІНЮВАННЯ МНОЖИНИ 
РОЗВ’ЯЗКІВ ІНТЕРВАЛЬНОЇ 

СИСТЕМИ ЛІНІЙНИХ АЛГЕБРИЧНИХ 
РІВНЯНЬ З ОПТИМІЗОВАНОЮ 

ПРОЦЕДУРОЮ ВИБОРУ 
“НАСИЧЕНОГО БЛОКУ» 
Микола Дивак, Ірина Олійник 

Обґрунтовано необхідність застосування нового 
методу формування набору базових рівнянь у задачі 
локалізації розв’язків інтервальної системи лінійних 
алгебричних рівнянь (ІСЛАР) на основі “насиченого 
блоку”, який ґрунтується на розв’язуванні оптимізаційної 
задачі.  

За критерій обрано мінімізацію максимальної похибки 
прогнозування інтервальними моделями, параметри яких 
належать області локалізації розв’язків ІСЛАР.  

Проведено порівняльний аналіз ефективності запро-
понованого методу пошуку оптимального “насиченого 
блоку”, порівняно із методами стохастичного пошуку, 
зокрема, з лінійною тактикою та за найкращою спробою. 
Показано його суттєву перевагу за критерієм мінімуму 
обчислювальної складності. 
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