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Abstract: The paper subgtantiates the necessity of
applying a new method for the formation of a set of basic
equations in the problem of localizing solutions to an
interval system of linear agebraic equations (ISLAE) on
the basis of a “saturated block”. The method is based on
solving the problem of optimization. Th e minimization of
the maximal prediction error by using interval models the
parameters of which beong to the localization area of
ISLAE solutionsis chosen as a criterion. A comparative
analysis of the effectiveness of the proposed method for
finding the optimal “saturated block” and the methods of
stochastic search, in particular with linear tactics and by
best attempt is conducted. A significant advantage of the
proposed method by the criterion of minimum
computational complexity is shown.

Key words. identification, interva anayss,
solutions localization, “saturated block” of interval
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1. Introduction

The problem of identifying parameters of satic
systems models that is based on interval data is
formulated as the problem of solving an interval system
of linear algebraic equations (ISLAE) [1-3]. Unlike a
regular system of linear algebraic equations, solutions to
ISLAE are a set of parameter estimates of a datic
system’s model. For the modd to be used conveniently
in applied research, instead of “exact” ISLAE solution
some estimate of the solutions set is widely employed,
e.g. in the form of multidimensional parallelotope or
dlipsoid. A method that involves sdection of a
“saturated block”, i.e. m interva equations (such
equations are called basic equations) from ISLAE with m
unknown values is distinguished among the existing
methods for the estimation of an ISLAE solution area.

The locdization area of solutions to the whole ISLAE
[1-3] ishuilt on the bad s of the basic equations sdected. The
detailed agarithm of the above mentioned mehod is
described in paper [4]. It is noted that sdection of the
“saturated block” which would provide optimal etimates of
the parameers of a ddic sysem’s modd as a & is a
computationa problem of polynomid complexity [1-4].

It is obvious that the notion of optimality of a set of
model parameter estimates is defined by the criterion of

“saturated block” selection. Usuadly, this criterion
minimizes the size of a parameter estimates area.
However, such selection of a “saturated block” does not
provide optimal prediction properties of the static
system’s model. To sdlect a “saturated block”, papers
[5-8] propose to apply the criterion of minimization of
the maximal prediction error of the modd instead of
using the methods of random search. To reduce the
computational complexity related to redlization of this
approach, it is proposed to use the methods of the theory
of design of optimal sequential experiments[9-10].

The comparison results of the methods of theory of
design of optimal sequential experiments with those of
stochastic search, in terms of their application, are
represented in the paper.

2. Statement of the problem

Let us consder a static (non-inertial) system in
which the dependence between “output” and “inputs’ is
represented in the form of the following agebrica
equation:

Yo = by $1.(0) + K+ by F () ()
where Yy, is the uknown true value of the system
“output”; ¥I R™ is the vector of input variables
I
b =(b,K, bm)T is the vector of unknown parameters,
I
£ T(X) = (¢ 1(X), K, (X)T is the vector of known basis
functions.

To estimate the values of parameters, we use the
experiment results in the form of matrix of input

variables X and vector of output variable values with
known limit values of errors:
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where 0,5(y" (X)- ¥ (X)) =D(X) is some known limit
value of the measurement error.
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In this case, the following conditions are met:

Y £y £Y,i=1K,N, ©)
Based on conditions (1) and (3), ISLAE is obtained for
the estimation of the vector of unknown parameters b
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The set W isthe solutionsto ISLAE (4):
r. r r r
W:{bl Rm|Y' £F>b£Y+}, (5)
rT r, . . .
where F :{fj (%),i =LK, N, j :LK,m} isthe known
r
matrix of basis functions values, Y~ :{yi‘ i :LK,N}
r
and Y* :{)/i+,i =1K, N} are the vectors formed from

upper and lower bounds of the intervals [y, ;yi+] .

If ISLAE (4) is non-degerate, then geometricaly its
area of solutions is a convex polyhedron [1-3]. However,
ingtead of using the solution areain form (5), it is expedient
to use its esimations in the form of multidimensonal
rectangular paralldepipeds or dlipsoids. The noted methods
for the etimation of ISLAE solutions area are not always
suitable for solving the applied problems of modding due
to low accuracy of the fird one and high levd of
complexity of the second one.

Recently, the methods of estimating the ISLAE
solution area, which are based on the analysis of
“informativeness’ of each ISLAE interva equation, have
become widely used. As known from [1-3], on the one
hand there may be equationsin ISLAE that do not define
the solution area, and on the other hand there may be
interval equations that do not change significantly the
configuration and size of the solution area. One of such
methods is described in  papers [11-13]. It consists in
defining a solution area configuration at the initial stage.
For this, it is necessary to select m equations from
ISLAE and then change the size of the given
configuration area taking into account the other
equations from ISLAE.

Example. Let ISLAE be in the following form:

19,946 £ 6h, - 0,279b; £12,178

+14,313 £ 7hy +0,657b, £17,507

?17,33;3 oby +0,412b £21177 , (6)
f:f4,042£ by +0,841b, £ 4,947

§5,846 £ 30, + 0,141, £7,13

Let us select a “saturated block”, for example, a
system consisting of the first and second equations from

the given ISLAE:
19,946 £ 6l - 0,279 £12,178 @
{14, 313 £ 7y +0,6570y £17,507

According to the agorithm of redlization of the
method of “saturated block” selection, let us add, for
example, thefifth equation:

5,846 £ 3y +0,141b £7,13, (8)

The result of the algorithm application is shown in
Fig. 1.

Fig. 1. lllustration of solutions to interval
equations (7) and (8).

In another case, let us choose a “saturated block”
formed from thefirst and third equations from ISLAE (6):

19,946 £ 6l - 0,279 £12,178 ©
%17,33£ Oy +0,412; £ 21,177
And add equation (8) (Fig. 2).
K

=

Fig. 2. lllustration of solutions to interval
equations (8) and (9).

As we can see in the Figures, system (7) defines the
configuration in the form of paralelogram. Adding
equation (8) does not change the size of the area, and
adding equation (9) reduces the area of solutions. Thus,
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we can see that the most difficult step is selection of
basic equations that form a“ saturated block”.

Papers [11-13] propose the minimization of
maximal prediction error in the range of values of input
variables X 1 ¢ asthe criterion of selecting the optimal

“saturated block™:

D _ I m r fl 5 .
max (Fm) = max| 2xa |aj (x)>Dj|y% /598 min,
Xl c T oj=1 p
AT (=] (0t

If al the equations in ISLAE (4) are numbered:
1,..,...,N, respectively, then each equation in the
“saturated block” has a unique number nj , where n is
number of the equation from system (4), j=1,...misits
index number in the “saturated block”. Then expression
(20) can be rewritten as:

Fol=y (N T S (11)

And we obtain:
Drax (N M) =

= rpax’|[2><£°;11 |aj ()'2) ><Dj |y %%@4'%@@ min, (12)
=1 b

xICT

rr I _.rr.r
al (=] " (0¥ (Mg, ).
Expression (12) provides the minimization of

maximal prediction error of the interval model among al
possible “saturated blocks’ selected from ISLAE (4).

3. Methods of solving the problem of optimal
“saturated block” selection

Full combinatorial enumeration [1-3] and stochastic
search [5-8] are digtinguished among the known
methods of solving the problem of optimal “saturated
block” selection.

Teking into account the fact that combinatoria
enumeration of al posshle “saturated blocks’ is extremey
consumable from the computationd point of view, let us
consder the methods of stochastic search in more detail.

The random search method with linear tactics. This
method is developed using two operators. random step
and repetition of the previous step [5-8]. Using each of
them may lead to one of two results: the value of a
minimized function either gets reduced or remains
unchanged. Depending on the result, one or the other
operator is used.

The random search agorithm with linear tactics is
based on the following obvious assumption concerning the
object of optimization: probability of a successful sep in
the direction that was successful in the previous iteration
will be higher than the probability of a successful step
chosen randomly. The linearity of the tactics of this
procedure consstsin simulation of linear behavior, i.ein the
exact repetition of a successful step [5-8].

Let us interpret the algorithm of random search
method for the formation of optimal “saturated block” in
the problem of localization of ISLAE solutions.

Let usillustrate the algorithm of the random search
method with linear tactics for the two-dimensional case
(m=2, N=6). The space of the objective function
values for all possible “saturated blocks’ is represented
inthetablein Fig. 3.

Number of second equation of “saturated block”, n;
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Fig. 3. Table of objective function values for all possible
“saturated blocks” inthecasem= 2, N= 6.

Let us sdect an initiad “saturated block”, for
example, y (2,3) (circled in Fig. 4), and for the block
define the values of the objective function
Dax & (2,3)) . The size of the step is considered to be
the difference between the equation numbers in the
“saturated block”. For example, if the initial set of
equations is (ny;n,), length of the step equals 1, then

the following directions are obtained: (m-1;n,),

(p+Imp), (inp-1), (ninp+1). Let(m;n, +1) be
chosen as a random direction. Therefore, the next
“saturated block” isy (2,4) .

Let us define the value of the objective function
Dax & (2,4)) and check the condition
Diax & (2,4)) < D & (2,3)) . If the condition is met,
then the calculations are continued in the same direction.
Let us suppose that Dy (2,6)) <Dy & (2,5)). In
this case, according to the scheme of random search
algorithm, it is necessary to change the direction of
linear tactics. Among the directions available, we
select ( +L,ny) . The resulting “saturated block” is
y (35). Let us determine the value of the objective
function Dy (3,5) and check the condition
Dinax & (3.5)) <Dmax & (2,5)) . If the condition is met,
the direction is considered successful. Further)
calculations are carried out according to the direction
and by analogy with the previous steps. Fig. 4 illustrates
the above-described sequence of calculations
implemented in the space of ISLAE equation numbers.

The method of random search by the best attempt.
This method is based on two basic concepts. the
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direction of calculation and step [5-8]. Firdtly, let us
choose the size of the step and find the values of the
objective function for al the possible directions, and
then select the minimal one. From this point, again, let
us carry out the calculations in dl the directions
according to the size of the step chosen. By analogy with
the previous iterations, among the selected values, the
minimal oneis chosen.

MNumber of second equation of “saturated block™, ny

w1 2 3 4 5 6
1| == | A k2N B oL 33 A g (L A1) 3 g (LS A gy T2, 610
2 - o T (2, "M 200

[ {3,590}
A (34l | 2

4 -

Mumber of first equation of “saturated block™, ng

Fig. 4. lllugtration of random search strategy
with linear tactics.

Let usinterpret the algorithm of random search by the
best attempt for forming the optimal “saturated block” in
the problem of localization of ISLAE solutions.

Let us illugtrate the agorithm of the above method
for the two-dimensiona case from the tablein Fig. 3. As
an example, let y (2,4) be selected the initial “saturated
block"(circled in Fig. 5). Then, for this block, we define
the value of the objective function D5 (2,4)). As
noted above, the size of the step is considered to be the
difference between the eguation numbers in the
“saturated block”. For example, if the initial set of
equations is (ny;ny), length of the step is equal to 1,
then, we obtain the following directions; (m - 1;n,),
(p+Lnp), (ninp-1), (n;ny+1). If the step length
equals 1, then, based on the table in Fig. 3, the following
“saturated blocks’ to be studied are y (2,3), v (1L4),
y (2,5, Y (3,4) (circled by adotted linein Fig. 5). The
values of the objective functions are defined for the
bIOCkS Dmax 6/ (213)) ’ Dmax 6/ (:L 4)) ’ Dmax 6/ (215)) ’
and Dy & (3,4)) . Among the values obtained, let us

find the minima one, for example Dy, (2,5)) .

Accordingly, the further calculations are carried out
concerning the “saturated block»y (2,5). By anaogy

with the previous step, the value of the objective function
is defined for the blocks Dy (15)) ,Dax & (3.5))

and Dy & (2,6)) . Let us find the minimum of them, for
example, for the “saturated block” y (3,5). The next

calculations must be carried out by analogy with the
previous d<eps. The abovedescribed sequence  of
calculations redlizated in the space of ISLAE equation
numbersisrepresented in Fig. 5.

The method of forming a set of basic equations in
the problem of localization of ISLAE solutions. Now, |et
us consider the proposed method of directed
enumeration of “saturated blocks’ devel oped according
to the procedure of | -optimal experiment design. The

essence of the method consists in sdecting some
“saturated block”, obtaining the corridor of interval
models and analyzing the predictive properties of these
models that is the basis for planning the way of forming
the next “saturated block”.

Number of second equation of “saturated block”, n;
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Fig. 5. lllugtration of random search strategy
by the best attempt.

Thus, let the structure of mathematical mode of
static system be defined by expression (1) with unknown
parameters, interval data (2) be given and ISLAE be
formed in the form of (4).

Let us choose a “saturated block” from ISLAE
randomly, calculate its solution area and build the
corridor of prediction by interval modds:

[Y(X)] =
I . LT a (13)
g” () - > D) i (0% +§>o;(;)§

Now, by analogy with the procedure of sequentia
Ig-optima experiment design, it is necessary to
calculate the vector x™ | which provides the maximal
prediction error in the area of the experiment:

Pmex ¢
=ag, max 2xaa ( )>D =1...,Ny,
e TR AR A
rrr. r .
a'(x)=] T(Xi)mel-
It should be noted that procedure (14) is smple asit is
implemented for the finite set of points X ,i =1,...,N . The
vector obtained by expresson (14) is a vector of values of

input variables. Thisvector defines a certain interval equation
in ISLAE (4). In accordance with the procedure of sequential
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| -optima experiment design, it is exadly this point &t
which the next measurement should be conducted.

Papers [11-13] prove that if the vector ¥max ooincides
with the vector of values of the input variades of one of the
interval equations of the ISLAE “saturated block”, then it
specifies the point with the minimal value of prediction error.
Hence, it is advisable to replace one of theinterva equations
inthecurrent  “saturated block” by theinterva equation of
ISLAE with the vector of input variables values

YmaX defined by expression (14). Thus by analogy with the
procedure of sequential | -optimal experiment design, we
“dmulae’ the procedure of additiond measurement at the
point Xmax \ith the maximal prediction error of interval

modd. This procedure is conducted for each interval
eguation in the “saturated block” resulting in obtaining p
(p=1,...m) new “saturated blocks”.

As a result, m values of maximal errors for the
corresponding interval models are obtained for each of
the m “saturated blocks’:

DPoc = max |2x4 fa;p(%) 0
R N} i= | Pt ‘|y (15)
AT %) =i 6) €k (p), p=1,..,m

where p is the index which indicates a “saturated block”
number, F,,(p) is the matrix of basic functions values
for the p-th block, ajp(>'<i) is the i-th component of

vector a calculated for the p-th “saturated block”.

It is obvious that for the optimal “saturated block” to
be sdected at this step, insgead of using complex
computational procedure (10), it is sufficient to select
from the m “saturated blocks’ the one that provides the
least value of sequence (15):

F, OPt :argmin{meax, p:l...,m} . (16)
p=1...m
Using procedure (12), we obtain XM _ the vector

for which the prediction error of the interval modd is
maximal. This interval model is defined by the solution
to “saturated block” (16). The iterations then continue
until the “saturated block” whose equations can be
replaced without leading to a decrease in the maximum
prediction error by interval modelsis obtained.

As we can see from expresson (12), the objective
function in the problem of “saturated block” sdection is
discrete, sinceits vdueis defined by a specific st of interval
equations. Itisaso obviousthat thisfuncion isnot unimoda.

4. Example of estimating the time complexity of
the methods

Let us analyze the effectiveness of the proposed
method on an example. Let the equation for

developing an interval model have the following
general form:

y(x) = by >x+by An(x), (17)

The parameters of the model are defined from the set
of “experimental” datarepresented in Fig. 6.

% ¥i yi x5 ¥ yi

1 1,7 2,1 11|32
5 116,181 19,791 | 12| 33
9 126,105|31,902 | 13|35
10| 28,332 | 34,634 | 14 | 37
37.14 |45379| 15| 40
16 | 41,211 | 50.384 | 16 | 42
1947,492 | 58,037 | 17| 50
23|55,471 | 67,806 | 18 | 57
28165313 | 79.845 | 19 | 59
29167.282 | 82,25 |20 |60

73,294
75,058
78,901
82,855
88,62
92,353
107.594
120,705
124,606
126.429

89,559
91,755
96,456
101,266
108,309
112,89
131,506
147,548
152,283
154,523

Wl eol < o | & W] | = -
—
=~

—
(=}

Fig. 6. Table of “ experimental” data.

Then, the interval system for finding the coefficients
of themodd isasfollows:
1L7£by £2,1
116,181€ 5y +1y £19,971
126,105 £ 9y, +2,197225; £ 31,902
128,332 £ 10k, + 2, 3025850, £ 34,634
f:f 37,14 £ 14hy, + 2,639057by £ 45,379
141,211 £ 16k, + 2, 772589, £ 50,384
£ 47,490 £ 19ty + 2,944439, £ 58,037
f:f 55,471 £ 23, +3,135494b, £ 67,806
i 65,313 £ 28hy, + 3,3322050, £ 79,845
167,282 £ 29hy, +3,367296, £ 82,25
£73,294 £ 32y, + 3, 465736y £ 89,559
j:f 75,058 £ 33, +3,496508b, £ 91,755
i 78,901 £ 35k +3,5553480; £ 96,456
182,855 £ 37, +3,610018h, £ 101,266
188,62 £ 40k, +3,688879%, £108,309
192,353 42by +3,73767b, £112,89
f:f 107,594 £ 50h, +3,9120230, £131,506
1120, 705 £ 57k, +4,043051b; £147,548
+124,606 £ 59, +4,077537b; £152,283- (1)
$126,429 £ 600, + 4,0943450; £ 154,523
Let us number the equations in system (18).
Accordingly, the interval equation L7£by£21 is
numbered 1, and the interva equation
126,429 £ 60ky, +4,0943450; £154,523 isnumbered 20.
According to expression (17), the values of the
objective function are calculated and introduced into the
tablein Fig. 7. In thetable (see Fig. 7), N; standsfor the
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number of the first equation in the “saturated block”,
N, isthe number of the second equation.

5
™\
a»

“saturated block”. It provides a numeric value of the
objective function as a minimum of maximal error for
interval modelsis 28,09.

The scheme of calculations based on the fragment of the
tablein Fg. 7 with appropriatemarking is shown in Hg. 8.

\ 12 13 14 15 16 17 18 10 20

632.02 | 585.63 | 238.85 | 460.54 | 423.87 | 244.88 | 288.07 | 308.00 | 310.36
118.89 ':1_06,47)‘ 05.64 81.75 7375 | 4804 [ 3351 2083 2857

Fig. 7. Table of values of the objective function cal culated
using the method of full combinatorial enumeration..

As we can see, the objective function is discrete and
has a great number of local minimums. Let us apply the
algorithm of random search method with linear tactics to
the example described above. At the firs stage of
calculations we sdect a “saturated block”, for
exampley (7,13):

| 47,492 £190, + 2,944439% £ 58,037
178,901 £ 35ty +3,5553480; £ 96,456 °

The maximal prediction error of the interval model
developed for this*“ saturated block” is 133,64.

Let us generate a random direction — (- Lny).
Thus, we move to the point that corresponds to the
“saturated block” y (6,13) . The maxima prediction error
of theinterval modd for this“saturated block” is119,54.

Using the dgorithm for the method of random search
with linear tactics resulted in decreasing the value of the
objective function. That is why the chosen direction is
consdered sucessfull. In the next iterations, the “saturated
blocks'y (513), y (413) and y (313), y (213,
respectively, are examined by turns. The results obtained
while examining the “saturated block” y (2,13) do naot
mest the conditions of the method. Therefore, in accordance
with the algorithm of random search, it is necessary to
generate a new direction of linear tactics with regard to the
“saturated block” y (3,13) .

Let us generate the random direction (ry +1n,) and
examine the “saturated block” vy (3,14) . For the block
above, the value of the function Do & (3,14)) isequal to

92, 2 Now Ila wus check the condition
Dnax & (3.14)) < Dypax v (3,13)) . Asthe condition is met,
the chosen direction is consdered successful. By analogy
with the previous geps, let us sequentially study the
“saturated blocks’ y (3,15),vy (3,16),y (317),y (318),
y (319) andy (3,20), respectivey.

The “saturated block” y (3,20) with the maximal
prediction eror 28,09 is considered the optimal

(19)

117.72 @/ 0203 | 7875 | 7079 [ 47.02 | 3292 | 2064 | 28.09
120.43 @ 00.14 | 82.63 | 73.61 | 47.69 |[33.01 | 2066 | 28.09
138.7 @9_54/ 104.08 | 8578 | 7505 (4835 [3312 | 2060 | 28.09
158.65 @ 11425 | 9216 | 80.66 | 49.67 [ 3336 | 2076 | 28.09

205.52

| =i o w| & w] o =

164.71 | 13562 | 104.91 | 89.86 5214 | 3381 2089 | 28.00

Fig. 8. Scheme of calculating the minimal value of the objective
function using random search with linear tactics based on the
fragment of thetablein Fig. 7.

Let us apply the algorithm of random search by the
best attempt method to the example under consideration.
At the first stage of calculation, the “saturated block”
y (7,13) (19) is selected.

The maximal prediction eror of the interval modd
developed for this “saturated block” is 133,64. The value
of the step is 1. Let us define all possble calculation
directions for the two-dimensional case
propasedt: (ny - L 1), (M +L ) , (NN - 1), (M3 np +1).

Therefore, it is necessary to anayze the value of the
objective function for the “saturated blocks’ y (7,12),

y (7,14) ,y (6,13), and y (8,13) concerning theinitially
selected “saturated block” y (7,13) . This results in the
following values: Dax & (7,12)) =158,65;
Diax & (7,14)) =114,25; Dinax & (6,13)) =119,54;
Dinax & (8,13)) =164,71. The minimal value among the

obtained ones corresponds to the “saturated block”
y (8,13) . Therefore, the calculationsin the next iteration

are carried out concerning to the block, without changing
a step value and characteristics of the directions.

Thus, realizing the algorithm of the method of
random search by the best attempt, we obtained a
sequential reduction of the objective function value in
each iteration and found a local extremum for the
“saturated block” y (7,20) .

Such a“saturated block” provides the numeric value
of objective function 28,09 as a minimum of maximal
error for interval models. The scheme of calculations
based on the fragment of the table in Fig.7 with
appropriate marking is shown in Fig. 9.

Now, let us apply the developed method for the
selection of optimal “saturated block” for ISLAE (18).
At the first step of algorithm realization, the " saturated
block” y (7,13) inthe form of (19) is selected.
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A

12 13 14 15 16 17 18 19 20

o

63292 | 5 5| 46954 | 423.87 | 24488 | 288.97 319.36

10647 | 9564 | 8175 | 7375 | 4804 | 3351 | 2083 | 2857
10323 | 922 | 7836 | 7056 |47.04 | 32.04 | 2065 | 28.09
10432 [ 9203 | 7875 | 7070 | 47.02 | 3202 | 20.64 | 28.09
11282 | 90.14 | 82.63 | 73.61 | 47.60 | 33.01 | 20.66 | 28.09
1387 |(110.59 J104.08 § 85.78 |.75.95 {3835 ] 3312 { 29.69 1| 28.09

20552 |0 7{7135.62 JC104.91 % 89.86 {5214 - [-35.8T - 20.89 -,| 28.00

118.89
116.14
117.72
120,43

w| < o | & w| o o=

Fig. 9. Scheme of calculating the minimal value of the objective
function using random search by the best attempt based
on the fragment of thetablein Fig. 7.

The maximal prediction error of the interval model
developed for this “saturated block” is 133,64 (denoted
by elipse in Fig. 5). According to expression (14), it is
necessary to define the vector for which the maximal
value of the objective function is found.

In the next iteration of the algorithm realization, the
“contenders’ are two “saturated blocks’: vy (7,20)

andy (13,20), respectively:

| 47,492 £ 19y, +2,944439%, £ 58,037
1126,429 £ 60k, + 4,0943450; £154,523°
| 78,901£ 35h, +3,5553480, £ 96,456
1126,429 £ 60k, + 4,0943450; £154,523°

(20)

(21)

The maximal prediction errors of interval model, the
parameter areas of which were calculated from the
solving of ISLAEs (20) and (21) are 28,09 and 28,09
respectively. The values of the maxima errors are
denoted by dlipsein Fig. 10.

Thus, both ISLAE (20) and ISLAE (21), which
provide the numerical value of the objective function
28,09 as a minimum of maximal error for interval
models, can be considered the optimal “ saturated block”.

As we can seg, it was necessary to carry out only 3
iterations to select the optimal “saturated block” by using
the proposed method. These iterations correspond to the
anaysis of 3 variants of “saturated blocks’.

Let us study the effectiveness of the method of
forming a set of basic equations in the problem of
ISLAE solutions localization based on a “saturated
block”. The proposed method, method of full
combinatorial enumeration and random search methods
are compared. To do this, it is necessary to define the
most complex operation for finding the objective
function. This is the calculation of inverse matrix for
ISLAE a each stage of the “saturated block”
computation.

Thus, in the example, for the sameinitial conditions,
to define the set of basic equations, it was necessary to
carry out the procedure of matrix inversion 190 times
using the method of full combinatorial enumeration; 13
times using the method of random search with linear

tactics, 23 times using the method of random search by
the best attempt. Applying the new method proposed in
this paper, it was necessary to carry out matrix inversion
only 3 times.

v |12 13 14 15 16 17 18 19 20

N

538.85 | 469.54 | 423.87 | 244.88 | 288.97 | 30899 | 31936
10647 | 9564 | 8175 | 7375 | 4894 [ 3351 | 2983 | 2857
116.14 | 10323 | 922 7836 | 7056 | 47.04 | 3294 | 2065 | 28.09
10432 9293 | 7875 | 70.79 | 47.02 | 3292 | 2964 | 2809
2| 99.14 | 8263 | 73.61 | 4769 | 3301 | 2966 | 28.09
4| 104.08 | 8578 | 759> | 4835 | 3312 | 2969 | 28.09
15865 {13368 114259216 | 8066 [ 4967 | 3336 29,76= 28,
13562 [ 104.91 [ 89.86 | 52.14 | 3381 | 2989 | 2809
190.52 | 13378 10951 | 56.75 | 34.6 30.12 | 28.09
2] 20988 | 14279 | 115325797 | 348 3018 | 28.09
31474 | 18354 | 13987 | 62.45 \Q 3038 | 28.09
38477 20494 | 15173 | 6431 | 3377 45 | 28.09
7352 | 27354 | 18569 | 688 36.4 3063 _\2@
43378 | 24691 | 7468 | 37.16 | 30.84 | 28.09
=) 568.79 | 87.97 | 3864 | 31.24 | 2011
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Fig. 10. Scheme of cal culating of minimum value
of objective function by the proposed method based
on the fragment of tablein Fig.7.

Therefore, by the criterion of computational complexity
the proposed method for the given test exampleis 63 times
more efficient than the full combinatoria enumeration
method; 4 times more efficient than the method of random
search with linear tactics, amost 8 times more efficient than
the method of random search by best attempt. It should be
noted that the conddered problem has a gmal
dimensiondity. However, increasing the dimensionality of
the problem leads to increasing the effectiveness of the
propased method.

5. Conclusions

The method of forming a set of basic equations in
the problem of localization of ISLAE solutions based on
a “saturated block” is proposed. The proposed method,
unlike the existing ones, is based on solving the
optimization problem with the criterion of minimization
of maximal prediction error for interval models. The area
of parameter estimations of these models is localized by
the ISLAE solutions area in the form of a “saturated
block”.

A comparative analysis of the methods of random
search of optimal “saturated block” and the proposed one
in teems of their effectiveness is conducted. Its
significant advantage by the criterion of computational
complexity is represented. In the test example, it is
shown that by the criterion of computational complexity
the proposed method is 3 times more effective than that
of random search with linear tactics.
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METO/J OIHIOBAHHS MHOKXUHU
PO3B’ SI3KIB IHTEPBAJIbHOI
CHUCTEMMH JIHTHIMHUX AJITEBPUYHUX
PIBHSAHB 3 OIITUMI3OBAHOIO
MMPOLHEAYPOIO BUBOPY
‘“HACHUYEHOI'O BJIOKY »

Muxkona /luBak, Ipuaa OmiiHIK

OOrpyHTOBaHO HEOOXIJHICTH  3aCTOCYBaHHS
Mmerony QopMyBaHHA Habopy 0a30BUX piBHAHb Yy 3azadi
Jokamizanii  po3B’sA3KIB  IHTEPBaJIbHOI
anreOpuunnx piBHsHb (ICJIAP) Ha OCHOBI “HACHYCHOro
OJIOKY”, SIKMH TPYHTYETBhCS Ha PO3B’sI3yBaHHI ONTHMIi3aliifHOL

HOBOI'O

CHCTEMH JIHIAHUX

3azaui.

3a kpuTepiil 00paHO MiHIMI3aI[iF0 MAaKCUMAIEHOI TOXUOKU
IPOTHO3YBaHHs IHTEPBAIBHUMU MOJIEISIMH, IapaMeTpH SKHX
HaJexarb o0JacTi Jiokanizauii po3s’ sa3kis ICJIAP.

IIpoBeneHo MOpiBHANBHUN aHA3 epEKTUBHOCTI 3ampo-
MIOHOBAHOI'O METOZy IOIMIYKY ONTHUMAJIbHOTO “HACHYEHOro
6JI0KY”, TOpIBHSHO i3 METONAMH CTOXAaCTUYHOIO IIOLIYKY,
30KpeMa, 3 JIIHIHHOI TAKTHKOIO Ta 33 HAMKpaIIon Crpo0oro.
IMokazaHo ioro cCyrreBy IepeBary 3a KpUTEpiEM MiHIMyMy
00YMCITIOBANIBHOI CKJIA/IHOCTI.
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