
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 2, No. 2, 2017

ORDERED ACCESS MEMORY AND ITS APPLICATION
IN PARALLEL PROCESSORS

Anatoliy Melnyk

Lviv Polytechnic National University, 12, S. Bandera str., Lviv, 79013, Ukraine
Authors e-mail: aomelnyk@lp.edu.ua

Submitted on 01.12.2017

© Melnyk A., 2017

Abstract: In this paper, after analyzing the known me-
mory access methods, conventional memory organization
and its challenging problems, we propose new ordered
memory access method and a new type of memory – the
ordered access memory. This method is aimed at working
with data arrays and provides memory access in the
prescribed manner. Proposed method unlike widely used
method of sequential memory access allows extending the
functionality of the memory as it provides not only
sequential, but also any other ordered memory access.
Unlike another widely used method of address memory
access, the implementation of the proposed method
provides parallel conflict-free memory access. It also allows
eliminating data binding to a specific memory location that
makes it possible to disintegrate the apparatus for data
ordering and eliminates the need to store addresses of
locations the data are placed in, and the need to submit the
address to the address inputs during data writing and
reading.

The new method distinctive features compared to the
known memory access methods are considered. Input data,
their indices and output data of the ordered access memory
are described as well as the approaches to this type of
memory design and use. The interface of the ordered access
memory is considered as well as its advances compared to
the random, associative, and sequential access memories.
An example of the ordered access memory usage in
application-specific processors with parallel and pipeline
structures is demonstrated and the results of the ordered
access memory implementation in FPGA are considered.

Index Terms: Computer memory, Memory wall, Memory
types, Parallel memory, Memory access method, Ordered
access memory, Memory organization, Parallel processors.

I. INTRODUCTION
Computers have become a mandatory component

of our life. They are used for solving science and
engineering problems including the design of
automobiles, buildings, electronic devices, aircrafts,
medications, and robots. Their using makes automobiles
safer, more aerodynamic, more comfortable, and more
energy-efficient. The more powerful computer is used
the more considerable effect of it. For example, exascale
computing is used to understand economics, national
security, and setting public policy. Billions of processor
hours are applied to understanding and predicting
climate change. With faster computer systems scientists
and engineers could simulate critical details – such as

clouds in a climate model or mechanics, chemistry, and
fluid dynamics in the human body [1,2].

Main direction of computer systems performance
increasing is their parallelization. Parallel multiprocessor
systems on a chip became the mainstream products of
the microprocessor industry. Although software
developers have found the ways to use multicore systems
by running independent tasks on each core, they have
not, for the most part, parallelized individual tasks in
such a way as to make full use of the available
computational capacity [3]. Moreover, if industry
continues to follow the same trends, they will soon be
delivering chips with thousands of cores. Harnessing
these cores will require new techniques for parallel
computing, including breakthroughs in software models,
languages, and tools. From the other side, most software
developers today think and program by using a
sequential programming model to create software for
single general purpose microprocessors, for single
dedicated microprocessors, including digital signal and
image processors, and for single application-specific
processors as FFT, FCT, AES etc. The problem to
increase performance of these single processors, which
will be the base for the future multiprocessor systems, is
very important.

To solve this problem the following improvements
must be done: reduced memory wall; provided parallel
conflict-free memory access; created new model of
computing which has no limitations of John von
Neumann one. We see the way to realize it by creation of
the new parallel memory architecture and propose new
type of computer memory with parallel ordered memory
access.

The primary systematic feature of computer
memory is the memory access method that is
implemented in it [4]. This feature designates an ability
of memory in relation to the conflict-free parallel access.
Such access is not fully provided by any modern type of
memory: random, associative, and sequential access
memories that significantly complicates the organization
of the computer and results in its low performance. The
task arises to find new memory access methods.

In works [5–8] the new memory access method and
the memory device that implements this method were
proposed. During last years this method and the memory

Ordered Access Memory and its Application in Parallel Processors

55

device characteristics have been improved [9, 10]. This
new device we will further call the ordered access
memory (OAM).

The ordered access memory is dedicated to a work
with arrays of data. This memory provides access in the
prescribed manner, i.e. index, which enters the memory
together with data, or during its reading, indicates its
place in the output array. To clearly allocate features of
the new computer memory type the ordered memory
access method will be explored in this article as well as
its distinctive features compared to the known memory
access methods. Input data, indices, and output data of
the ordered access memory will be described as well as
approaches to its design and use. The interface of these
types of the OAM will be further considered as well as
advances of the OAM comparing to random, sequential
and associative access memories. The results of the
OAM implementation in FPGA are considered. At the
end of this article the OAM usage in application-specific
processors with parallel and pipeline structures is
demonstrated.

II. MOTIVATION
Four major issues motivate this work: (1) the

challenge to find the approaches of overcome or to
reduce the memory wall; (2) the need for parallelizing
processor work; (3) the need for performing data
ordering inside memory; (4) the need for creating the
base for the new model of computing which has no
limitations of John von Neumann one.

A. MEMORY WALL
The challenging problem in high-performance

computing is the memory wall. The memory wall, the
growing mismatch between memory bandwidth and
processor cycle time, is a major factor limiting
performance [1, 11–13]. On many applications modern
processors are limited by memory system performance
to a small fraction of peak performance. Despite of the
tremendous changes that have occurred in the computer
memory design technology, which have led to
dramatically improving of its characteristics [14], this
problem appears to be growing worse over time. The
memory wall is a special case of non-uniform scaling.
As technology improves, different aspects of technology
scale at different rates, leading to disparities in system
parameters. When these disparities become large
enough, or when a new technology is introduced, there is
a discontinuity in system design that calls for innovative
architecture.

To address the memory wall problem, innovative
architectures are needed that increase memory
bandwidth. If make a look inside the memory we will
find that the main contribution to memory bandwidth
slowing accounts for the tools of address access to its
locations. These tools introduce the main delay to the
time of memory access, moreover with the grown of the
memory size this delay increases. With design

technology improvement the characteristics of the
memory components become better but at the same time
its size grows that lids to its relative slowing. To
improve memory bandwidth modern DRAM devices
store data in banks which can be indexed by row and
column addresses [15]. A memory access to such a
DRAM device requires besides the data transfer the
following operations: bank precharge, row activate and
column access [16]. Finding a schedule of these
operations with the minimum schedule length is the
focus of some works [17, 18], proposed techniques of
which group the accesses of the same row together and
interleave the execution of memory accesses from
different banks. It allows improving DRAM’s speed and
throughput. But the number of banks is limited by the
complexity of memory controller that does not allow to
solve the memory wall problem dramatically.

In our opinion the growing mismatch between
memory bandwidth and processor cycle time can be
overcome by creating of the computer memory,
organization of which does not require defining the place
where data is stored.

B. PROCESSOR WORK PARALLELIZING
The problem to increase performance of the single

processor can be solved using beside increasing its clock
frequency and overcoming the memory wall by
parallelizing its work.

Algorithms of most problems solving have natural
parallelism and suppose parallel data processing. The
level of parallelism is limited by the access methods of
the modern types of the computer memory. It does not
allow solving these problems in appropriate time.
Parallelizing of the processors work required by an
application can be achieved by creation of the new
memory architecture with parallel conflict-free access.

C. DATA ORDERING INSIDE MEMORY
The need to order data arises in process of many

problems solving and, as it is pointed in [19], over 25 %
of machine time is spent on this procedure. In many
areas, such as matrix computations, digital signal and
image processing, graph theory and combinatorial
optimization, there are algorithms with data
dependencies, flow graphs of which have irregular
structure and are characterized by the low efficiency in
the case of their implementation in the multiprocessor
systems as it requires intensive data exchange between
processors. Their sequential execution requires
performing of intermediate data ordering. For their
parallel execution a lot of multiprocessor architectures
based on the communication networks [20–22] have
been proposed. In some of them the sorting networks are
used for processors and memory modules connection
[23, 24]. It is the reason of large activity in the direction
of sorting networks VLSI implementation [25, 26].

Above pointed forms need for creation parallel
memory with performing data ordering inside it.

Anatoliy Melnyk

56

Moreover, there is a need for memory with new
properties, which are not available for modern memory
types. Specifically, while performing intensive
calculations on data arrays which are necessary, for
example, in solving multimedia and telecommunication
problems, the memory must provide storing of data
arrays coming from many channels simultaneously with
ordering data in the arrays and reading previously
accepted data arrays for their processing in multi-ALU
units, i.e. in parallel [27, 28]. Performing these functions
using the existing types of memory is a complex and
often impossible task with acceptable performance, due
to their potential limitations [29–31].

Therefore, there is a need for extension the memory
functionality to enable its use for solving the above-
mentioned problems of working with arrays of data by
including to its functions the procedure of data ordering
in arrays during their writing, saving and reading.

D. THE BASE FOR THE NEW MODEL OF COMPUTING
Memory is one of the main elements of computer.

Its organization defines used in computer model of
computing. Traditionally, John von Neumann model of
computing is based on the address access memory or
RAM. Known associative model of computing is also
based on corresponding memory organization. Thus,
new memory access method may serve as a base for the
new model of computing.

III. BACKGROUND

A. KNOWN MEMORY ACCESS METHODS
As we already know, the memory consists of

locations storing data, where data are written in through
the input ports and are read out through the output ports.
Let us define the memory access method as a sequence
of actions that are performed under content of the
memory locations directed to write and read data. There
are several memory access methods.

The most used in modern computers is the address
memory access method. The memory MEM includes
tools AALi of address access to each i-th location where
data are being stored, in addition to M locations Li,
where i is a location number (i = 0,1, ... M-1), i.e.

MEM = {Li, AALi, i = 0,1, ... M-1}.

According to this method, the address of the
memory location (its number) is submitted to the
memory together with each data while it is writing in to
the memory and while it is reading out from the
memory. This address identifies the location in a way
that the tools AALi write data in to this location, or read
it out from this location. That the content of the memory
location is determined by the expression

Li [0 – (n-1)] = {ID [0 – (n-1)], A = i},

where ID is n-bit input data; A is its address.
Output data OD is determined by the expression

OD [0 – (n-1)] = {Li [0 – (n-1)], i = A}.

The main feature of the sequential memory access
method is that data are placed in the memory locations
sequentially. Data are read out from the memory at the
same order as they are written in to the memory, or in
reverse order. Direct order is provided by the FIFO,
“First In – First Out”, memory. Reverse order is
provided by the LIFO, "Last In – First Out”, memory.
The memory MEM includes M locations Li, where i is a
location number (i = 0,1, ... M-1), where data are being
stored, i.e.

MEM = {Li, i = 0,1, ... M-1}.

The content of the memory location is determined
by the expression

Li [0 – (n-1)] = {IDi [0 – (n-1)]},

where ID is n-bit input data.
Output data OD is determined by the expression

ODi [0 – (n-1)] = {Li [0 – (n-1)]}.

According to the associative memory access
method data is stored in the memory location together
with its key and is loaded from the location when its key
coincides with the given one. The memory MEM
includes tools AALi of associative access to each i-th
location where data are being stored, in addition to
M locations Li, where i is a location number (i = 0,1, ...
M-1), i.e.:

MEM = {Ki, AALi, i = 0,1, ... M-1}.

Tools AALi compare the keys of all data placed in
the memory with the given one and find data to be read.
The contents of the i-th location is determined by the
expression
Li [0 – (k-1), 0 – (n-1)] = {DK[0 – (k-1)], ID[0 – (n-1)]},

where DK is k-bit data key, and ID is n-bit input data.
Output data OD is determined by the expression
OD [0 – (n-1)] = {Li [[0 – (n-1)], DK = GK},

where GK is the given key.

B. CONVENTIONAL MEMORY ORGANIZATION
Depending on the access method that is

implemented in computer memory, it can be classified as
follows [4,11-13]:

• The Random Access Memory, where address
memory access method is implemented. This memory
allows to write in or to read out data in each cycle by an
arbitrary address.

• The Sequential Access Memory, where
sequential memory access method is implemented. This
memory allows to write in or to read out data
sequentially in each cycle one after another.

• The Associative Access Memory, where
associative memory access method is implemented. In
this memory data are searched by their keys.

The Random Access Memory (RAM) is used
mostly in modern computers. It consists of locations,
each of which stores a unit of information called a word.

Ordered Access Memory and its Application in Parallel Processors

57

Word has n bits, where n is a word length. Memory
locations are numbered so that each of them has its own
number, or address. The same address has the word that
is stored in this location. That is this address points the
place of the word in the memory. If memory can hold M
words, the numbers from 0 to M-1 are used as addresses.
If binary coding is used, m bits are necessary to
represent all addresses, where m = Ceiling (log2M).

The RAM performs two operations: to write and
read. In write mode data and its address are sent to the
RAM inputs and by the clock signal data is written to the
memory location specified by the address. In read mode
address of data is sent to the RAM input and by the clock
signal data is read out to the RAM output from the
memory location specified by the address. The RAM
organization is shown in Fig. 1.

Fig. 1. The RAM organization

The RAM interface consists of m-bit address bus,
n-bit data bus, and R/W and clock inputs. In write mode
data is written only to the register pointed by according
output of address decoder AD. In read mode data comes
to the data bus from register pointed by according output
of address decoder AD. The outputs of the other registers
at this moment are in a high impedance state.

The Sequential Access Memory (SAM) is also
widely used in computers. Data are read out from the
SAM in the order they were written in or in reverse
order. An example of the SAM organization is shown in
Fig. 2, where in write mode data come from data bus and
are stored in the sequentially connected registers R0, R1,
... RK-1, and in read mode come to data bus from these
registers.

This memory is the fastest one and is simple for
implementation.

The Associative Access Memory (AAM) stores
data together with their keys. The AAM organization is
shown in Fig. 3. The registers are used here as the
memory locations. In write mode data are written in to
arbitrary available registers through entering-fetching
device EFD. In read mode data are read out from the
AAM through EFD when their keys are coinciding with
the key K in the key register KR. The comparator CP
compares keys in the registers with the key in KR.

Fig. 2. The FILO SAM organization

Fig. 3. AAM organization

The possibility of parallel search is the main
advantage of the AAM. This memory allows
simultaneous reading of all data with the same key, what
provides its widespread use in computers.

C. CHALLENGING PROBLEMS OF THE CONVENTIONAL
MEMORY USAGE IN HIGH-PERFORMANCE COMPUTERS

Each memory type shown above brings the
problems when it is considered for using in high-
performance computers. The challenging problem of the
RAM is its inability for parallel access from many ports.
The reason lies in the conflict in case of addresses
convergence on multiple memory ports in write mode.
This is exactly the reason of inability to implement
parallel RAM-based processors. Two other problems:
the need to store addresses of memory locations where
data were written in so that if necessary they can be
found and read out, and the need to put the addresses at
the address input of the memory in both write and read
modes.

The main disadvantage of the SAM is that it takes a
while for particular data searching. In the worst case it
may require reading of all previously written data. In
addition, this memory has low functionality as it does
not provide more than sequential memory access. And

Anatoliy Melnyk

58

the last thing – this method is designed to work with
vector data and does not provide parallel memory access.

The challenging problem of the AAM is the need to
provide access to each location from its ports and the
need to compare simultaneously the keys in all its
registers with the given one that requires large
equipment volume and slows down access time. In
addition, this method allows parallel memory access
only to data with the same key that limits its application.

IV. METHOD OF ORDERED MEMORY ACCESS
The goal of developing the above mentioned

method is to expand the functions of memory by
allowing the parallel conflict-free memory access and
ordering data according to their indices during their
writing, storing or (and) reading.

This memory consists of locations where data array
may be written in, stored, and read out. This method
supposes to perform the following steps:

• an index is assigned to each input data whose
numeric value determines the place of this data in the
output array;

• the indices are processed, for example, they are
sorted in the ascending or descending order of their
numerical values;

• data of the input array are ordered according to
the values of their indices and the output data array is
formed.

As it follows from the above described, the ordered
memory access method, unlike the sequential memory
access method, allows extending the functionality of the
memory, as it provides not only the sequential, but also
any other ordered access.

Unlike the address memory access method, the
implementation of the ordered memory access method
allows eliminating binding data to a specific memory
location through eliminating the need to use the
addresses during data writing and reading. This
eliminates the need to store the addresses of locations
where data are placed, and the need to submit the
address on the address input of memory within both data
write and read modes because, according to the proposed
method, there is an only requirement to enter an index
with each data during its writing into the memory, which
indicates the place of data in the output data array, and to
organize memory in such a way that provides output data
reading in the order specified by their indices.

V. ORDERED ACCESS MEMORY ORGANIZATION
The ordered access memory includes tools OALi of

ordered access to each i-th location in addition to M
locations Li, where i is a location number (i = 0,1, ...
M-1), where data are being stored, i.e.:

OAM = {Li, OALi, i = 0,1, ... M-1}.

Tools OALi compare the indices of all data placed
in the memory and order data according to their indices.
Output data OD is determined by the expression

ODSID [0 – (n-1)] = {ID [[0 – (n-1)]},

where ID is n-bit input data; SID is the index of input
data ID.

Organization of the memory that implements
proposed ordered access method is shown in Fig. 4.

Fig. 4. The OAM organization

The ordered access memory consists of the memory
array with P locations to store the data items and their
indices, where P=kl, k is the number of the data items in
the column of the input data matrix, l is the number of
the data items in the row of the input data matrix. It also
consists of an entering-fetching device (EFD) which
enters the input data items into the memory locations,
fetches the output data items from the memory locations,
and forms the output data matrix with P data items,
where P=mn, m is the number of the data items in the
column of the output data matrix, n is the number of the
data items in the row of the output data matrix. The input
data items and their indices are written into the memory
array by the rows of the input data matrix and the output
data items are read out from the memory array by the
rows of the output data matrix using R/W signal.

The input data array that is written in to the
memory is served as a matrix. The input data are written
in to the OAM from l ports by rows of the matrix

,

where IDi,j is the input data which is placed in the i-th
row (i = 0,1,…k-1) and j-th column (j = 0,1,…l-1) of the
input data matrix.

Output data are read out from the OAM to the m ports
by the rows of the matrix

OD 0, 0 OD 0 , 1 … OD 0 , n - 1

OD 1, 0 OD 1 , 1 … OD 1 , n - 1
 …
ODm - 1 , 0 ODm - 1, 1 … ODm -1 , n -1

,

where ODs,t is the output data which is placed in the s-th
row (s = 0,1,…m-1) and t-th column (t = 0,1,…n-1) of
the output data matrix.

Ordered Access Memory and its Application in Parallel Processors

59

The matrix of the indices that are assigned to each
item of the input data array appears as follows

SID0 , 0 SID 0 , 1 … SID 0 , l - 1

SID1 , 0 SID 1 , 1 … SID 1 , l - 1
 …
SIDk - 1 , 0 SIDk - 1 , 1 … SIDk - 1 , l- 1

,

where SIDi,j is the index of input data IDi,j which is
placed in the i-th row (i = 0,1,…k-1) and j-th column
(j = 0,1,…l-1) of the input data matrix.

The matrix of indices can come into the OAM
together with input data or serve as the base for forming
the ordering code that is sent to the OAM.

VI. OAM COMPARISON WITH
THE OTHER TYPES OF MEMORY

The OAM has some important advantages
compared to the sequential access memory, the RAM,
and the associative memory.

Supposing there is a need to order data in input data
matrix IDM with k=3, l=4, according to data indices
from index matrix IM with the purpose to obtain output
data matrix ODM with m=2, n=6, as it is shown in
Fig. 5.

Fig. 5. Example of data ordering

The SAM is not suitable to perform data ordering
as it provides only direct (FIFO) or reverse (LIFO) order
of data in ODM as compared to IDM.

If the RAM will be used for data ordering then it
will need to perform 12 operations of data writing in to
the 12 locations of the RAM by specifying the address of
every location, and 12 operations of data reading out
from the 12 locations of the RAM, also by specifying the
address of every location. Moreover, all mentioned
operations will be performed sequentially.

In contrast, when the OAM with 4 inputs and 6
outputs will be used, there will be a need of only 3
operations of data writing in to the OAM together with
their indices and 2 operations of data reading out from
the OAM. In total 5 operations will be performed instead
of 24 operations when ordering is performed in the
RAM.

The use of the associative memory for data
ordering will discard advantages of the associative
search as there is a need to perform separate search for
every data according to its index that requires a lot of
time. That makes the associative memory even less
suitable in this case then the RAM is.

In common, the main advantages of the OAM
comparing to the RAM are the following:

The OAM is multiport and allows simultaneous
parallel conflict-free access to data in matrix from all its
ports when the RAM is single-port. Then the OAM

allows data ordering in the matrixes simultaneously with
data storing. This operation is frequently used and is
usually time-consuming.

There is no need to save information concerning the
data place in the OAM. Here it is enough to point index
of data in the write mode. And opposite, the RAM usage
requires data address to be stored, that complicates the
computer and increases hardware volume.

As data are not tailed to the memory locations, the
OAM has not got complex and slow address decoders as
the RAM has got. The functions of data ordering can be
disintegrated, which makes it possible to decrease delay
and improve the memory speed.

Thus, the OAM has a new architecture which
allows parallel conflict-free access to data and includes
disintegrated apparatus for it that has less delay
comparing to accordance apparatuses used in the
existing memory types and higher clock frequency.

In order to compare the OAM with the RAM, we
have implemented these two memory types in the same
FPGA from Altera (RAM was implemented without
embedded RAM blocks usage to make the comparison
most adequate).

The OAM IP Core pinout is shown on Fig. 6.

OAM
Block

IO_DATA(0)

IO_DATA(1)

IO_DATA(N)

OUT_EN

IN_EN

CLK

RW

SET

IN_COL(0)

IN_COL(1)

IN_COL(N)

IN_ROW(0)

IN_ROW(1)

IN_ROW(N)

Fig. 6. OAM IP Core pinout

The OAM IP Core interface is described in the
Table 1.

The OAM IP Core has the following features:
• Configurable Data width;
• Configurable number of data channels;
• Memory configurable capacity;
• Simultaneous access to data from ports without
• conflicts;
• Implementation of data ordering in matrixes;
• Need not to save information concerning data

place.
The OAM parameters are depicted in the Table 2.
The bandwidths of the 8-port 32-bit OAM and the

32-bit RAM of the same capacities are shown in Fig. 7.
As it follows from this chart, the bandwidth of the

8-port 32-bit OAM is approximately of one order of
magnitude higher than the bandwidth of the 32-bit RAM,
and as the RAM capacity grows, its bandwidth
decreases, while in case of the OAM the bandwidth does
not depend on the capacity.

Anatoliy Melnyk

60

Table 1

The OAM IP Core interface

Pin Activity Description

CLK Rising Edge Clock

IN_EN HIGH Memory enable
flag

RW
Read – LOW
Write –
HIGH

Read/Write
signal

SET Rising Edge Reset
IN_COL(0),
IN_COL(1), …,
IN_COL(N)

–
Output data
column index
(M bits)

IN_ROW(0),IN_ROW
(1), …, IN_ROW(N) –

Output data
row index
(K bits)

IO_DATA(0),
IO_DATA(1),…,
IO_DATA(N)

– In/Out Data
(L bits)

OUT_EN HIGH Output data
flag

Table 2

The OAM parameters

Memory capacity 1024x8x32

Number of data channels 8

Data width 32

Device Family Xilinx xc7v2000t -2

System Clock f max 444.6MHz

Bandwidth 14.9 GBytes/s

Slice registers: 738324

IOs: 365

Synthesis and Implementation
tool

Xilinx ISE 14.5

Fig. 7. Comparison of the bandwidths of the 8-port 32-bit OAM
and the 32-bit RAM of the same capacities

VII. OAM-BASED PARALLEL PROCESSORS
The OAM can be used in computer systems as the

buffer multiport memory, multiport memory of the

processor, and multiport memory of a multiprocessor
system. Many schematic solutions for computer systems,
where the parallel OAM with separate data input and
output ports or with joint data input and output ports
could be used, can be proposed.

For example, among typical procedures those are
often used for image processing and are perfectly
suitable for the OAM conception: image rotation on a
given angle, separation of an image part, image scaling;
buffering and reordering data of an image, image
processing. Some of these procedures can be fully
implemented on the OAM base. In some of them the
OAM could be used as an intermediate device between
the image processing stages.

As an example, two structures of application-
specific processor (ASP) based on the parallel OAM are
shown below.

Fig. 8 depicts the OAM-based ASP of a parallel
structure. In addition to the OAM it includes parallel
ALU and control unit. ALU implements the operation of
the algorithm that the ASP is designed to perform for.
The control unit forms the control signals and data
indices for the OAM, operation codes for parallel ALU,
organizes cycles and performs ASP common
synchronization.

As it can be seen, the ASP memory, which is the
OAM, stores input data from n ports, stores intermediate
data from l outputs of the parallel ALU, submits the
intermediate data through m ports for processing in
parallel ALU, and submits output data through k ports to
the output. Also in this memory data are ordered
according to the requirements of the algorithms
implemented in the ASP.

Ordered access memory

Parallel arithmetic-logic unit

Control unit

Input data Output data External
control

Memory
control

ALU
control

...

...

...

... ...
1 2 n-1 1 2 k-1

1 2 m-1

1

2

l-1

Intermedi
ate data

Fig. 7. Application-specific processor of a parallel structure

Fig. 8 depicts the ASP of a pipeline structure where
the parallel OAM is used as the memory of its stages.

In this structure each OAM performs the following
functions: receiving input data through the input ports,
storing input data, ordering input data according to the
digital values of indices, received from the control
device, submission of ordered data to the output ports.

Ordered Access Memory and its Application in Parallel Processors

61

OAM 0.
.
.

OU 0.
.
.

.

.

.

OAM k -1.
.
.

OU k -1.
.
.

OD0

OD1

ODn-1

R0 W0 OC0 Rk-1 Wk-1 OC k-1 OpC k-1OpC 0

ID0

ID1

IDn -1

Fig. 8. Application-specific processor of a pipeline structure
Here OU is Operating Unit, R denotes Read, W

denotes Write, OpC is Operation Code, OC is Ordering
Code. The number of input and output ports in each
OAM can vary as well as different can be the number of
input and output ports in the OAM of each stage. Noting
that the above described functions can’t be provided by
any of the existing types of memory, except of the
parallel OAM.

Thus, as it follows from above considered, the
OAM usage in processors allows to reduce the memory
wall; to parallelize processor work by the way of
multichannel data processing and to perform data
ordering inside memory. In addition, it allows
simplifying the control unit of the application-specific
processor and its design flow respectively.

Creation of the OAM can be the base for the new
model of computing which has no limitations of John
von Neumann one.

VIII. CONCLUSIONS
There are several memory access methods: address,

sequential and associative. The challenging problem of
the memory types, which realize these methods, is their
inability for parallel conflict-free memory access from
many ports. The major issue, that has motivated this
work, is the need to find an approach to create the high
bandwidth computer memory with parallel conflict-free
memory access. As the decision, an ordered memory
access method and the ordered access memory are
proposed in this article. The proposed OAM is targeted
to work with data arrays and provides memory access in
the prescribed manner, i.e. index, which enters in to the
memory together with data, indicates its place in the
output array. The proposed method unlike the method of
sequential memory access allows extending the
functionality of the memory as it provides not only
sequential, but also any other ordered memory access.
Unlike the method of address memory access the
implementation of the proposed method provides parallel
conflict-free memory access. It also allows eliminating
data binding to a specific memory location that makes it
possible to disintegrate the apparatus for data ordering
and eliminates the need to store addresses of locations
the data are placed in, and the need to submit the address
to the address inputs within data writing and reading.

Implementation in FPGA has shown that the
bandwidth of the 8-port 32-bit OAM is approximately of
one order of magnitude higher than the bandwidth of the

32-bit RAM. It opens the opportunities for the OAM to
be widely used as the multiport memory in computer
systems, computer and telecommunication networks,
application-specific processors, high-performance
computers, multiprocessor systems, computers of a new
architecture. To show the fields of application, ordered
access memory usage in application-specific processors
of a parallel and a pipeline structures was demonstrated
in the article.

REFERENCES
[1] National Research Council. The Future of Computing

Performance: Game Over or Next. Level? The National
Academies Press. 2011.

[2] 21st Century Computer Architecture A community white paper
May 25, 2012 http://www.cra.org/ccc/files/docs/init/21stcentury
architecturewhitepaper.pdf

[3] Richard C. Murphy. On the Effects of Memory Latency and
Bandwidth on Supercomputer Application Performance. In IEEE
International Symposium on Workload Characterization 2007
(IISWC2007), September 27–29, 2007

[4] Melnyk, A., Computer architecture, Lutsk regional printing.
Lutsk, 2008.

[5] A. Melnyk. Buffer memory device. USSR patent No. 1479954,
issued at 1989.

[6] A. Melnyk. Sorting memory devices for digital signal processing
systems. 1-th Ukrainian conference “Signal processing and image
recognition”. Kyiv, 17–21 of November 1992. – pp. 187–188.

[7] A. Melnyk. Design principles of buffer sorting memory //
Proceedings “Computer engineering and information
technologies”. Lviv Polytechnic State University, 1996. –
No. 307. – pp. 65–71.

[8] A. Melnyk. Real-time application-specific computer systems.
Lviv Polytechnic State University, 1996. – 60 P.

[9] A. Melnyk. Structure organization of ordered access memory
based on the tunable sorting networks. // Informatics and
computing technique. University “Ukraine”, 2011, pp. 34–46.

[10] A. Melnyk. Ordered access memory. – Lviv Polytechnic
Publishing House, 2014. – 330 p.

[11] Patterson, D. and Hennessy, J., Computer Architecture. A
Quantitative Approach, Morgan Kaufmann Publishers Inc., 1996.

[12] Stallings, W., Computer Organization and Architecture, Pearson,
10th ed., 2016.

[13] Tanenbaum, A., Structured Computer Organization, 6th ed.,
Pearson, 2013.

[14] Bruce Jacob. Memory Systems: Cache, DRAM, Disk / Bruce
Jacob, Spencer Ng, David Wang, Morgan Kaufmann Series in
Computer Architecture and Design, 2007.

[15] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. High-performance
drams in workstation environments. IEEE Transaction on
Computer, 50(11):1133–1153, 2001.

[16] J. Shao and B. T. Davis. A burst scheduling access reordering
mechanism. In HPCA '07: 13 th International Symposium on
High-Performance Computer Architecture, Phoenix, AZ, USA,
Februaru 10–14, 2007.

[17] Jingtong Hu, Chun Jason Xue, Wei-Che Tseng, Meikang Qiu,
Yingchao Zhao, Edwin H.-M. Sha. Minimizing Memory Access
Schedule for Memories. The Fifteenth International Conference
on Parallel and Distributed Systems (ICPADS'09), 2009.

[18] Jingtong Hu, Chun Jason Xue, Wei-Che Tseng, Qingfeng Zhuge,
Yingchao Zhao, Edwin H.-M. Sha. Memory Access Schedule
Minimization for Embedded Systems. Journal of Systems
Architecture: Embedded Software Design (JSA), Oct. 2011.

[19] Knuth D.E. The Art of Computer Programming. Volume 3:
Sorting and Searching. 2nd edn. Addison-Wesley. 1998.

[20] H. S. Stone. Parallel Processing with the Perfect Shuffle, IEEE
Transactions on Computers, Vol. 20, pp. 153–161, 1971.

[21] G. M. Masson, G. C. Gingher and S. Nakamura. A Sampler of
Circuit Switching Networks. EEE Computer, Vol. 12, No. 6,
pp. 32–47, June 1979.

Anatoliy Melnyk

62

[22] D. Nassimi and S. Sahni. A Self-Routing Benes Network and
Parallel Permutation Algorithms. IEEE Transactions on
Computers, Vol. 30, pp. 332–340, 1981.

[23] K. E. Batcher. Sorting Networks and Their Applications. Proc.
AFIPS Spring Joint Computer Conf. 32, pp. 307–314, 1968.

[24] C. D. Thompson and H. T. Kung. Sorting on a Mesh-Connected
Parallel Computer. Comm. ACM, Vol. 20, pp. 263–271, 1977.

[25] Rene Mueller, Jens Teubner, Gustavo Alonso. Sorting Networks
on FPGAs. The VLDB Journal, Vol. 21, No. 1, p. 1–23,
February 2012.

[26] Y.Jun, Li Na, D. Jun, Guo Y., Tang Z. A research of high-speed
Batcher's odd-even merging network. E-Health Networking, Digital
Ecosystems and Technologies (EDT), Vol. 1, pp. 77–80, April 2010.

[27] Jean-Philippe Thiran, Herve Bourlard, Ferran Marques,
Multi-Modal signal processing: methods and techniques to build

multimodal interactive systems. Academic Press Inc. 23 No-
vember 2009. – 448 p.

[28] F. Camastra and A. Vinciarelli. Machine Learning for Audio,
Image and Video Analysis: Theory and Applications. Springer,
2008.

[29] Handbook of Signal Processing Systems. Editors: Shuvra S.
Bhattacharyya, Ed F. Deprettere, Rainer Leupers, Jarmo Ta-
kala. – Springer, 2010. – 1117 p.

[30] Melnyk A., Melnyk V. “Personal Supercomputers: Architecture,
Design, Application”. – Lviv Polytechnic Publishing House,
2013. – 516 p.

[31] J.Leverich Comparative Evaluation of Memory Models for Chip
Multiprocessors/ J. Leverich, H. Arakida, A. Solomatnikov,
A. Firoozshahian, M. Horowitz, C. Kozyrakis // ACM Transacti-
ons on Architecture and Code Optimization. – November 2008.

Anatoliy O. Melnyk is a

Head of Computer Engineering
Department at Lviv Polytechnic
National University since 1994.
He graduated from Lviv
Polytechnic Institute with the
Engineer Degree in Computer
Engineering in 1978. In 1985 he
obtained his Ph.D. in Computer
Systems from Moscow Power

Engineering Institute. In 1992 he received his D.Sc.
degree from the Institute of Modeling Problems in Power
Engineering of the National Academy of Science of
Ukraine. He was recognized for his outstanding contri-
butions to high-performance computer systems design as
a Fellow Scientific Researcher in 1988. He became a

Professor of Computer Engineering in 1996. Since 1982
to 1994 he has been a Head of Department of Signal
Processing Systems at Lviv Radio Engineering Research
Institute. Since 1994 to 2008 he has been Scientific
Director of the Institute of Measurement and Computer
Technique at Lviv Polytechnic National University.
Since 1999 to 2009 he has been Dean of the Department
of Computer and Information Technologies at the
Institute of Business and Perspective Technologies,
Lviv, Ukraine. He has served since 2000 as President
and CEO of Intron ltd. He has also been a visiting
professor at Kielce University of Technology, University
of Information Technology and Management, Rzeszow,
University of Bielsko-Biala. Currently he is a visiting
professor at the Department of Artificial Intelligence of
John Paul II Catholic University of Lublin.

