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Abstract: First step for the calculation of service quality 
characteristics in a single-channel packet communication 
system is to estimate the Hurst exponent for self-similar 
traffic, after which, according to the well-known Norros 
formula, the average number of packets in the system N is 
calculated. However, such an algorithm does not allow 
calculating two very important service quality characteristics, 
such as the average waiting time of packets in the cumulative 
buffer (not in the system as a whole) and the waiting 
probability of the service start of the packet. In the paper the 
new method for approximating the probability distribution 
function of the system states is proposed, where a simple 
exponential function with the Nρ  distribution parameter 
was used for the approximating function. From this 
approximating function the new formula for calculating the 
waiting probability for the service start of the packet in a one-
channel system with self-similar traffic is obtained. This 
method of calculation is based on the phenomenon that 
packets in self-similar traffic are not smoothly distributed 
over different time intervals. They are grouped into “blocks” 
within certain time intervals, but there are hardly any of them 
within the others. Therefore, for such traffic, in the 
distribution function of the number of packets in a single-
channel system, the probability 0P  of a complete absence of 
packets in it increases. The results obtained in the paper will 
be useful for the further development of monitoring 
subsystems of power comlexes. 

Key words: probability of waiting, service quality, Hurst 
exponent, self-similar traffic. 

1. Introduction 
In packet communication networks, the traffic or the 

distribution of the number of packets per time unit is 
well described by a self-similar random process with a 
self-similar coefficient (the Hurst exponent) of 0.65–0.8 
or more [1]. The main reason for the self-similarity of 
traffic is the integral nature of the network 
(multiservice). This network is used simultaneously for 
the transmission of speech, video, and data represented 
in the form of standard packet. Here, the flow of 
different applications and services is provided by the 
same network with unified protocols and control laws.  

For packet networks, the mathematical model of 
self-similar traffic is the most popular, but there is no 
reliable and recognized methodology for calculating the 
parameters and service quality characteristics in the 
mass-servicing systems while servicing such traffic. 
With the increasing degree of self-similarity of packet 
traffic, the service quality characteristics in the system 
significantly deteriorate compared with the maintenance 
of traffic of similar intensity, but without the effect of 
self-similarity. 

The first step for the calculation of service quality 
characteristics (QoS) in a single-channel system with an 
infinite queue for self-similar traffic is to estimate the 
Hurst exponent, after which, according to the well-
known Norros formula [2], the average number of 
packets in the system is calculated. Other characteristics, 
such as the average number of packets in the queue of 
Q , the average packet stay in the system of T , and the 
average latency of packets in the system of W  are then 
calculated based on their known functional relationships 
with the calculated mean N  [3]. 

However, such an algorithm does not allow, basing 
on the established value of the Hurst exponent H , the 
calculation of such characteristics as the probability of 
service expectation wP  and the average delay of packets 

in the accumulation buffer qt . 

The purpose of this work is to establish an 
approximation function for the distribution of states of a 
single-channel system with an infinite queue and self-
similar traffic and on its basis the formulae for 
calculating the probability of service expectation of a 
packet in the cumulative buffer. 

2. Complexity of the problem 
The evaluation of QoS characteristics in the mass-

servicing systems is always performed on the basis of a 
mathematical description of the system response to the 
input packet stream. The system response can be defined 
as the states which, due to the random nature of the flow 
of packets, are mathematically described by the 
probabilistic distribution function of the number of 
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occupied channels and points for waiting iP , where i  is 
the number of packets in the system (in channels and 
queue). This function coincides with the function of the 
distribution of the number of packets in the system 
(serviced and waiting in the queue), since each packet 
occupies one channel in the system or one point for 
waiting at the queue [3].   

In the case of the simplest Poisson flow model in a 
mass-servicing system with losses or expectations 
(queue), the states of the system are described by one of 
the known Erlang distributions: the first or second 
Erlang distribution, respectively [3]. Finding the 
distribution function of the system state for more 
complex stream models is a very difficult task and, 
therefore, for the above-mentioned self-similar model of 
flow, there are no similar solutions. 

In packet networks, packet flows (traffic) 
significantly differ from the Poisson flow model with the 
exponential function of allocating the time interval 
between the moments of packet arrival. Here, the packets 
flow is formed by a set of sources of requests for 
services provided by the network applications that 
provide video, data, speech, etc. The sources of requests 
taking part in the process of creating the flow of packets 
differ significantly having the different specific intensity 
of the load. The load intensity of the resulting packet 
stream at any given time depends on what applications 
are served by query sources and what is the ratio of their 
number to different applications. The structure of traffic 
is also influenced by the technological features of the 
used service algorithms. For example, if the service is 

provided by multiple applications or protocols, or the 
repeated transfer of incorrectly accepted packets, then 
the moments of packet requests are much correlated. 
Because of this, the output streams vary considerably 
and in the resultant traffic, there are long-term 
dependencies in the intensity of packet arrivals. In this 
case, traffic is no longer a mere sum of the several 
number of independent stationery and ordinary 
streams, such as Poisson flows of telephone networks. 
In multi-service packet switched networks, traffic is 
heterogeneous, and streams of different applications 
require a certain level of service quality. Under these 
conditions, the flow of all applications provides a 
single multiservice network with shared protocols and 
management laws, despite the fact that the sources of 
each application have different rates of transmission 
of information or change it during the communication 
session (maximum and average speed). Due to this, 
the combined packet stream is characterized by the so-
called “burstiness” of traffic with random periodicity 
and the duration of peaks and silence. For such 
packet, traffic is characterized by strong unevenness 
of the intensity of the arrival of packets. Packets are 
not smoothly dispersed over the different time 
intervals, but are grouped into “blocks” on some 
intervals, but there are hardly any of them within  
the others [4]. Therefore, for such traffic in the 
function of the distribution of the number of packets 
in a single-channel system, increasing the probability 

0P  of the complete absence of packets in it is shown 
in Fig. 1. 

 
Fig. 1. The distribution function of the system state Pi and its approximation Ai. 

The efficiency of servicing such traffic is very low, since 
in its processing during periods of slump load with 
probability 0P  system resources are used rather little, and it 
is necessary to increase the length of the cumulative buffer to  

prevent the loss of packets at load peaks. Designing the same 
bandwidth of the system is, as a rule, based on the average 
traffic intensity, which does not simultaneously ensure its 
effective use and the given level of QoS. 
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3. Basic formulas and investigation 
For single-channel system with self-similar traffic, 

infinite queue and a constant processing time (system 
fBM/D/1/∞), an approximate solution is given in [2], 
where it is shown that the number of N  packets in the 
system is considered at any time 
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The Hurst method allows revealing in packet 
data statistics such properties of flow as clustering, 
the tendency to follow the direction of the trend 
(persistence) and the rapid intermittence of 
successive values of traffic intensity (bursts of 
intensity), strong aftereffect, strong memory, self-
similarity, the presence of periodic and non-periodic 
cycles (due to the peculiarities of the transmission 
protocols used) [5]. However, the existing methods 
for calculating the Hurst exponent are quite 
laborious, which makes it difficult to use them under 
conditions of real processor time for processing 
traffic parameters while identifying its self-similar 
properties. 

The paper [6] offers a simplified method for 
calculating the self-similarity coefficient of packet 
network traffic. Its simplification is provided  
by performing calculations not for all possible values 
of /R S -statistics (regression), but only for two  
of them. The error of the calculations does not 
exceed 2–5 %. 

From Fig. 1 it can be seen that the part of the 
distribution function of the number of packets in the Pi 

system without the probability 0P  is sufficiently 
qualitatively consistent with the approximating function 

iA  from the following expression: 

 exp  = − 
 

iA i
N N
ρ ρ

ρ , (2) 

where ρ is the load of the system (utilization factor) 
equal to 0.3   1 < <ρ ; N  is the average number of packets 
in the system. 

As it can be seen from (2), the approximating 
function iA  is the result of multiplying the loading of the 
system ρ  by a certain exponential function with the 

distribution parameter / Nρ  and, therefore, 
0

1
∞

≠∫ iA , 

that is, all probabilities Ai do not represent the complete 
group of events. 

In the non-Poisson flow, the probability of waiting 
in a one-channel system according to [3, p. 272] is 
defined as 

 0
1
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where ′iP  is the probability of having i  packets in the 
system only at the moment of receiving new packets. 
Then, in the distribution function iP , represented in Fig. 
1, each iP  value does not depend on the moment the 
packet arrives in the system (it does not depend on 
whether the packet arrives or does not arrive in the 
system) and, therefore, the probability 0P  is not 
appropriate for calculating the waiting probability of wP . 

From the point of view of the system state 
distribution function ′′iP , which consists of the 
probabilities ′′iP  of having packets in the system i only 
when no new packets are received, the "waiting service" 
event occurs only when there are two or more packets in 
the system, that is, the waiting probability is equal 

 0 11 ′′ ′′= − −WP P P . (3) 
The function iA  is not fully a function of the 

distribution of the number of packets in the system, but 
only its part, starting with 1A , is close to the part of the 

iP  function without the probability 0P . The function iA  
without 0A  describes approximately the new space of 
events in the system from one packet to the infinite 
number of packets. In this new space of events, you can 
calculate probabilities, and so on, considering them in 
accordance with the classical definition of probability: 
“the probability of an event is equal to the ratio of the 
number of favorable events of these cases to the total 
number of cases”. Thus, for example, the probability will 
be determined as follows 

 1
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However, the sum of all probabilities iA  in the 
denominator of expression (4) is obtained from the space 
of events in which the event “complete absence of 
packets in the system” with the probability 0P  of iP  
distribution is removed, where each iP  value does not 
depend on whether the packet arrives or does not arrive 
the system. In other words, the probability 1A  is satisfied 
by the sum of the probabilities iA , that is, the 
probabilities of the space in which the event “absence of 
packets in the system” is impossible, in other words, 
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from which the packets in the system “always arrive” (at 
the moment of their receiving or not receiving). 
Therefore, the likelihood of probability is taken into 
account. If packets in the system are “always there”, then 
an event consisting in the presence of one packet in the 
system (the minimum possible number of packets for 
their constant presence) can only happen when no new 
packets arrive. Therefore, probability 1′′P  in probability 

1′′′P  is already taken into account. Consequently, the 
probability 1′′′P  is equal to the sum of probabilities 0′′P  
and 1′′P , that is, 

 1 0 1′′′ ′′ ′′= +P P P . (5) 
Thus, according to the expressions (3), (4) and (5), 

the waiting probability for the service of a packet in a 
single-channel system with an infinite queue of 
fBM/D/1/∞ type can be calculated. Through successive 
transformations, it has been proved that the waiting 
probability for the service of a packet in a single-channel 
system with an infinite queue for self-similar traffic can 
be determined as follows 

 1
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Taking into account the constant part of the 
approximating function (2), which is present in the 
numerator and the denominator of expression (6), the 
final expression for calculating the probability of waiting 
is as follows: 
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So, if the average number of packets in the system 
N  is given (or the upper limit of the possible average 
N  obtained by calculating the Hurst exponent according 
to the Norros formula (1),), the probability of service 
expectation wP  for the packet can be calculated using 
the approximation (2) by the formula (6), or directly by 
the formula (7). 

Furthermore, due to the known ratio [2], such 
characteristics as the average number of packets in the 
queue Q , the average packet stay in the system T , and 
the average latency of packets in the system W  are 
calculated: 

= −Q N ρ ,            =
NT
ρ

,           1= −W T , 

where T  and W  are given in the units of average 
service time. 

Only then, the average latency of packets in the 
cumulative buffer can be calculated by the formula 

 =q
w

Wt
P

. (8) 

To evaluate the service quality characteristics of 
self-similarity traffic, simulation methods can be used, 
for example [7]. However, the result of this assessment 
depends on the chosen modeling method. Since self-
similar traffic (the time interval between packets) is best 
described by the Weibull or Pareto distribution, the 
influence of modeling methods on QoS parameters in 
conditions of self-similarity traffic is investigated in [8]. 
In the absence of reliable and accurate methods for 
assessing the quality of service characteristics in systems 
with self-similar traffic, a simplified approach to 
determining the Hurst exponent (the degree of self-
similarity of traffic) is unacceptable. If we do not take 
into account the actual distribution of the time intervals 
between packets in self-similar traffic and do not apply 
the exact formulas, the use of the approximate solution 
(1) known as the Norros formula causes large errors. If, 
on the basis of the results of statistical measurements of 
the parameters of real traffic, we have approximated 
function which is defined (Weibull, Pareto or other), 
then we obtain such a new formula that the values of the 
Hurst exponent for the corresponding distributions are 
unambiguous. 

4. Conclusion 
The performed simulation confirmed the correctness 

of this method for calculating the service quality 
characteristics in a one-channel system with self-similar 
traffic. At the same time, the difference between 
simulation and calculation results does not exceed 5 % 
when the system loads vary in the range of 0.3 < ρ < 1 
(error less than 2 % with   0.6≥ρ ) and the Hurst exponent 
values change in the range of 0.5    0.9< <H . 

Authors consider the obtained result as a basis for 
developing a packet-oriented information system for 
monitoring the energetic complexes and systems. While 
monitoring system become more big-data oriented, the 
networks with high throughput are necessary elements of 
such a system. Thus, studies in the field of improving 
service quality in high-speed telecommunication 
networks might be useful for further improvement and 
development of monitoring processes in power systems. 
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РОЗРАХУНОК СЕРЕДНЬОГО  
ЧАСУ ЗАТРИМКИ ПАКЕТІВ  

У НАКОПИЧУВАЛЬНОМУ БУФЕРІ 
ОДНОКАНАЛЬНОЇ СИСТЕМИ  
З САМОПОДІБНИМ ТРАФІКОМ 
Анатолій Ложковський, Євгеній Левенберг 

Для розрахунку характеристик якості обслуговування 
(QoS) в одноканальній системі мережі пакетного зв’язку 
спочатку необхідно оцінити показник Херста 
самоподібності трафіку, після чого, відповідно до відомої 
формули Норроса, обчислити середню кількість пакетів у 
системі N, а потім через відомі співвідношення 
розрахувати інші характеристики QoS. Однак це не дає 
змоги обчислити дві дуже важливі характеристики якості 
обслуговування, такі як середній час очікування пакетів у 

накопичувальному буфері, а не в системі загалом, та 
імовірність очікування початку обслуговування пакета.  

Запропоновано новий метод апроксимації 
ймовірнісної функції розподілу станів системи. Для 
апроксимуючої функції використана проста експонентна 
функція з параметром ρ/N, а на її основі отримано формулу 
для обчислення ймовірності очікування початку 
обслуговування пакета в одноканальній системі мережі з 
самоподібним трафіком. Вона заснована на тому, що 
пакети в самоподобному трафіку не плавно 
розподіляються на різних часових інтервалах, а 
нерівномірно згруповані в “пачки” в одних часових 
інтервалах і іноді повністю відсутні в деяких інших 
часових інтервалах. Тому в функції розподілу кількості 
пакетів у системі суттєво зростає ймовірність P0 повної 
відсутності пакетів. 
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