
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 4, No. 1, 2019

LOGICAL ALGORITHMS OF THE ACCELERATED MULTIPLICATION
WITH MINIMUM QUANTITY OF NONZERO DIGITS OF THE

CONVERTED MULTIPLIERS
Ihor Korol, Ivan Korol

Uzhhorod National University, 46 Pidhirna St, Uzhhorod, Transcarpathia, Ukraine, 88000.
Author’s e-mail: ivan.korol@uzhnu.edu.ua

Uzhhorod National University, 46, Pidhirna Str., Uzhhorod, Transcarpathia, Ukraine, 88000,
John Paul II Catholic University of Lublin, 14 Al. Racławickie, Lublin, Poland, 20-950.

Author’s e-mail: ihor.korol@uzhnu.edu.ua, ihorkorol@kul.lublin.pl
Submitted on 30.06.2019

© Korol Ihor, Korol Ivan, 2019

Abstract: The article presents a new algorithm of acce-
lerated multiplication, in which the time of multiplication
has been reduced through the decrease in the number of
nonzero digits of the multiplier. In this case, the multiplier
has been presented in the form of the extended binary code.
The article proves the algorithm's efficiency in comparison
to previously known methods. The developed algorithm has
been implemented using the hardware description language
AHDL (Altera Hardware Description Language) in the
Logic Development System MAX+PLUS II.

Index Terms: extended binary code, accelerated
multiplication device, AHDL, MAX+plus.

I. INTRODUCTION
As the analysis of the time of execution of certain

arithmetic operations in the computer shows, the time
spent on multiplication makes up 70–80 % of the total
time spent on this operation. Therefore, the development
of the accelerated multiplication algorithms, which
reduces the execution time, is essential [1–3].

The easiest logical way to accelerate multiplication is
to skip adding steps in cases where in binary numeral
system the following digit of the multiplier is zero.

The most effective and logical way to accelerate
multiplication is to use addition and subtraction
operations, also called the method of a sequential
transformation of the multiplier numbers. In this case,
the multiplier is transformed into the extended binary
code (binary quasi-canonical number system) with
numbers }1,0,1{− . Thus, to choose the one that contains
the minimum number of non-zero digits {-1, 1} from the
possible representations of the multiplier. For this
purpose, the group composed of 2≥m items represented
as 43421 K

m

10011 is converted into the group represented like

43421 K
m

01100 , where1 11 −= . In this case, the number that

is multiplied is added to the sum of partial products, if
the next digit of the converted multiplier is equal to 1,
and subtract or add a complement code of multiplication
if the digit of the converted multiplier is equal to 1 .

II. KEY METHODS OF MULTIPLICATION
PROCESS ACCELERATION

The key methods of accelerated multiplication with the
use of the extended binary code are as follows [1, 2, 4]:

accelerated logical multiplication with the recoding
of the multiplier by two digits, and by analyzing two
digits of the initial multiplier and transposition, starting
with the lower-order digit (algorithm A);

accelerated logical multiplication with recoding of
the multiplier by two digits and by analyzing three digits
of the initial multiplier, starting with the highest digits
(algorithm B). Note that algorithm B is also called the
modified Booth's algorithm [5].

Note that for the conversion of the multiplier with
the corresponding algorithms separate tables were
developed (see tables 1, 3). However, the multipliers
converted with the help of these algorithms may differ in
the quantity of non-zero digits (while the quantity of
non-zero digits is not always minimal). This is
demonstrated by the example given below.

To obtain a converted multiplier with a minimum
quantity of nonzero digits, we have developed a new
algorithm:

the conversion of the multiplier is realized by
analyzing two digits of the multiplier and the trans-
position from the lower-order digits. As a result we get
one digit of the converted multiplier and a transposition.

The conversion algorithm C is carried out using
Table 5. Note that after the conversion of the multiplier,
the multiplication algorithm can be implemented both
with processing one and two digits, as well as for the
digits of both lower-order and higher-order.

A. ALGORITHM A

The conversion of a multiplier into an extended
binary code is performed according to the algorithm A.
The denominations are used in Table 1:

1+ii yy – converted digits of the multiplier Y;

1+ip – transposition, that already exists (its initial
value is 0);

Ihor Korol, Ivan Korol 26

ip – the new value of the transposition;
XL1 – the shift of the multiplied number X one

digit to the left;
m
DKX)(− – modified complement code of the

multiplied number X ;
R2S – the adder’s S digits shift two digits to the

right;
R2Y – the converted multiplier Yp digits shift two digits to

the right.
Example 1. To recode the multiplier

Y=00.11011110 using Table 1, starting with the lower-
order digits 87 yy . The initial value of the transposition is

08 =p . The end value of the transposition is 10 =p ,
which is assigned to the higher-order digit of the
converted multiplier 10 =Yp .

The classical logical algorithm for conversion of the
multiplier’s digits with the analysis of two digits in pairs
and the transposition, starting with the lower-order digits
gives the result, shown in the Table 2. Thus, a result with
a smaller (sometimes with a minimum) quantity of non-
zero digits may be obtained via simplification of the
combination 1011 → .

B. ALGORITHM B

Let us analyze the process of the multiplier
conversion into an extended binary code following the
algorithm B.

In Tabble 2 we observe that the initial multiplier
Y=00.11011110 contains 6 non-zero digits. While it is
converted according to the algorithm A then the
multiplier Yp contains 5 non-zero digits and the
minimized multiplier Ymin contains 3 non-zero digits.

Table 3 provides the analysis of three digits at a time
1+ii yy 2+iy for the given multiplier Y. As a result there

appear two new digits 1+ii yy of the converted multiplier
Yp; Besides, the denominations mentioned above, the
following denominations are introduced:

L2S – the adder`s S digits shift two digits to the
right;

L2Y – the given multiplier’s Y digits shift two digits
to the left.

Note that in analyzing the last pair of digits of the
multiplier, the value of the neighboring digit on the right
side is assumed equal to 0.

Example 2. To recode the multiplier Y=00.11011110
using Table 3, starting with the higher-order digits

1.00101 =− yyy .
From the obtained table it may be seen that the

resulting converted multiplier has one digit less than in
the previous case, but it is not minimal in the quantity of
non-zero digits.

The conversion algorithm B for the multiplier digits
Y=00.11011110 with the analysis of three digits at a time,
starting with the higher-order digits provides the result
given in table 4. Thus, a result with a smaller (sometimes
with a minimum) number of non-zero digits may be
obtained via simplification of the combination 1011 → .

Table 1

Conversion of the multiplier according to the algorithm А
Transposition

1+ip
Pair of digits under

analysis 1+ii yy
Converted pair
of digits 1+ii yy

Following
transposition ip Remarks

0 00 00 0 S:=R2S , R2Y
0 01 01 0 S:=S+X , S:=R2S , R2Y
0 10 => 10 0 S:=S+ XL1 , S:=R2S , R2Y
0 11 10 1 S:=S+ m

DKX)(− , S:=R2S , R2Y
1 00 01 0 S:=S+X , S:=R2S , R2Y
1 01 10 0 S:=S+ XL1 , S:=R2S , R2Y
1 10 10 1 S:=S+ m

DKX)(− , S:=R2S , R2Y
1 11 00 1 S:=R2S , R2Y

Table 2

Conversion of the multiplier Y=00.11011110 according to the algorithm А
Digit number

-1 0 1 2 3 4 5 6 7 8 Quantity of non-zero digits

pi 1 0 1 0 0
Y 0 0 1 1 0 1 1 1 1 0 6
Yp 0 1 0 1 1 0 0 1 1 0 5

Ymin 0 1 0 0 1 0 0 0 1 0 3

Logical Algorithms of the Accelerated Multiplication with Minimum Quantity of Nonzero Digits… 27

Table 3

Conversion of the multiplier according to the algorithm B
Pair of digits under analysis

1+ii yy
Neighboring digit to the

right 2+iy
Converted pair of

digits: 1+ii yy Remarks

00 0 00 S:=L2S , L2Y
01 0 01 S:=S+X , S:=L2S , L2Y
10 0 01 S:=S+ m

DKXL)1(− ,S:=L2S, L2Y

11 0 10 S:=S+ m
DKX)(− , S:=L2S , L2Y

00 1 01 S:=S+X , S:=L2S , L2Y
01 1 10 S:=S+L1X, S:=L2S , L2Y

10 1 10 S:=S+ m
DKX)(− , S:=L2S , L2Y

11 1 00 S:=L2S , L2Y
C.

D. ALGORITHM C

In the proposed algorithm C, the conversion is
carried out by analyzing two digits of the multiplier at a
time and transposition from the lower-order digits and
obtaining a single digit of the transformed multiplier and
transposition. Transfer to the lower-order (right) digit is
equal to zero. Further on it is predetermined by the Table 5.
The last transposition is recorded to the higher-order (in
this case to 0) digit of the converted multiplier. Here:

R1S – the adder`s S digits shift one digit to the right;
R1Y – the converted multiplier’s Yp digits shift one

digit to the right.
This logical algorithm for conversion of multiplier’s

digits with the analysis of two digits at a time, starting
with the lower-order digits and the transposition,
provides the result given in Table 6. It contains a
minimal quantity of non-zero digits.

Example 3. To recode the multiplier
Y=00.11011110 using Table 5, starting with the lower-
order digits 7 8y y . The initial value of the transposition
is 8 0p = . The resulting value of the transposition is

0 1p = , which is assigned to the higher-order digit of the
converted multiplier, is 0 1Yp = .

From the obtained Table it may be deduced that the
converted multiplier has two digits less than in case of
the algorithm A, one digit less than while using the
algorithm B, and it is the minimum possible for the
quantity of non-zero digits for the present multiplier Y.

For control, we provided an illustration in the form
of the stepwise conversion of the multiplier according to
the algorithm C using the formulas below. Particular
attention should be paid to the fact that the transposition

1 0P− = may not be calculated.
1st step: k=8, 7 8 810, 0Y Y P= = ⇒ 0,0 78 == PYp ;
2nd step: k=7, 6 7 711, 0Y Y P= = ⇒ 7 71, 1Yp P= = ;
3rd step: k=6, 5 6 611, 1Y Y P= = ⇒ 6 50, 1Yp P= = ;
4th step: k=5, 4 5 511, 1Y Y P= = ⇒ 5 40, 1Yp P= = ;
5th step: k=4, 3 4 401, 1Y Y P= = ⇒ 4 30, 1Yp P= = ;
6th step: k=3, 2 3 310, 1Y Y P= = ⇒ 3 21, 1Yp P= = ;
7th step: k=2, 1 2 211, 1Y Y P= = ⇒ 2 10, 1Yp P= = ;
8th step: k=1, 0 1 101, 1Y Y P= = ⇒ 1 00, 1Yp P= = ;
9th step: k=1, 1 0 000, 1Y Y P− = = ⇒ 0 1.Yp =

III. IMPLEMENTATION OF THE ACCELERATED
MULTIPLICATION ACCORDING TO

THE ABOVE MENTIONED
ALGORITHMS

The implementation of the accelerated multiplication
is illustrated for each of the considered algorithms on the
examples.

Example 4. To find the product of multiplication for:
X=0.1101, Y=0.1101111.

Solution. The way of obtaining this product using
each of the algorithms mentioned above is illustrated.

Table 4

Conversion of the multiplier Y=00.11011110 according to the algorithm B
Digit number

-1 0 1 2 3 4 5 6 7 8 Quantity of non-zero digits

ip 1 0 1 1 0

Y 0 0 1 1 0 1 1 1 1 0 6
Yp 0 1 0 1 1 0 0 0 1 0 4

Ymin 0 1 0 0 1 0 0 0 1 0 3

Ihor Korol, Ivan Korol 28

Table 5

Conversion of the multiplier according to the algorithm C

No. 1−kY kY kP pkY ?? 1−kP Remarks
0 0 0 0 0 0 S:=R1S , R1Y
1 0 0 1 1 0 S:=S+X , S:=R1S , R1Y
2 0 1 0 1 0 S:=S+X , S:=R1S , R1Y
3 0 1 1 ⇒ 0 1 S:=R1S , R1Y

4 1 0 0 0 0 S:=R1S , R1Y
5 1 0 1 1 1 S:=S+ m

DKX)(− , S:=R1S , R1Y
7 1 1 1 0 1 S:=R1S , R1Y

Table 6

Conversion of the multiplier Y=00.11011110 according to the algorithm C
Digit number

-1 0 1 2 3 4 5 6 7 8 Quantity of non-zero digits

ip 1 1 1 1 1 1 1 0 0

Y 0 0 1 1 0 1 1 1 1 0 6
Yp 0 1 0 0 1 0 0 0 1 0 3

Table 7

Implementation of the accelerated multiplication
according to the algorithm А

Yp Remarks ↓ Psign S
 PS 0 0 0 0 0 0

10 +L1X 0 1 1 0 1 0
 S 0 1 1 0 1 0
 R2S→ 0 0 0 1 1 0 1 0
10 +Xdm 1 1 0 0 1 1

 S 1 1 1 0 0 1 1 0
 R2S→ 1 1 1 1 1 0 0 1 1 0

10 +L1X 0 1 1 0 1 0
 S 1 0 1 1 0 0 0 0 1 1 0
 R2S→ 0 0 0 1 1 0 0 0 0 1 1 0
10 +Xdm 1 1 0 0 1 1
 S 1 1 1 0 0 1 0 0 0 1 1 0
 R2S→ 1 1 1 1 1 0 0 1 0 0 0 1 1 0

01 +X 0 0 1 1 0 1
 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0

E. ALGORITHM A

Let us create a modified complement code Xdm =
= 11.0011 of the number X=-00.1101 and L1X=01.101
that is a shifted number on one digit to the left of the
number X=0.1101. Using Table 1 for the multiplier
Y=0.1101111 we get the converted multiplier: Yp=01.
0 1 10 0 1 10. To fulfill the multiplication we use
Table 7, wherein the columns Psign there are entered
significant digits, and in the columns marked by the
symbol ↓ there are entered the number 1 of trans-
position, which are being neglected.

F. ALGORITHM B

According to Table 3 for the multiplier Y=0.1101111
the converted multiplier is Yp=01. 0 1 10 0 1 10. While

finding a solution for the specified product, we use the
numbers: RX=00.000000001101 – for the preservation
of Х; L1RX=00.000000011010 – for the preservation of
Х shifted one digit to the left; RXdm=11.111111110011 –
for the preservation of the complement code; L1RXdm=
11.111111100110 – for the preservation of the
complement code shifted one digit to the left. For
multiplication, we use Table 8.

G. ALGORITHM C

While implementing the accelerated multiplication
we use the following numbers: RX=001101 – for the
preservation of Х; RXdm=110011 – for preservation of
the complement code and the table of conversion of the
multiplier into extended binary code.

Logical Algorithms of the Accelerated Multiplication with Minimum Quantity of Nonzero Digits… 29

Table 8

Implementation of the accelerated multiplication according to the algorithm B

Yp Remarks ↓ Psign S
` PS 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 01 +RX 0 0 0 0 0 0 0 0 0 0 1 1 0 1
 S 0 0 0 0 0 0 0 0 0 0 1 1 0 1
 ←L2S 0 0 0 0 0 0 0 0 1 1 0 1 0 0
10 +RXdm 1 1 1 1 1 1 1 1 1 1 0 0 1 1
 S 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1
 ←L2S 0 0 0 0 0 0 1 0 0 1 1 1 0 0

10 +L1RX 0 0 0 0 0 0 0 0 0 1 1 0 1 0
 S 0 0 0 0 0 0 1 0 1 1 0 1 1 0
 ←L2S 0 0 0 0 1 0 1 1 0 1 1 0 0 0

00 ←L2S 0 0 1 0 1 1 0 1 1 0 0 0 0 0
01 +L1RXdm 1 1 1 1 1 1 1 1 1 0 0 1 1 0
 Z= 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0

Table 9

Implementation of accelerated multiplication according to the algorithm C

Yp Remarks ↓ Psign S
 PS 0 0 0 0 0 0
0 R1S→ 0 0 0 0 0 0 0
1 +RXdm 1 1 0 0 1 1
 S 1 1 0 0 1 1 0
0 R1S→ 1 1 1 0 0 1 1 0
0 R1S→ 1 1 1 1 0 0 1 1 0
0 R1S→ 1 1 1 1 1 0 0 1 1 0
0 R1S→ 1 1 1 1 1 1 0 0 1 1 0
1 +RXdm 1 1 0 0 1 1
 S 1 1 1 0 0 1 0 0 0 1 1 0
0 R1S→ 1 1 1 0 0 1 0 0 0 1 1 0
0 R1S→ 1 1 1 1 0 0 1 0 0 0 1 1 0
0 R2S→ 1 1 1 1 1 0 0 1 0 0 0 1 1 0
1 +RX 0 0 1 1 0 1
 S 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0

Table 10

Modification of the algorithm С
Yp Remarks ↓ P sign S

 PS 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01 +RX 0 0 0 0 0 0 0 0 0 0 1 1 0 1

 S 0 0 0 0 0 0 0 0 0 0 1 1 0 1
00 ←L4S 0 0 0 0 0 0 1 1 0 1 0 0 0 0

01 L1RXdm 1 1 1 1 1 1 1 1 1 0 0 1 1 0
 S 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0

00 ←L4S 0 0 1 0 1 1 0 1 1 0 0 0 0 0
01 L1RXdm 1 1 1 1 1 1 1 1 1 0 0 1 1 0
 Z=S 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0

To fulfill multiplication, we use Table 9. Example 5.

Use the converted multiplier according to the third
algorithm of the accelerated multiplication, to find the
product of numbers: X=0.1101, Y=0.1101111 by

multiplication with the processing of two multiplication
digits at a time, starting with the higher-order digits.

Solution. The implementation process of this
algorithm is illustrated by Table 10.

Ihor Korol, Ivan Korol 30

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

40
80

120
160
200
240
280
320
360
400
440
480
520
560
600
640
680
720
760
800
840
880
920
960

1 103×
1.04 103×

S

SA

SB

SC

K

Fig. 1. Comparison of the number of non-zero digits converted by different methods

As it may be seen, the latest implementation of the
accelerated multiplication requires the smallest, in
comparison with other implementations, quantity of
additions and displacements, which results in the
reduction of the time spent for the transaction.

IV. COMPARISON OF THE METHODS
EFFECTIVENESS

We will calculate the quantity of non-zero digits in
the unmodified multiplier and multipliers converted
according to other three methods, for all numbers from
1 to 11111111 = 255. The calculation results are shown
in Figure 1 with step K = 16, where S is the quantity of
non-zero digits in the unconverted multiplier; SA, SB,
SC – are the quantities of the non-zero digits in the
unconverted multiplier gained as a result of the
methods A, B, C correspondingly. In general, all
numbers from 1 to 11111111 = 255 contain 1024
non-zero digits, and those converted by methods A, B, C

 contain 853, 896 and 796 non-zero digits, respectively.
It is obvious, the smaller is the quantity of non-zero
digits, the less time is spent on the implementation of
operations. From Figure 1, it may be deduced that the
algorithm C proposed by us in this article is the most
effective.

REFERENCES

[1] Melnyk A. O. Computer Architecture, Lutsk, 2008. – 470 p. (in
Ukrainian).

[2] Melnyk A. O., Melnyk V. A. Personal computers: architecture,
design, application, Lviv, 2013. – 516 p.

[3] Knuth, Donald E. The Art of Computer Programming, 3rd ed.
Reading , MA: Addison-Wesley, 1998. – 762 p.

[4] Korniichuk V. I., Tarasenko V. P., Tarasenko-Kliatchenko O. V.
Basics of Computer Arithmetic, Kyiv, 2006. – 164 p. (in
Ukrainian).

[5] Tsmots I. G. Parallel algorithms and matrix VLSI structures of
multiplication devices for real-time computer systems. Infornation
Technologies and Systems. Lviv, 2004. Vol. 7. N 1, pp. 5–16.

Іhor I. Korol is a Vice-Rector

for Academic Policy and Research at
Uzhhorod National University. He
received the Master’s degree in
mathematics and applied mathe-
matics at Lomonosov Moscow State
University in 1992. In 1996 he
obtained his Ph.D. in Mathematics
(Differential Equations), and in 2011
he obtained his D.Sc. degree at Taras
Shevchenko National University in
Kyiv. Since 1993 to 2011 he has

been Senior Lecturer, Associate professor, professor of the
Department of Differential Equations at Uzhhorod National
University. His work resulted in 87 publications. He has also
been a visiting professor at the Institute of Mathematics of
Pomeranian University in Słupsk. Currently he is a visiting
professor at the Faculty of Mathematics, Informatics and

Landscape Architecture of John Paul II Catholic University
of Lublin.

Ivan Yu. Korol is an Associate
professor of the Department of
Computer Systems and Networks at
Uzhhorod National University.

He received the Master’s
degree in applied mathematics at
Uzhhorod National University in
1964. In 1973 he obtained his Ph.D.
in Computational Mathematics at
Ivan Franko National University in
Lviv. His work resulted in 82
publications. Since 1965 to 1991 he

has been a Senior Lecturer, Associate professor of the
Department of Computational Mathematics. Since 1991 to
2018 he has been a Head of the Department of Computer
Systems and Networks at Uzhhorod National University.

