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Abstract: The article presents a new algorithm of acce-
lerated multiplication, in which the time of multiplication 
has been reduced through the decrease in the number of 
nonzero digits of the multiplier. In this case, the multiplier 
has been presented in the form of the extended binary code. 
The article proves the algorithm's efficiency in comparison 
to previously known methods. The developed algorithm has 
been implemented using the hardware description language 
AHDL (Altera Hardware Description Language) in the 
Logic Development System MAX+PLUS II. 

Index Terms: extended binary code, accelerated 
multiplication device, AHDL, MAX+plus.  

I. INTRODUCTION 
As the analysis of the time of execution of certain 

arithmetic operations in the computer shows, the time 
spent on multiplication makes up 70–80 % of the total 
time spent on this operation. Therefore, the development 
of the accelerated multiplication algorithms, which 
reduces the execution time, is essential [1–3]. 

The easiest logical way to accelerate multiplication is 
to skip adding steps in cases where in binary numeral 
system the following digit of the multiplier is zero. 

The most effective and logical way to accelerate 
multiplication is to use addition and subtraction 
operations, also called the method of a sequential 
transformation of the multiplier numbers. In this case, 
the multiplier is transformed into the extended binary 
code (binary quasi-canonical number system) with 
numbers }1,0,1{− . Thus, to choose the one that contains 
the minimum number of non-zero digits {-1, 1} from the 
possible representations of the multiplier. For this 
purpose, the group composed of 2≥m  items represented 
as 43421 K

m

10011  is converted into the group represented like 

43421 K
m

01100 , where1 11 −= . In this case, the number that 

is multiplied is added to the sum of partial products, if 
the next digit of the converted multiplier is equal to 1, 
and subtract or add a complement code of multiplication 
if the digit of the converted multiplier is equal to 1 . 

II. KEY METHODS OF MULTIPLICATION 
PROCESS ACCELERATION  

The key methods of accelerated multiplication with the 
use of the extended binary code are as follows [1, 2, 4]:  

accelerated logical multiplication with the recoding 
of the multiplier by two digits, and by analyzing two 
digits of the initial multiplier and transposition, starting 
with the lower-order digit (algorithm A); 

accelerated logical multiplication with recoding of 
the multiplier by two digits and by analyzing three digits 
of the initial multiplier, starting with the highest digits 
(algorithm B). Note that algorithm B is also called the 
modified Booth's algorithm [5]. 

Note that for the conversion of the multiplier with 
the corresponding algorithms separate tables were 
developed (see tables 1, 3). However, the multipliers 
converted with the help of these algorithms may differ in 
the quantity of non-zero digits (while the quantity of 
non-zero digits is not always minimal). This is 
demonstrated by the example given below. 

To obtain a converted multiplier with a minimum 
quantity of nonzero digits, we have developed a new 
algorithm:  

the conversion of the multiplier is realized by 
analyzing two digits of the multiplier and the trans-
position from the lower-order digits. As a result we get 
one digit of the converted multiplier and a transposition.  

The conversion algorithm C is carried out using 
Table 5. Note that after the conversion of the multiplier, 
the multiplication algorithm can be implemented both 
with processing one and two digits, as well as for the 
digits of both lower-order and higher-order.  

 

A. ALGORITHM A 

The conversion of a multiplier into an extended 
binary code is performed according to the algorithm A. 
The denominations are used in Table 1:  

1+ii yy  – converted digits of the multiplier Y;  

1+ip  – transposition, that already exists (its initial 
value is 0);  
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ip  – the new value of the transposition;  
XL1  – the shift of the multiplied number X  one 

digit to the left;  
m
DKX )(−  – modified complement code of the 

multiplied number X ;  
R2S – the adder’s S digits shift two digits to the 

right; 
R2Y – the converted multiplier Yp digits shift two digits to 

the right. 
Example 1. To recode the multiplier 

Y=00.11011110 using Table 1, starting with the lower-
order digits 87 yy . The initial value of the transposition is 

08 =p . The end value of the transposition is 10 =p , 
which is assigned to the higher-order digit of the 
converted multiplier 10 =Yp . 

The classical logical algorithm for conversion of the 
multiplier’s digits with the analysis of two digits in pairs 
and the transposition, starting with the lower-order digits 
gives the result, shown in the Table 2. Thus, a result with 
a smaller (sometimes with a minimum) quantity of non-
zero digits may be obtained via simplification of the 
combination 1011 → . 

 

B. ALGORITHM B 

Let us analyze the process of the multiplier 
conversion into an extended binary code following the 
algorithm B.  

In Tabble 2 we observe that the initial multiplier 
Y=00.11011110 contains 6 non-zero digits. While it is 
converted according to the algorithm A then the 
multiplier Yp contains 5 non-zero digits and the 
minimized multiplier Ymin contains 3 non-zero digits. 

Table 3 provides the analysis of three digits at a time 
1+ii yy 2+iy  for the given multiplier Y. As a result there 

appear two new digits 1+ii yy  of the converted multiplier 
Yp; Besides, the denominations mentioned above, the 
following denominations are introduced: 

L2S – the adder`s S digits shift two digits to the 
right; 

L2Y – the given multiplier’s Y digits shift two digits 
to the left. 

Note that in analyzing the last pair of digits of the 
multiplier, the value of the neighboring digit on the right 
side is assumed equal to 0. 

Example 2. To recode the multiplier Y=00.11011110 
using Table 3, starting with the higher-order digits 

1.00101 =− yyy . 
From the obtained table it may be seen that the 

resulting converted multiplier has one digit less than in 
the previous case, but it is not minimal in the quantity of 
non-zero digits. 

The conversion algorithm B for the multiplier digits 
Y=00.11011110 with the analysis of three digits at a time, 
starting with the higher-order digits provides the result 
given in table 4. Thus, a result with a smaller (sometimes 
with a minimum) number of non-zero digits may be 
obtained via simplification of the combination 1011 → . 

 

Table 1 

Conversion of the multiplier according to the algorithm А 
Transposition 

1+ip  
Pair of digits under 

analysis 1+ii yy   
Converted pair 
of digits 1+ii yy  

Following 
transposition ip  Remarks 

0 00  00 0 S:=R2S , R2Y 
0 01  01 0 S:=S+X , S:=R2S , R2Y 
0 10 => 10 0 S:=S+ XL1 , S:=R2S , R2Y 
0 11  10  1 S:=S+ m

DKX )(− , S:=R2S , R2Y  
1 00  01 0 S:=S+X , S:=R2S , R2Y 
1 01  10 0 S:=S+ XL1 , S:=R2S , R2Y 
1 10  10  1 S:=S+ m

DKX )(− , S:=R2S , R2Y  
1 11  00 1 S:=R2S , R2Y  

 

Table 2  

Conversion of the multiplier Y=00.11011110 according to the algorithm А 
Digit number  

-1 0 1 2 3 4 5 6 7 8 Quantity of non-zero digits 

pi  1  0  1  0  0  
Y 0 0 1 1 0 1 1 1 1 0 6 
Yp 0 1 0 1  1 0 0 1  1 0 5 

Ymin 0 1 0 0 1  0 0 0 1  0 3 
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Table 3  

Conversion of the multiplier according to the algorithm B 
Pair of digits under analysis 

1+ii yy  
Neighboring digit to the 

right 2+iy  
Converted pair of 

digits: 1+ii yy  Remarks 

00 0 00 S:=L2S , L2Y 
01 0 01 S:=S+X , S:=L2S , L2Y 
10 0 01  S:=S+ m

DKXL )1(− ,S:=L2S, L2Y 

11 0 10  S:=S+ m
DKX )(− , S:=L2S , L2Y 

00 1 01 S:=S+X , S:=L2S , L2Y 
01 1 10 S:=S+L1X, S:=L2S , L2Y 

10 1 10  S:=S+ m
DKX )(− , S:=L2S , L2Y 

11 1 00 S:=L2S , L2Y 
C.  

D. ALGORITHM C 

In the proposed algorithm C, the conversion is 
carried out by analyzing two digits of the multiplier at a 
time and transposition from the lower-order digits and 
obtaining a single digit of the transformed multiplier and 
transposition. Transfer to the lower-order (right) digit is 
equal to zero. Further on it is predetermined by the Table 5. 
The last transposition is recorded to the higher-order (in 
this case to 0) digit of the converted multiplier. Here: 

R1S – the adder`s S digits shift one digit to the right; 
R1Y – the converted multiplier’s Yp digits shift one 

digit to the right. 
This logical algorithm for conversion of multiplier’s 

digits with the analysis of two digits at a time, starting 
with the lower-order digits and the transposition, 
provides the result given in Table 6. It contains a 
minimal quantity of non-zero digits. 

Example 3. To recode the multiplier 
Y=00.11011110 using Table 5, starting with the lower-
order digits 7 8y y . The initial value of the transposition 
is 8 0p = . The resulting value of the transposition is 

0 1p = , which is assigned to the higher-order digit of the 
converted multiplier, is 0 1Yp = . 

From the obtained Table it may be deduced that the 
converted multiplier has two digits less than in case of 
the algorithm A, one digit less than while using the 
algorithm B, and it is the minimum possible for the 
quantity of non-zero digits for the present multiplier Y. 

For control, we provided an illustration in the form 
of the stepwise conversion of the multiplier according to 
the algorithm C using the formulas below. Particular 
attention should be paid to the fact that the transposition 

1 0P− =  may not be calculated. 
1st step: k=8, 7 8 810, 0Y Y P= =  ⇒  0,0 78 == PYp ; 
2nd step: k=7, 6 7 711, 0Y Y P= =  ⇒  7 71, 1Yp P= = ; 
3rd step: k=6, 5 6 611, 1Y Y P= =  ⇒  6 50, 1Yp P= = ; 
4th step: k=5, 4 5 511, 1Y Y P= =  ⇒  5 40, 1Yp P= = ; 
5th step: k=4, 3 4 401, 1Y Y P= =  ⇒  4 30, 1Yp P= = ; 
6th step: k=3, 2 3 310, 1Y Y P= =  ⇒  3 21, 1Yp P= = ; 
7th step: k=2, 1 2 211, 1Y Y P= =  ⇒  2 10, 1Yp P= = ; 
8th step: k=1, 0 1 101, 1Y Y P= =  ⇒  1 00, 1Yp P= = ; 
9th step: k=1, 1 0 000, 1Y Y P− = =  ⇒  0 1.Yp =  

III. IMPLEMENTATION OF THE ACCELERATED 
MULTIPLICATION ACCORDING TO  

THE ABOVE MENTIONED  
ALGORITHMS  

The implementation of the accelerated multiplication 
is illustrated for each of the considered algorithms on the 
examples. 

Example 4. To find the product of multiplication for: 
X=0.1101, Y=0.1101111. 

Solution. The way of obtaining this product using 
each of the algorithms mentioned above is illustrated. 

 

Table 4 

Conversion of the multiplier Y=00.11011110 according to the algorithm B 
Digit number  

-1 0 1 2 3 4 5 6 7 8  Quantity of non-zero digits 

ip    1  0  1  1  0  

Y 0 0 1 1 0 1 1 1 1 0  6 
Yp 0 1 0 1  1 0 0 0 1  0  4 

Ymin 0 1 0 0 1  0 0 0 1  0  3 
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Table 5  

Conversion of the multiplier according to the algorithm C 

No. 1−kY  kY  kP   pkY ?? 1−kP  Remarks 
0 0 0 0  0 0 S:=R1S , R1Y 
1 0 0 1  1 0 S:=S+X , S:=R1S , R1Y 
2 0 1 0  1 0 S:=S+X , S:=R1S , R1Y 
3 0 1 1 ⇒  0 1 S:=R1S , R1Y 

4 1 0 0  0 0 S:=R1S , R1Y 
5 1 0 1  1  1 S:=S+ m

DKX )(− , S:=R1S , R1Y 
7 1 1 1  0 1 S:=R1S , R1Y 

Table 6  

Conversion of the multiplier Y=00.11011110 according to the algorithm C 
Digit number  

-1 0 1 2 3 4 5 6 7 8 Quantity of non-zero digits 

ip   1 1 1 1 1 1 1 0 0  

Y 0 0 1 1 0 1 1 1 1 0 6 
Yp 0 1 0 0 1  0 0 0 1  0 3 

 

Table 7  

Implementation of the accelerated multiplication  
according to the algorithm А 

Yp Remarks ↓ Psign S 
 PS  0 0 0 0 0 0         

10 +L1X  0 1 1 0 1 0         
 S  0 1 1 0 1 0         
 R2S→  0 0 0 1 1 0 1 0       
10  +Xdm  1 1 0 0 1 1         

 S  1 1 1 0 0 1 1 0       
 R2S→  1 1 1 1 1 0 0 1 1 0     

10 +L1X  0 1 1 0 1 0         
 S 1 0 1 1 0 0 0 0 1 1 0     
 R2S→  0 0 0 1 1 0 0 0 0 1 1 0   
10  +Xdm  1 1 0 0 1 1         
 S  1 1 1 0 0 1 0 0 0 1 1 0   
 R2S→  1 1 1 1 1 0 0 1 0 0 0 1 1 0 

01 +X  0 0 1 1 0 1         
  1 0 0 1 0 1 1 0 1 0 0 0 1 1 0 

 

E. ALGORITHM A 

Let us create a modified complement code Xdm = 
= 11.0011 of the number X=-00.1101 and L1X=01.101 
that is a shifted number on one digit to the left of the 
number X=0.1101. Using Table 1 for the multiplier 
Y=0.1101111 we get the converted multiplier: Yp=01. 
0 1  10 0 1  10. To fulfill the multiplication we use  
Table 7, wherein the columns Psign there are entered 
significant digits, and in the columns marked by the 
symbol ↓  there are entered the number 1 of trans-
position, which are being neglected. 

 

F. ALGORITHM B 

According to Table 3 for the multiplier Y=0.1101111 
the converted multiplier is Yp=01. 0 1  10 0 1  10. While 

finding a solution for the specified product, we use the 
numbers: RX=00.000000001101 – for the preservation 
of Х; L1RX=00.000000011010 – for the preservation of 
Х shifted one digit to the left; RXdm=11.111111110011 – 
for the preservation of the complement code; L1RXdm= 
11.111111100110 – for the preservation of the 
complement code shifted one digit to the left. For 
multiplication, we use Table 8. 

 
G. ALGORITHM C 

While implementing the accelerated multiplication 
we use the following numbers: RX=001101 – for the 
preservation of Х; RXdm=110011 – for preservation of 
the complement code and the table of conversion of the 
multiplier into extended binary code. 



Logical Algorithms of the Accelerated Multiplication with Minimum Quantity of Nonzero Digits…  29 

  

Table 8  

Implementation of the accelerated multiplication according to the algorithm B 
 

Yp Remarks ↓ Psign S 
` PS  0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 01 +RX  0 0 0 0 0 0 0 0 0 0 1 1 0 1 
 S  0 0 0 0 0 0 0 0 0 0 1 1 0 1 
 ←L2S  0 0 0 0 0 0 0 0 1 1 0 1 0 0 
10  +RXdm  1 1 1 1 1 1 1 1 1 1 0 0 1 1 
 S 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 
 ←L2S  0 0 0 0 0 0 1 0 0 1 1 1 0 0 

10 +L1RX  0 0 0 0 0 0 0 0 0 1 1 0 1 0 
 S  0 0 0 0 0 0 1 0 1 1 0 1 1 0 
 ←L2S  0 0 0 0 1 0 1 1 0 1 1 0 0 0 

00 ←L2S  0 0 1 0 1 1 0 1 1 0 0 0 0 0 
01  +L1RXdm  1 1 1 1 1 1 1 1 1 0 0 1 1 0 
 Z= 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0 

 

Table 9  

Implementation of accelerated multiplication according to the algorithm C 
 

Yp Remarks ↓ Psign S 
 PS  0 0 0 0 0 0         
0 R1S→  0 0 0 0 0 0 0        
1  +RXdm  1 1 0 0 1 1         
 S  1 1 0 0 1 1 0        
0 R1S→  1 1 1 0 0 1 1 0       
0 R1S→  1 1 1 1 0 0 1 1 0      
0 R1S→  1 1 1 1 1 0 0 1 1 0     
0 R1S→  1 1 1 1 1 1 0 0 1 1 0    
1  +RXdm  1 1 0 0 1 1         
 S 1 1 1 0 0 1 0 0 0 1 1 0    
0 R1S→  1 1 1 0 0 1 0 0 0 1 1 0   
0 R1S→  1 1 1 1 0 0 1 0 0 0 1 1 0  
0 R2S→  1 1 1 1 1 0 0 1 0 0 0 1 1 0 
1 +RX  0 0 1 1 0 1         
 S 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0 

 

Table 10  

Modification of the algorithm С 
Yp Remarks ↓ P sign S 

 PS  0 0 0 0 0 0 0 0 0 0 0 0 0 0 
01 +RX  0 0 0 0 0 0 0 0 0 0 1 1 0 1 

 S  0 0 0 0 0 0 0 0 0 0 1 1 0 1 
00 ←L4S  0 0 0 0 0 0 1 1 0 1 0 0 0 0 

01  L1RXdm  1 1 1 1 1 1 1 1 1 0 0 1 1 0 
 S 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 

00 ←L4S  0 0 1 0 1 1 0 1 1 0 0 0 0 0 
01  L1RXdm  1 1 1 1 1 1 1 1 1 0 0 1 1 0 
 Z=S 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0 

 
To fulfill multiplication, we use Table 9. Example 5. 

Use the converted multiplier according to the third 
algorithm of the accelerated multiplication, to find the 
product of numbers: X=0.1101, Y=0.1101111 by 

multiplication with the processing of two multiplication 
digits at a time, starting with the higher-order digits.  

Solution. The implementation process of this 
algorithm is illustrated by Table 10. 
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Fig. 1. Comparison of the number of non-zero digits converted by different methods 

As it may be seen, the latest implementation of the 
accelerated multiplication requires the smallest, in 
comparison with other implementations, quantity of 
additions and displacements, which results in the 
reduction of the time spent for the transaction. 

IV.  COMPARISON OF THE METHODS 
EFFECTIVENESS 

We will calculate the quantity of non-zero digits in 
the unmodified multiplier and multipliers converted 
according to other three methods, for all numbers from 
1 to 11111111 = 255. The calculation results are shown 
in Figure 1 with step K = 16, where S is the quantity of 
non-zero digits in the unconverted multiplier; SA, SB, 
SC – are the quantities of the non-zero digits in the 
unconverted multiplier gained as a result of the 
methods A, B, C correspondingly. In general, all 
numbers from 1 to 11111111 = 255 contain 1024  
non-zero digits, and those converted by methods  A,  B, C 

 contain 853, 896 and 796 non-zero digits, respectively. 
It is obvious, the smaller is the quantity of non-zero 
digits, the less time is spent on the implementation of 
operations. From Figure 1, it may be deduced that the 
algorithm C proposed by us in this article is the most 
effective. 

REFERENCES 

[1] Melnyk A. O. Computer Architecture, Lutsk, 2008. – 470 p. (in 
Ukrainian). 

[2] Melnyk A. O., Melnyk V. A. Personal computers: architecture, 
design, application, Lviv, 2013. – 516 p. 

[3] Knuth, Donald E. The Art of Computer Programming, 3rd ed. 
Reading , MA: Addison-Wesley, 1998. – 762 p. 

[4] Korniichuk V. I., Tarasenko V. P., Tarasenko-Kliatchenko O. V. 
Basics of Computer Arithmetic, Kyiv, 2006. – 164 p. (in 
Ukrainian). 

[5] Tsmots I. G. Parallel algorithms and matrix VLSI structures of 
multiplication devices for real-time computer systems. Infornation 
Technologies and Systems. Lviv, 2004. Vol. 7. N 1, pp. 5–16.  

 
Іhor I. Korol is a Vice-Rector 

for Academic Policy and Research at 
Uzhhorod National University. He 
received the Master’s degree in 
mathematics and applied mathe-
matics at Lomonosov Moscow State 
University in 1992. In 1996 he 
obtained his Ph.D. in Mathematics 
(Differential Equations), and in 2011 
he obtained his D.Sc. degree at Taras 
Shevchenko National University in 
Kyiv. Since 1993 to 2011 he has 

been Senior Lecturer, Associate professor, professor of the 
Department of Differential Equations at Uzhhorod National 
University. His work resulted in 87 publications. He has also 
been a visiting professor at the Institute of Mathematics of 
Pomeranian University in Słupsk. Currently he is a visiting 
professor at the Faculty of Mathematics, Informatics and 

Landscape Architecture of John Paul II Catholic University  
of Lublin. 

Ivan Yu. Korol is an Associate 
professor of the Department of 
Computer Systems and Networks at 
Uzhhorod National University. 

He received the Master’s 
degree in applied mathematics at 
Uzhhorod National University in 
1964. In 1973 he obtained his Ph.D. 
in Computational Mathematics at 
Ivan Franko National University in 
Lviv. His work resulted in 82 
publications. Since 1965 to 1991 he 

has been a Senior Lecturer, Associate professor of the 
Department of Computational Mathematics. Since 1991 to 
2018 he has been a Head of the Department of Computer 
Systems and Networks at Uzhhorod National University.  

 




