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Abstract: The paper considers the problem of distributed 
adaptation of the functional integration structure of a 
multi-agent system in a dual-tasking environment from the 
point of view of organizing multi-agent search and use of 
the functional emergence effect provided by different 
structures of functional integration. The considered 
problem belongs to a wider class of problems of structural 
adaptation and self-organization. Models of functional 
integration, in particular, models based on general 
quantitative characteristics of the functional roles 
distribution of agents and models based on local qualitative 
characteristics of the functional roles distribution of agents, 
taking into account the specifics of functional links 
established between agents have been considered in the 
paper. The problems of the distributed adaptation of the 
functional integration structure have been analyzed, 
including the problem of the functional specialization of 
agents in a multitasking environment. Various ways of 
organizing structural changes have been considered, 
including multi-agent parametric adaptation based on a 
local structural parameter. Multi-agent structural 
adaptation based on reinforcement learning methods, in 
particular, multi-agent structural adaptation based on the 
normalized exponential function method (MSA-softmax) 
and multi-agent structural adaptation based on the upper 
confidence bound method (MSA-UCB) has been proposed. 
The distributed adaptation methods simulation results have 
been presented, which showed the advantage of multi-agent 
structural adaptation over multi-agent parametric 
adaptation. 

Index Terms: structural adaptation, functional 
integration, multi-agent system 

I. INTRODUCTION 
The modern development and widespread adoption 

of mobile computing and wireless technologies 
determine the rapid growth of opportunities for solving 
the problems of distributed artificial intelligence, in 
particular the research and development of intelligent 
agents and multi-agent systems [1–4]. The relatively 
high performance of modern computing nodes, their 
large number in the distributed computer systems and 
networks, open up new possibilities for studying the 
concept of decentralized control in the context of multi-
agent system technologies. Using decentralized control 
allows one to create multi-agent systems (MAS) with 
high survivability, reliability and wide scalability, and at 

the same time they are not inferior in efficiency to 
systems with centralized control, and in some classes of 
tasks they even outperform them. 

One of the important areas of research in multi-
agent systems technologies and decentralized control 
methods is the organization of multi-agent systems in 
multitasking environments when agents need to solve 
several tasks simultaneously. Examples of problems with 
a multitasking environment include the problem of 
multi-task learning [5–9], the problem of multi-task 
optimization [10–13], the problem of scheduling and 
task assignment in multi-agent systems [14–16], the 
problem of organizing distributed autonomous infor-
mation gathering by a multi-agent system [17–21], etc. 
In problems with a multi-tasking environment, various 
options for the dependence between tasks are considered, 
starting from a set of independent tasks and ending with 
closely related tasks, for example, under the use of 
functional decomposition, where the overall task is 
broken down into a number of subtasks to form a 
hierarchical structure of dependencies. Wherein, the 
simplest for analysis, but nevertheless having a wide 
field of application, it is a model of a dual-tasking 
environment in which agents face two different tasks that 
are related to one degree or another. 

The behavior of a multi-agent system in a multi-
tasking environment implies a certain distribution of 
agents between the tasks to be solved. The local solution 
by the agent of a separate task is equivalent to accepting 
by the agent the corresponding function as a part of a 
multi-agent system. Performing this function for some 
time, the agent makes decisions and acts according to the 
selected functional role (mode of operation). Interaction 
of agents within the framework of their functions forms 
functional links between them. Let us define the 
functional integration structure (FIS) of a multi-agent 
system as the distribution of agents by functional roles 
and all corresponding functional links between them. In 
this case, of particular interest are situations where the 
actions of agents within the framework of their chosen 
functional roles are mutually complementary, giving the 
effect of functional emergence. That is, situations when, 
due to functional integration, a multi-agent system has 
fundamentally new qualities (capabilities) that are not 
available for its individual parts (agents). The use of new 
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qualities (capabilities) obtained as a result of functional 
emergence allows the multi-agent system to solve tasks 
with greater efficiency, as well as to solve problems that 
cannot be solved by an individual agent. Thus, we can 
consider the following problem. How agents should 
search for and use the functional emergence effect, 
which is provided by different functional integration 
structures of a multi-agent system? To solve this 
problem, it is necessary to organize a collective search 
for such structures of functional integration that provide 
new qualities (capabilities) necessary for solving the 
tasks and (or) allowing them to be solved with greater 
efficiency. In other words, it is necessary to solve the 
problem of distributed adaptation of the functional 
integration structure of a multi-agent system, when each 
of the agents makes decisions on a local structure change 
on their own. Note that this task belongs to a wider class 
of problems of structural adaptation and self-
organization [22–24]. We also note that in [20] an 
approach to solving this problem was proposed for the 
case of organizing the collective behavior of autonomous 
agents gathering information based on the corresponding 
model of a dual-tasking environment. 

In the paper we propose models of functional 
integration, in particular, models based on general quan-
titative characteristics of the functional role distribution 
of agents and models based on local qualitative 
characteristics of the functional role distribution of 
agents, taking into account the specifics of functional 
links established between agents. The problems of the 
distributed adaptation of the functional integration 
structure are analyzed, including the problem of the 
functional specialization of agents in a multitasking 
environment. Various ways of organizing structural 
changes are considered, including multi-agent parametric 
adaptation based on a local structural parameter. We 
propose the multi-agent structural adaptation based on 
reinforcement learning methods, in particular, multi-
agent structural adaptation based on the normalized 
exponential function method (MSA-softmax) and multi-
agent structural adaptation based on the upper 
confidence bound method (MSA-UCB). The simulation 
results of the distributed adaptation methods are presen-
ted, which showed the advantage of multi-agent struc-
tural adaptation over multi-agent parametric adaptation. 

II. MULTI-AGENT SYSTEM  
IN A DUAL-TASKING ENVIRONMENT 

Consider a dual-tasking environment Е(Т), in 
which the general task T={Tx,Ty} is divided into two 
related sub-tasks Tx and Ty, each of which can be solved 
locally by a separate agent. In this case, the relationship 
between Tx and Ty determines the nature of the 
complementary relationship between the agents’ actions 
of solving task T. To solve the Tx task, an agent can use 
the set of Dx actions, and to solve the Ty task, an agent 
can use the set of Dy actions. In terms of possibly 

overlapping Dx and Dy action sets, three options are 
possible: 

1) Dx ∩ Dy = ∅, Dx and Dy do not overlap; 
2) Dx ∩ Dy = Dxy, Dxy ⊂ Dx, Dxy ⊂ Dy, Dx and Dy 

overlap partially; 
3) Dx = Dy = D, overlap completely. 
To simplify the analysis, in this paper we will 

consider only the third option, when the same set of 
actions D is used to solve both tasks. 

Based on the concept of decentralized control, we 
assume that each agent ai makes a decision on the choice 
of a functional role and actions within this role 
independently of other agents. At each time step t, each 
agent ai, i = 1, ..., N selects and implements the action dt 
from the set of actions D. After that, each agent receives 
a local response from the environment to its action, 
based on which it can judge the success of the local 
solution of Tx and Ty tasks. From the perspective of the 
decision-making process, the agent can choose the action 
dt within the framework of a local solution to either the 
Tx task or the Ty task. That is, the agent at each moment 
of time t chooses in the interests of which of the two 
tasks (Tx or Ty) to decide on the choice of action. Let us 
say that, choosing the action to solve the Tx task, the 
agent assumes the functional role Ax (operates in Ax 
mode), and choosing the action to solve the Ty task, the 
agent assumes the functional role Ay (operates in Ay 
mode). Thus, at each moment of time t, all agents {ai} 
are distributed into two functional roles (operating 
modes) Ax and Ay. Thereby, n(Ax)+n(Ay)=N, where 
n(Ax) is the number of agents who have chosen the 
functional role Ax, n(Ay) is the number of agents who 
have chosen the functional role Ay. The distribution of 
agents according to the functional roles P(a,t) defines the 
current functional integration structure of the multi-agent 
system, which is characterized by the corresponding 
effect of functional emergence. Moreover, different 
distributions P(a,t) (i.e., different functional integration 
structures) give a different effect of functional 
emergence. The multi-agent system is faced with the 
task of adapting the FIS to a previously unknown 
optimal structure of the functional decomposition of the 
T task into two sub-tasks Tx and Ty, that is, to find an 
FIS that gives the maximum effect of functional 
emergence in strength. 

III. MODELS OF FUNCTIONAL INTEGRATION 
From the point of view of methods for determining 

the effect of functional emergence, models of functional 
integration can be divided into the following two types. 

1) ΛG – models based on general quantitative 
characteristics of the distribution of agents according to 
functional roles; in the framework of these models, the 
strength indicator of the effect of functional emergence 
may, for example, depends on the ratio of the number of 
agents choosing one or another functional role: 
EG=F(n(Ax),n(Ay)); 
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2) ΛL – models based on local qualitative 
characteristics of the distribution of agents according to 
functional roles, taking into account the specifics of 
functional links established between agents; in the 
framework of these models, the indicator of the strength 
of the effect of functional emergence can, for example, 
be determined by comparing the functional roles in all 
N/2 pairs of agents (ai,aj) formed randomly: 
EL=F({A(ai),A(aj)}), where A(ai) is the functional role 
chosen by agent ai. 

In the case of a combination of these two types of 
models, the indicator of the strength of the functional 
emergence effect can be defined as E = Ψ(EG,EL), where 
Ψ can be, for example, a weighted sum: E=wGEG+wLEL, 
wG + wL = 1. 

Functional integration models ΛL can be further 
divided into two classes of models according to the 
method of matching the functional roles of agents: 

1) ΛL(η) – models based on random partitions of 
the set of agents into subsets of m<N agents (m = 2,3, 
...); 

2) ΛL(γ) – models based on subgraphs of functional 
links between agents with m<N vertices (m = 2,3, ...) of 
the complete graph of functional links. 

In models of functional integration of type ΛL let us 
define a component of coherence (a component of 
functional integration) as a subset of agents C{a} for 
which the effect of functional emergence is locally 
determined. In the case of random partitions (models 
ΛL(η)), the component of coherence can be a pair of 
agents (ai,aj), a triplet of agents (ai,aj,ah), etc. In the case 
of subgraphs of functional links (models ΛL(γ)), the 
component of coherence can be a subgraph with two 
vertices ai and aj, a subgraph with three vertices ai,aj,ah, 
etc. Let us define the matching scale L as the number of 
agents in the component of coherence. From the point of 
view of using different scales of matching, the functional 
integration model can be divided on the: 

1) models with one fixed matching scale  
L = 2,3,...,N; 

2) models with the simultaneous use of all 
matching scales in the range from 2 to 2 < L ≤ N; 

3) models with a selective set of matching scales 
(for example, L={2,4,5}). 

Consider the model ΛL(γ,L) with a fixed matching 
scale L. In this model, for each component of coherence 
(a subgraph of L vertices) С{a}, a local indicator of the 
strength of the functional emergence effect eL(С{a}) is 
determined. After that, the local results are combined 
into an overall result for the entire multi-agent system 
EL=F({eL(С{a})}). In the simple case, the functional F 
can be a sum or an average. In a complex case, the 
functional F can be nonlinear, thereby reflecting the 
influence of the dependencies between the individual 
components of coherence on the overall indicator of the 
strength of the functional emergence effect. From the 
perspective of decentralized control, one can also distin-
guish between different options for informing an indi-
vidual agent about the results of functional integration. 

For example, agents may only know an inaccurate value 
of the overall strength indicator of the obtained effect of 
functional emergence EL, different from its true value. 
Or, agents can only know local indicators of the strength 
of the functional emergence effect eL(С{a}) for those 
components of coherence С{a} where they participate. 

In addition to the matching scale L in the model 
ΛL(γ,L), one can consider the degree of locality k, 
limiting the number of components of coherence 
(functional links subgraphs) С{a} with a given number 
of agent’s neighbors k<N in the graph  of functional 
links. For example, for the matching scale L=2 and a 
connected regular graph of functional links, the 
maximum value of k is kmax=N-1 (complete graph) and 
the minimum value of k is kmin=2 (a cycle graph of 
length N). Let us consider several examples of the model 
ΛL(γ,L,k) with a connected regular graph of functional 
links. Example 1: ΛL(γ,L=2,k=2) – each agent has two 
functional links, the number of components of coherence is 
n(С{a})=N-1. Example 2: ΛL(γ,L=2,k=4) – each agent has 
four functional links, the number of components of co-
herence is n(С{a})=2N-2. Example 3: ΛL(γ,L={2,3},k=4) – 
each agent participates in six components of coherence 
(four binary functional links and two triangle graphs of 
functional links), the number of components of 
coherence n(С{a})=3N-1. Note that in the models of 
functional integration ΛL(γ), the connectivity of the 
graph of functional links and its other parameters 
(regularity, diameter, etc.) are of great importance. In the 
basic version of the ΛL(γ) models, it is assumed that the 
graph of functional links is connected and regular. 

From the point of view of the types of functional 
links in a dual-tasking environment, in the model 
ΛL(γ,L=2), three variants of functional integration are 
possible in a pair of agents: Ax~Ax, Ay~Ay, Ax~Ay 
(taking into account the equality Ax~Ay=Ay~Ax). That is, 
the component of coherence in the model ΛL(γ,L=2) can 
take three different “values” С{a}∈{Ax~Ax, Ay~Ay, 
Ax~Ay}. In the functional integration model ΛL(γ,L=3), 
four variants of the “values” of the component of 
coherence are possible: С{a}∈{Ax~Ax~Ax, Ax~Ay~Ay, 
Ax~Ax~Ay, Ay~Ay~Ay} (taking into account the equality 
of the component-triangles with two identical vertices). 
One of the options for expanding the model ΛL(γ,L) can 
be the representation of the problem of choosing the 
“value” of the component of coherence C{a} as a 
problem of reinforcement learning in a stationary 
random environment (a multi-armed bandit problem) 
[25]. Then, for example, in ΛL(γ,L=2), for each 
component of coherence, three “actions” {Ax~Ax, 
Ay~Ay, Ax~Ay} will be available, in response to which 
the corresponding pair of agents will receive a 
“reinforcement” as a local indicator of the strength of the 
effect of functional emergence eL(С{a}). In total, in the 
model ΛL(γ,L) there will be n(С{a}) stationary random 
environments (multi-armed bandit problems) in the 
number of components of coherence. 

In a dual-tasking environment with the model 
ΛL(γ,L=2), as a result of local decisions of agents about 
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choosing a functional role we get three subgraphs of the 
graph of functional links, where each subgraph is formed 
by functional links of one corresponding type: 
G(Ax~Ax), G(Ay~Ay), G(Ax~Ay). For each of these 
subgraphs, their general parameters (connectivity, 
diameter, etc.) can be determined. Thus, there is an inte-
resting opportunity to analyze the functional integration 
structure based on a comparison of the parameters of 
these subgraphs. For example, a comparison of the 
diameters of the subgraphs G(Ax~Ax), G(Ay~Ay), 
G(Ax~Ay) (or the diameters of their largest connected 
components) can show which type of functional link 
spans the most of the coordination space of a multi-agent 
system. 

IV. THE PROBLEMS OF DISTRIBUTED 
ADAPTATION OF FIS 

The central problem of the distributed adaptation of 
the FIS is the problem of organizing local search by an 
agent for a functional role within the framework of a 
coordinated multi-agent search for the best distribution 
of functional roles. By their local decisions on choosing 
a functional role, agents form an overall FIS of a multi-
agent system, overcoming two uncertainties: 1) the 
uncertainty regarding the optimal structure of the 
functional decomposition of task T into two sub-tasks Tx 
and Ty, which corresponds to the desired FIS, which 
gives the maximum effect of functional emergence;  
2) the uncertainty regarding the actions of other agents in 
choosing functional roles due to the decentralized cont-
rol of multi-agent search for the best FIS. Additionally, 
distributed adaptation of FIS is characterized by the 
following problems. 

1. The problem of choosing one action dt to solve 
both tasks Tx and Ty simultaneously (for the case of 
completely or partially overlapping sets of actions Dx 
and Dy). A simple scenario, when the agent first chooses 
the functional role A(ai), and then chooses the action dt 
within this role, can be complicated by the choice of the 
“compromise” action dt, which to some extent would 
correspond to the decision logic of both functional roles 
Ax and Ay. That is, the agent needs to choose an action 
that would be simultaneously suitable for solving both 
tasks Tx and Ty. This problem has much in common with 
the problems of multi-objective optimization. The multi-
agent parametric adaptation of FIS considered below can 
be regarded as one of the solutions to this problem. 

2. The problem of functional specialization in a 
multitasking environment. Functional specialization 
refers to a situation where an agent spends most of his 
time solving one of the tasks. The result of this may be 
that the agent will solve this task better than others, for 
example, due to the accumulation of more experience in 
solving it in comparison with other tasks. This situation, 
in particular, occurs in problems solved by reinforcement 
learning methods. Thus, the agent’s choice of a func-
tional role is complicated by the need to additionally 
take into account how much of the time the agent has 

already spent on fulfilling one or another functional role, 
and how this affected the effectiveness of his work in 
these roles, taking into account the factor of functional 
specialization. For example, it is not advantageous for an 
agent to switch from a functional role in which he has 
achieved high performance indicators to a “new” 
functional role, which he rarely did before. Multitasking 
environments can differ in varying degrees of influence 
of the factor of functional specialization, starting from 
environments where this factor is absent and ending with 
environments where it plays a decisive role in solving 
problems. In addition, within the framework of a 
separate multitasking environment, the influence of the 
functional specialization factor may be different for 
different tasks. From the perspective of interaction 
between agents, functional specialization may be due to 
the following reasons: 1) the experience of solving a 
problem with this agent in its local environment is not 
suitable for an agent solving the same problem in 
another local environment (for example, agents solve 
multi-armed bandit problems with different payoff 
functions); 2) the rate of transfer of experience in solving 
a problem from one agent to another is too low 
compared to the rate of change of environmental 
parameters (that is, the transferred experience becomes 
outdated until it is transferred to another agent). 

3. The problem of choosing the degree of 
functional specialization by an agent. In multitasking 
environments with a strong influence of the factor of 
functional specialization, an agent faces the problem of 
distributing his time between solving different tasks (that 
is, performing different functional roles), taking into 
account the fact that the less time is spent on solving a 
task, the lower is the effectiveness of solving it. For 
example, in a dual-tasking environment, an agent has 
two alternatives: 1) spend approximately the same time 
on solving tasks Tx and Ty, without specializing in 
solving any of them; 2) spend more time solving one of 
the tasks, specializing in it. The first alternative is 
preferable in situations with greater uncertainty 
regarding the optimal FIS and the corresponding 
functional role of the agent, and the second alternative is 
preferable in the opposite case. In other words, it is not 
profitable for an agent to specialize in solving a task 
until it becomes clear that the local choice of the 
corresponding functional role provides the desired 
optimal distribution P(a,t)*. 

4. The problem of the distribution of agents by 
functional roles, taking into account the performance 
values they achieved in solving the corresponding tasks. 
Assume that, within the framework of the functional 
integration model ΛG, the desired ratio n(Ax)/n(Ay) 
corresponding to the FIS with the maximum effect of 
functional emergence is found. Then it is beneficial that 
among the n(Ax) agents with the functional role Ax there 
are those agents who cope with the solution of the task 
Tx better than all other agents (for example, as a result of 
functional specialization in solving this task). And the 
same is true for the functional role Ay. That is, the agent, 
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when choosing a functional role, must additionally take 
into account how much better or worse than other agents 
it copes with it. In other words, for a given best 
distribution of functional roles P(a,t)*, a role Ai should 
go to those agents who have achieved the best 
performance values for solving the corresponding task. 

V. METHODS OF ORGANIZING  
STRUCTURAL CHANGES 

For distributed adaptation of the structure of a 
multi-agent system, different methods of organizing 
effective structural changes can be used. Among them, 
two groups of methods can be distinguished: 

1) Mp – methods based on the gradual change of 
one or more local structural parameters, which determine 
the functional role of an agent; 

2) Ms – methods based on direct switching between 
functional roles of agents within a separate decision-
making process. 

The methods Ms have the following advantages. 
1. They allow one to accumulate and use the 

experience of structural changes. Using the collective 
memory of structures, agents are given the opportunity 
to remember which structures have been successful in 
the past. Accordingly, when the situation changes, they 
rely on this experience and begin to search for a new 
structure with those options that were most successful in 
the past. Moreover, changes in the structure can be “fast” 
and large-scale, as opposed to “slow” and gradual 
changes made by the methods of the first group. 

2. They can provide a synergistic effect from the 
use of several previously found structures suitable for 
different situations. By quickly switching and combining 
such structures, the expansion of adaptation capabilities 
is achieved due to the use of the beneficial properties of 
each structure. This allows a multi-agent system to 
obtain new properties that are not inherent in any of the 
structures individually. 

The methods for organizing structural changes Ms 
include the choice of time when the agent switches from 
one functional role to another. In the basic version, such 
a switch occurs with some time period τs, during which 
the agent accumulates the information necessary to make 
a decision about switching to another functional role. 
One of alternatives is when the decision to switch the 
functional role is triggered by a certain event, for 
example, a decrease in the agent’s performance indicator 
below a predetermined threshold value. 

One of the most perspective approaches to the 
organization of effective structural changes in the 
decentralized control mode is the use of reinforcement 
learning methods [25–29]. Further, we assume that, in 
the framework of this approach, in a given dual-tasking 
environment each agent at time t receives the following 
information about the results of the action dt: 1) rx(d) – 
the local reward (reinforcement) in the task Tx, which is 
calculated using u(d,t) – the estimation of efficiency of 
solving Tx by the joint actions of agents; 2) ry(d) – local 

reward (reinforcement) in the task Ty, which is 
calculated using v(d,t) – the estimation of efficiency of 
solving Ty by the joint actions of agents; 3) rs(d) – the 
reward obtained due to the effect of functional 
emergence provided by the current structure of the 
functional integration of the MAS. 

As an example of methods Mp with the use of 
reinforcement learning, let us consider multi-agent 
parametric adaptation (MPA) of FIS based on the local 
structural parameter s(a). In this method, the overall 
reward r(d) is calculated as the weighted sum of the 
rewards in Tx and Ty: r(d) = qxrx(d) + qy ry(d), where 
qx,qy∈[0,1], qx+qy=1. The local structural parameter 
s(a)=qx-qy, s(a)∈[-1,+1] determines the ratio of the 
weights with which the agent’s rewards in Tx and Ty are 
taken into account in the reinforcement learning method. 
If s(a)>0 (qx>qy), then when choosing the next action, 
the agent’s reward in Tx is taken into account with 
greater weight, and accordingly, the agent is more likely 
to choose the action within the functional role Ax. If 
s(a)<0 (qx<qy), then the agent is more likely to choose an 
action within the functional role Ay. Thus, the agent's 
choice of a particular functional role depends on the 
value of the structural parameter s(a). The structural 
parameter s(a) is adjusted with a step 0 <Δ <1 (for 
example, Δ = 0.001) depending on rs(d). In the case of 
positive reinforcement rs(d), the parameter s(a) is 
changed so as to further increase the weight of the local 
reward corresponding to the current functional role. In 
the case of negative reinforcement rs(d), the parameter 
s(a) changes so as to shift the weight of the local reward 
in favor of a different functional role. Note that from the 
perspective of choosing the parameters of the reinfor-
cement learning, two cases of multi-agent parametric 
adaptation can be distinguished: 1) MPA with local 
optimization over the set of actions and time steps 
(MPA-L) and 2) MPA with global optimization over 
actions and time steps (MPA-G). 

VI. MULTI-AGENT STRUCTURAL ADAPTATION  
IN A DUAL-TASKING ENVIRONMENT  

Consider multi-agent structural adaptation (MSA) 
of FIS in a dual-tasking environment as one of the Ms 
methods. In MSA, the agent’s decision-making process 
is divided into two levels: 1) the structural level at which 
the agent selects one of two functional roles (operating 
modes) Ai={Ax,Ay}, and 2) the functional level at which 
the agent selects action d in accordance with the selected 
functional role (operating mode) Ai. 

Consider the procedure of MSA as a process of 
distributed adaptation of the structure of functional 
integration 

S = < P(a,t), {σ(a,a')} >, 

where P(a,t) is the distribution of agents by functional 
roles, {σ(a,a')} is the set of coordination links between 
agents within the functional links defined by P(a,t). 
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Let us present the operating modes of an agent at 
the functional level as Ax=(Rx(a),Ux(a)) – decision-
making on the choice of actions to solve the problem Tx; 
Ay=(Ry(a),Uy(a)) – decision-making on the choice of 
actions to solve the problem Ty; and at the structural 
level As=(Rs(a),Us(a)) – making decisions about the 
actions to discrete change of structure S by switching 
between modes Ax and Ay. Then the multi-agent 
structural adaptation can be represented as 

MSA= < [Ax=(Rx(a),Ux(a)), 
Ay=(Ry(a),Uy(a))], As=(Rs(a),Us(a)) >, 

where Rx(a): rx(d)=fu({u(d,t)}) is the reward function of 
action d in operating mode Ax, Ry(a): ry(d)=fv({v(d,t)}) 
is the reward function of action d in operating mode Ay, 
Rs(a): rs(g)=fr({rx(d)},{ry(d)})+F({rs}k(t)) is the reward 
function of choosing the operating mode (functional 
role), where g∈{Ax, Ay}, fr({rx(d)},{ry(d)}) is the 
function for evaluating performance of operating in 
modes Ax and Ay, F({rs}k(t)) is a function of estimating 
the strength of the functional emergence effect in the 
components of coherence with the degree of locality  
k(t) = 0,…, N-1. U(a) is the procedure of decision 
making. In particular 

Ux(a)={Fx(t), fx(dt,t), Jx(a)}, 
Uy(a)={Fy(t), fy(dt,t), Jy(a)}, 

where Fx(t), Fy(t) are the utility functions of the 
functional level, fx(dt,t), fy(dt,t) are the functions of 
switching between actions (in the corresponding 
operating modes Ax and Ay), J (a) is the method of 
information interaction and coordination with other 
agents: 

Jx(a) = {σ(Ax,Ax), σ(Ax,Ay)}, 
Jy(a) = {σ(Ay,Ay), σ(Ay, Ax)}. 

Functional level utility functions are as follows: 

1

1( ) ( )
t

x x,i
i=

F t = r d
t

∑ , 

1

1( ) ( )
t

y y,i
i=

F t = r d
t

∑ , 

where t is the current time step, rx,i(d) is the reward 
that determines the performance of the agent in operating 
mode Ax  at time step t, ry,i(d) is the reward that 
determines the performance of the agent in operating 
mode Ay  at time step t. The utility function Fx(t) reflects 
the overall performance of the agent in solving task Tx. 
The utility function Fy(t) reflects the overall performance 
of the agent in solving task Ty. 

The procedure of decision making at the structural 
level 

Us(a)={ Fs(t), fs(gt,t), Js(a), τs }, 
where fs(gt,t) is the function of switching between 
functional roles (operating modes) (Ax,Ay),  
Js(a) = {σ(As,As)}, τs is the time step of Us(a) activation, 
Fs(t) is the utility function of the structural level: 

/

1
( ) ( )

t τss
s s,i

i=

τF t = r g
t

∑ . 

In each of the two operating modes of the 
functional level (Ax and Ay), the procedure for 
optimizing the choice of actions is performed. At the 
same time, at the structural level, optimization of the 
distribution of agents by the functional roles (operating 
modes) Ax and Ay is performed. As an optimization 
procedure, methods of reinforcement learning in a 
stationary random environment are used, including 1) the 
method of normalized exponential function (softmax 
action selection) [25] and 2) the method of Upper-
Confidence-Bound [30–31]. For each of these methods, 
an action value is calculated: 

1( ) ( ) ( ( ) ( ))x,t x,t 1 x x,t x,tQ d = Q d +α r d Q d− −− , 

1( ) ( ) ( ( ) ( ))y,t y,t 1 y y,t y,tQ d = Q d +α r d Q d− −− , 

1( ) ( ) ( ( ) ( ))s,t s,t 1 s s,t s,tQ g = Q g +α r g Q g− −− , 

where αx, αy, αs ∈(0,1] are the learning steps. 
In a multi-agent structural adaptation based on 

normalized exponential function (MSA-softmax) (Fig. 
1), the next action is selected with the probability: 

( )/
( ) ( )/

Q dx,t x

x,t Qx,t x

Da

μep d = b μe∑
, 

( )/
( ) ( )/

Q dy,t y
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Da

μ
ep d = b μ
e∑

, 

( )/
( ) ( )/

Q gs,t s

s,t Qs,t s

Aw r

μep g = h μe
,A

∑
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where Qt(d) is the action value of d, Da is a subset 
of actions which are currently available for an agent 
(b∈Da), μ is the scaling factor (μ > 0, μ=const). 

In a multi-agent structural adaptation based on 
Upper-Confidence-Bound (MSA-UCB) (Fig. 2), the next 
action is selected as: 

1
ln( )argmax ( )

( )t+ D x,t xa
x,t

td = Q d +c
k d
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/
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s
t τ s,t sA As

s,t τs

t τg = Q d +c
k d+

 
 
 
 

, 

where c is the scaling factor (с > 0). 
When the agent operates in the mode Ax, learning 

in the framework of the functional role Ay is performed 
in passive mode, and vice versa, when the agent operates 
in the mode Ay, learning in the framework of the 
functional role Ax is performed in passive mode. 
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Fig. 1. The outline of МSA based on the normalized exponential function (MSA-softmax) 

 

 

    Fig. 2. The outline of МSA based on the upper confidence bound (МSА-UCB) 
 

VII. SIMULATION RESULTS  
The presented above methods of the distributed 

adaptation (MSA and MPA) in a dual-tasking 
environment E(T)={E(Tx), E(Ty), T={Tx,Ty}} were 
studied for the case of a functional integration model ΛG 
and completely overlapping sets of action Dx = Dy = D 
(with M denoting the number of actions). For the 
purpose of simulation the E(Tx)={MABul, MABug, Rx(d), 
λ} is modeled as a composed multi-armed bandit 
problem with a reward function Rx(d) and 
E(Ty)={Gr,Ry(k)} is modeled as a homogeneous 
symmetric game [32–34] with a reward function Ry(k). 
The reward function Rx(d) is determined by the reward 
probabilities {pr(d)}N such as 

Rx(d): pr(d) = λ × pu,g(d) + (1 – λ) × pu,l(d), 
where pu,l(d) is the reward probability in a multi-armed 
bandit problem MABul={pu,l(d)}, pu,g(d) is the reward 
probability of a  multi-armed bandit problem 
MABug={pu,g(d)}, λ is the weight coefficient that 

determines the degree of dependence between reward 
function Rx(d) and reward probabilities in random 
environments MABul  and MABug. 

The composed multi-armed bandit problem 
(stationary random environment) E(Tx) is used to model 
the operation of agents in the functional role (mode) Ax. 
The E(Tx) is presented as a combination of two multi-
armed bandit problems (random environments): MABul, 
which simulates the local component of agents’ behavior 
without information about functional links between 
agents, and MABug, which simulates the global 
component of the agents’ behavior based on information 
about functional links between agents. The weight 
coefficient λ determines the degree to which the reward 
function Rx(d) depends on the rewards of the local and 
global components of agents’ behavior. The 
homogeneous symmetric game E(Ty) is used to model 
the operation of agents in the functional role (mode) Ay. 
The relationship between tasks Tx and Ty is modeled in 
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the following way. If at time step t the collective actions 
of agents in a homogeneous symmetric game E(Ty) give 
a win, then in a random environment E(Tx) agents are 
awarded local rewards with probability pr(d), otherwise 
in the case of a loss in E(Ty) in a random environment 
E(Tx) agents are awarded local rewards  with probability 
pu,l(d). In this way we study adaptive capabilities of 
agents depending on the presence or absence of 
information about the functional links between agents 
due to their functional roles. 

In a homogeneous symmetric game 
E(Ty)={Gr,Ry(k)}, the agent's choice of action d with 
some parameter hi(d) is equivalent to the choice of 
strategy hi∈Hg. In the simplest case, Hg={h1, h2} and the 
reward r∈{0;1}. Thus the game Gr  is defined by the 
reward function Ry(k) (0 < k < 1, 0 < Rg(k) < 1), where 
Ry(k) is the mathematical expectation of the reward of 
each player (agent) in a game instance, in which kN 
players chose strategy h1 and (1–k)N players chose 
strategy h2. Function Ry(k) was chosen as a piecewise 
constant function [32, 33]: 1) the value of k is divided 
into equal intervals Ki=(ki,ki+1), i=1,…,n; 2) each interval 
has its own mathematical expectation of reward Ry(Ki). 
At each step t, one instance of the game Gr is played and 
each player (agent), depending on his choice of d, gets 
reward ry,i(d)∈{0;1}. 

The MSA performance (separately for the MSA-
softmax and for the MSA-UCB) and MPA (separately 
for the MPA-L and for the MPA-G) was evaluated as 

w(Q) = Q / Qmax , 
where Q is the total reward in a dual-tasking 
environment E(T) (time-averaged and averaged over all 
agents): 

y
1

1 1 ( )
T

x,i ,i
A i=

Q = r (d) r (d)
N T

 +∑ ∑  
, 

Qmax is the maximum possible total reward in a 
dual-tasking environment E(T) (time-averaged and 
averaged over all agents). 

During the simulation, we studied the work of four 
methods of distributed adaptation (Fig. 3–6): 1) multi-
agent structural adaptation based on a normalized 
exponential function (MSA-softmax), 2) multi-agent 
structural adaptation based on upper confidence bound 
(MSA-UCB), 3) multi-agent parametric adaptation with 
local optimization (MPA-L), 4) multi-agent parametric 
adaptation with global optimization (MPA-G). 
Simulation of these adaptation methods (Fig. 3–6) sho-
wed the advantage of multi-agent structural adaptation 
over multi-agent parametric adaptation. In addition, the 
advantage of MSA over MPA increases with the increase 
of dependence between reward in the random environ-
ment MABug and reward function Rs(d) in the random 
environment E(Tx) (value λ), i.e., with an increase of the 
weight of the global component in agents’ behavior 
based on information about functional links between 
agents. The simulation parameters (Fig. 3–6) are as 
follows: the number of time steps in one simulation  
T = 1000, the number of repetitions of simulations  

n = 10000, c = 2.0 (MSA-UCB), μ= 0.05 (MSA- 
softmax), τs = 10 (MSA), N = {5-50}, M = 4. On 
average, for various combinations of parameters of 
adaptation methods and simulation parameters  
(M = {2, ..., 20}, N = {5 , ..., 100}, λ = {0.6, 0.7, 0.8, 
0.9}) the advantage of MSA over MPA is 23.2 %. 

 

 

Fig. 3. Simulation results: λ = 0.6, M = 4,  
T = 1000, n = 10000 

 

Fig. 4. Simulation results: λ=0.7, M=4,  
T=1000, n=10000 

 

Fig. 5. Simulation results: λ=0.8, M=4, 
T=1000, n=10000 
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Fig. 6. Simulation results: λ=0.9, M=4,  
T=1000, n=10000 

VIII. CONCLUSIONS 
The problem of distributed adaptation of the 

functional integration structure of a multi-agent system 
in a dual-tasking environment from the point of view of 
organizing multi-agent search and use of the functional 
emergence effect provided by different structures of 
functional integration were considered. The considered 
problem belongs to a wider class of problems of 
structural adaptation and self-organization. The models 
of functional integration, in particular, models based on 
general quantitative characteristics of the functional role 
distribution of agents and models based on local 
qualitative characteristics of the functional role 
distribution of agents, taking into account the specifics 
of functional links established between agents were 
considered in the paper. The problems of the distributed 
adaptation of the functional integration structure were 
analyzed, including the problem of the functional 
specialization of agents in a multitasking environment. 
Various ways of organizing structural changes were 
considered, including multi-agent parametric adaptation 
based on a local structural parameter. The multi-agent 
structural adaptation based on reinforcement learning 
methods, in particular, multi-agent structural adaptation 
based on the normalized exponential function method 
(MSA-softmax) and multi-agent structural adaptation 
based on the upper confidence bound method (MSA-
UCB) were regarded. The simulation results of the 
distributed adaptation methods were presented, which 
showed the advantage of multi-agent structural 
adaptation over multi-agent parametric adaptation. 
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