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Abstract: Cyber physical systems (CPS) include a lot of high 
complexity computing such as dynamic analysis and 
verification of continuous dynamic property, analysis and 
verification of real-time property, analysis and verification 
of spatial property, scheduling and fault tolerance. In this 
paper, some of the research directions that we are taking 
toward addressing some of the challenges involved in 
building cyber physical systems have been described. 
Taking into account the features of the cyber-physical 
sensor systems, the basic model has been modified. Lattice 
images in biopixels have been modified according to the 
laws of discrete dynamics. The developed models take into 
account the interaction of biopixels with each other by 
antigen diffusion. The comparative analysis of CPS models 
on rectangular and hexagonal lattices using differenсе 
equations has been considered in the work. The results of 
numerical simulations in the form of phase plane images 
and lattice images of the probability of antigen to antibody 
binding in the biopixels of cyber-physical biosensor systems 
for antibody populations relative to antigen populations 
have been received in the paper. The comparative analysis 
of the results of numerical modeling of mathematical models 
of cyber-physical biosensor systems on rectangular and 
hexagonal lattices using lattice difference equations with 
delay has been considered. 

Index Terms: cyber-physical systems, cyber-physical 
model, difference equations, hexagonal lattice, rectangular 
lattice, stability of the model. 

I. INTRODUCTION 
Nowaday, the concept of creating cyber-physical 

systems (CPS) for various fields of human activity is 
actively developing. CPS is considered as an intelligent 
system that integrates physical objects, external devices, 
processors, network equipment. The main purpose of 
CPS is to monitor the behavior of physical objects as 
components of such systems in real time. These are 
systems in which cybernetic tools such as measuring, 
computing, communication, control and execution 
interact with physical processes in arbitrary objects [1]. 

CPSs are identified with the manifestation of the 
fourth industrial revolution that takes place in the 
modern world [2]. Thus, there is also a physical 
opportunity to use technologies of “Internet of Things” 
[3], where it is necessary to use signals from sensors and 

measuring devices. Thus, more and more publications 
[4] appear in the literature that draw attention to the 
modern concepts and offer the innovative solutions.  
A. Platzer proposed an approach based on “dynamic 
logic”, which describes and analyzes cyber-physical 
systems [5–6]. In these works, the hybrid programs 
(HPs) use simple programming language with the simple 
semantics. HPs allow the programmer to refer directly to 
the actual values of variables that represent the real 
values and determine their dynamics. 

CPSs are next next-generation smart systems, 
which integrate computing, communications, and control 
systems as a unification. In CPS, physical and software 
components are deeply intertwined, involving transdis-
ciplinary approaches, merging the theories of cyber-
netics, mechatronics, and design and process science. 
The key techniques of CPS include physical/mechanical 
systems, embedded systems, sensors and actuators, 
computer network and human machine interface. This is 
a new generation of sensors that use biological material 
in a design that provides very high selectivity and allows 
quickly and simply measuring [7–8]. 

Cyber-physical biosensory system (CPBSS) is a 
CPS that uses new devices, analytical devices, namely 
(bio)sensors, which are currently impacting our everyday 
life (Figure 1), relies on several metrics such as low cost, 
high sensitivity, good selectivity, rapid response, real-
time monitoring, high-throughput, easy-to-make and 
easy-to-handle properties. Fortunately, they can be 
readily fulfilled by electrochemical methods. For 
decades, electrochemical sensors and biofuel cells 
operating in physiological conditions have concerned 
biomolecular science where enzymes act as biocatalysts. 
CPBSS can be integrated into a variety of analytical 
systems and into the human body for continuous 
monitoring of biochemical parameters and metabolites. 

An important stage in the design of CPBSS is the 
development and research of their mathematical models 
that adequately reflect the important aspects of the 
spatial structure of biopixels important in terms of the 
research tasks. After all, the quality of the mathematical 
model of CFBSS determines the effectiveness of 
methods of its processing in the systems under study. 
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Fig. 1. Schematic of the sensor array (including glucose, 
lactate, sodium, potassium and temperature sensors) for 

multiplexed perspiration illustration analysis for CPBSS (a);  
a subject wearing a “smart headband” and a “smart 

wristband” during a stationary cycling (b); real time data 
display of sweat analyte levels (c)  

The design of cyber-physical biosensory systems 
involves the selection of parameters that would ensure 
their operational stability. Such a task, in particular, 
arises in the development of a biosensor, which includes 
a two– and three-dimensional array of biopixels, and 
which consists in finding appropriate parameters 
describing biological and diffusion processes. This 
problem can be solved by developing and studying the 
stability of the corresponding cyber-physical model of 
the biosensory system on hexagonal and rectangular 
lattices using difference equations [9, 10]. 

II. CYBER-PHYSICAL BIOSENSORY SYSTEM 
DEVELOPMENT OF A FUNCTIONAL SCHE-

ME OF DISCRETE DYNAMICS CPBSS ON REC-
TANGULAR LATTICE USING LATTICE DIF-
FERENCE EQUATIONS WITH DELAY. 

Cyber-physical Biosensory System (CPBSS). The 
definition of the term “Cyber-physical sensory system 
(CPSS)” is given in [6]. This definition was introduced 
for the industrial use of sensors. The general definition 
of the CPSS involves “a higher degree of combination, 
system sharing, the ability to use embedded systems in 
the field of automation and compliance with existing 
standards.” The considered approach is used for the 
characterization of CPBSS, the functional scheme of 
which is presented in Fig. 2 and allows to perform 
numerical simulation of the system under study. 

According to [6], the definitions and schemes for 
CPBS are used to define the CPS. CPBSS converts 
physically measured immunological parameters into the 
digital information, which enables them to process 
signals in time using certain algorithms. There is also an 
interaction with their own capabilities, requirements, 

internal data and internal tasks in terms of distribution to 
the same or higher level of the hierarchy. 

 
 

CPISS 

Information 
Skills 

Tasks 
= f (V, F) 

Self-awareness 
about ability 
and status 

Smart biosensor 
 

Conditioned signal 

Signal processing 

Measured biological 
 parameter 

Recess 
 

Signal conditioner 

Array of biopixels 

Biosensor 
system 

Electrical 
signal 

Electrical 
signal 

 
Fig. 2. Functional scheme of CPBSS 

The concept of CPS on the basis of the CPBSS 
(Fig. 2), with the account of the features of intellectual 
imaging sensors is used. With the additional skills the 
sensor extends to CPBSS, which allows to receive more 
diagnostic information about the object being studied. 

Four main types of detection are used in biosensory 
devices: electrochemical (potentiometric, amperometric 
or conductivity (capacitive), optical and thermometric 
[10]). All types of sensors can be used as direct (not 
marked) or as indirect (marked) biosensors or 
immunosensors. Direct sensors are able to detect 
physical changes during the formation of the immune 
complex, while indirect use different levels of the 
generated signal that enable more sensible and universal 
detection in measuring systems. 

а 

b 
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CPBSS refers to the high-intelligence information 
systems. They use an affordable set of interfaces that 
allow to receive fast and accurate information of the 
status and internal system data that should be available 
to other CPSs. According to [11] CPBSS as a self-
organizing system requires comprehensive knowledge of 
its own dynamic structure and infrastructure of the 
general system. In order to make this, it is necessary to 
determine the types of biosensory devices, taking into 
account their functional application. For example, 
biosensors can be used to assess critical states in 
cardiovascular diseases, insulin values when measuring 
glucose levels in blood and to identify quantitative 
parameters in some pharmaceutical formulations.  

CPS research is revealing numerous opportunities 
and challenges in medicine and biomedical engineering. 
These include intelligent operating rooms and hospitals, 
image-guided surgery and therapy, fluid flow control for 
medicine and biological assays, and the development of 
physical and neural prostheses. Healthcare increasingly 
relies on medical devices and systems that are networked 
and need to match the needs of patients with special 
circumstances. Thus, medical devices and systems will 
be needed that are dynamically reconfigured, distributed, 
and can interact with patients and caregivers in complex 
environments. For example, devices such as infusion 
pumps for sedation, ventilators and oxygen delivery 
systems for respiration support, and a variety of sensors 
for monitoring patient condition are used in many 
operating rooms. 

In the article [11] the general structure of CPSS is 
proposed. While applying this scheme, in the case of 
biosensors, three directions can be singled out: general 
information about the biosensor; measurements of 
biological parameters and skills in relation to unit 
conversion and calibration; interaction with other 
biosensors. In this way, the certain methods are 
described that allow the biosensor to be described. In the 
study of CPBSS, the programming language R was used. 
Despite the great variety of programming languages used 
in the development of CPS (Assembly, C, C++, D, Java, 
JavaScript, Python, Ada, etc. [12]), the language R is 
widely used in many industries involved in machine 
learning and visualization of data. 

A. DISCRETE DYNAMICS CPBSS ON 
RECTANGULAR LATTICE USING LATTICE 
DIFFERENCE EQUATIONS WITH DELAY. 

For the CPBSS dynamics we use the mathematical 
description with the help of nonlinear difference 
equations with delay [10]. Let , ( )i jV n  be the 

concentration of antigens, , ( )i jF n  is the concentration of 

antibodies in the biopixel ( , )i j , , 1,i j N= . The model 
is based on such biological assumptions for an arbitrary 
biopixel ( , )i j . 

1. The fertility rate 0β >  for the antigen 
population is introduced. 

2. Antigens are detected, bound, and finally 
neutralized by antibodies with some probability velocity 

0γ > . 
3. The constant mortality antibodies 0fµ >  is 

introduced. 
4. It is assumed that when colonies of antibodies are 

absent, colonies of antigens are regulated by a logistic 
equation with a delay: 

, , ,( 1) (1 ( )) ( )i j i j i jV n V n V nυβ δ τ+ = + − − ,      (1) 

where β  and υδ  – positive numbers, and 0r ≥  means 
latency of the negative responce of the antigens’ 
colonies. 

5. Antibodies decrease the average rate of linear 
growth of antigens with some delay in time; this 
assumption is consistent with the fact that antibodies 
cannot detect and bind antigens instantly; antibodies 
have to spend units of time before they can reduce the 
average growth rate of colonies of antigens; these 
aspects are incorporated into the dynamics of the 
antigens by incorporating a value , ( )i jF n rγ− − , where 
γ  is a positive constant that may vary depending on the 
specific antibody and antigen colonies. 

6. In the absence of antigen colonies, the average 
growth rate of antibody colonies decreases exponentially 
due to the magnitude fµ−  of the antibody dynamics. In 
order to include the negative effects of antibody 
clustering, a value , ( )f i jF nδ−  in the dynamics of 
antibodies is introduced. 

7. Positive feedback , ( )i jV n rηγ − , on average, the 
antibody growth rate has a delay since the maturity of 
adult antibodies can only contribute to the production of 
antibody biomass; a delay r  in , ( )i jV n rηγ −  can be 
considered as a delay in the maturation of antibodies. 
 

 
Fig. 3. Linear grid, which binds four adjacent pixels  

in the model ( 0>n – imbalance constant) 
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8. The diffusion of antigens from six adjacent pixels 
is considered ( 1, )i j− , ( 1, )i j+ , ( , 1)i j − , ( , 1)i j +  
(Fig. 3), where 0D >  – coefficient of diffusion. 

9. Surface diffusion (motion of molecules on a solid 
surface for immobilized molecules) is considered. 

10. The definition of a conventional diffusion 
operator is used in the case of surface diffusion with a 
diffusion imbalance coefficient (0,1]n∈ . It means that 
only n  portion of the pixel antigens ( , )i j  can be 
included in the diffusion process to any adjacent pixel 
due to surface diffusion. 

11. Antigen binding to antibodies results in 
fluorescence in the pixel. Fluorescence intensity is 
assumed to be proportional to the number of contacts 
between antigens and antibodies, i.e. , ,( ) ( )fl i j i jk V n F n . It 

is also assumed that the pixel ( , )i j  is in fluorescence state if 

, ,( ) ( )fl i j i j flk V n F n ≥ Θ , where there is some binding 
threshold at which the fluorescence phenomenon occurs. 

12. The output signal ( )s n  is proportional to the 
number of pixels in the fluorescence state. 

13. Information on the number of biological 
measurements of values is calculated based on the output 
signal. 

On the basis of the above information, we will 
write the mathematical model of late-antigen-antibody 
interaction for a hexagonal array of biopixels based on 
the well-known Marchuk’s model [13-15] and use the 

spatial operator S
∧

 proposed in [16]. 
{ } { }
{ }

, , , , ,

, , , ,

ˆ( 1) ( ) exp ( ) ( ) ( ) ,

( 1) ( )exp ( ) ( ) ,

i j i j i j i j i j

i j i j f i j f i j

V n V n F n r V n r S V n

F n F n V n r F n

υβ γ δ

µ ηγ δ

+ = − − − − +

+ = − + − −

 (2) 

where { })(ˆ
, nVS ji

 is a discrete diffusion for a spatial 

operator S
∧

. 
Model (3) is given by initial conditions (4): 
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For a square array, we use such a discrete diffusion 
for a spatial operator [20]. 
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Each colony is exposed to antigens produced in 
four adjacent colonies – two colonies in each direction, 
separated by equal distances ∆. We use the boundary 
condition 0, =jiV  for the edges of the array 1,0, += Nji . 

B. DISCRETE DYNAMICS CPBSS ON HEXAGONAL 
LATTICE USING LATTICE DIFFERENCE 

EQUATIONS. 
Consider a simple competing antigen-antibody 

model for a two-dimensional biopixel array that has been 
proposed and investigated in [17].  

{ }

)())()((
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)())()((
)(

,,,,,,
,,

,,,,,,,,
,,

tFtFtV
dt

tdF

VStVtVtF
dt

tdV

kjikjifkjif
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The mathematical model (4) is given by the initial 
functions (5):  
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Discrete diffusion is used for the rectangular array 
N N×  for the spatial operator used in the work [18]:  

{ } [ ]
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Each colony is exposed to antigens produced in 
four adjacent pixels, which are separated by equal 
distances ∆ . 

We use boundary condition , , 0i j kV =  for array 

nodes , 0, 1i j N= + , 0i j k+ + = . 
The methods of sampling, permanence, and 

stability research used in the work are based on the 
approach developed in [19] for predator-prey systems, 
extensible to finite lattice diffusion models. 

System (4) without diffusion is approximated by 
the following differential equation with piecewise 
constant argentations. 

[ ] [ ]( ) [ ] [ ]( )( )

[ ] [ ]( ) [ ]( )( ) )(///
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dt
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kjikjifkjif
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δ−−ηγ+µ−=

−δ−−γ−β= υ  (7) 

for ( )[ ] Ν∈+∈ nhnnht ,1, .  
Let us denote that [ ]/t h n= , [ ]/t h r= ∈ Ν .  

Let's integrate the last system (7) by [ ),nh t , where 
( 1) ,t n h< +  then (6) can be rewritten as:  

( ) ( )( )

( ) ( )( ) )(
)(

),(

,,,,,,
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,,,,,,
,,
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The notation is entered ),()( ,,,, nhVnV kjikji =  

),()( ,,,, nhFnF kjikji =  which results in:  

( ) ( ){ }
{ })()(exp)()(

,exp)()(

,,,,,,,,

,,,,,,,,

nFrnVnFtF
rnVrnFnVtV

kjifkjifkjikji

kjikjikjikji

δ−−ηγ+µ−=

−δ−−γ−β= υ  (9) 

Considering hnt )1( +→  can simplify system (9) 
by adding diffusion to the first equation. The result is a 
discrete analog continuous time system (4) in the form:  

. 

. 

. 
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Addition of diffusion is performed to obtain 
qualitative results in the study of the persistence and 
stability of the model. Diffusion in a discrete space can be 
represented as the product of matrices, according to [7]. 

It should be noted that the behaviour of system (10) 
may not coincide with the differential equations (4). The 
equivalence of differential difference equations obtained 
by direct Euler transform, Euler inverse transform or 
central difference schemes can only be used for 
sufficiently small sampling intervals [20]. 

C. DYNAMIC LOGICAL SIMULATION OF CPBSS ON 
RECTANGULAR LATTICE USING LATTICE 
DIFFERENCE EQUATIONS WITH DELAY.  

In order to simulate the dynamic logic of CPBSS, 
we use the syntax proposed by A. Platser for the general 
CPS [5]. The CPS uses the HP, which has more features 
than difference equations. The first level of HP is a 
dynamic program that is defined by the following 
grammar  
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jijijiji
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nF

nVSrnVrnFnV

nVa

Φδ−−ηγ+µ−=

=+

+−δ−−γ−β=

=+=

υ

&)()(exp)(
)1(

,)(ˆ)()(exp)(

)1(::

,,,
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 (11) 

where tΦ  is an evolutionary domain constraint in the 
form of a formula for the logic of the first order of real 
arithmetic 

min max
, ,

min max
, ,

( )

( ) , , , 0, 0

def

t i j k

i j k

V V n V

F F n F i j k N N n i j k

Φ ≡ ≤ ≤

∧ ≤ ≤ ∧ = − ∧ > + + =
 (12) 

The functioning of the biopixel ( , , )i j k  is 
determined by two states, with respect to fluorescence. 
Namely, f ls  is a state of fluorescence and non f ls  is one 
of the non-fluorescence states. The use of the first order 
of semantics of logic and the satisfaction ratio s L=  for 
the first-order formula L  of real arithmetic and state s  
can be determined for some pixels 
( , , )i j k ; , , ,i j k N N= − , states f ls  and non f ls  as 

, , , ,

, , , ,

( ) ( ) ,

( ) ( )

ft fl i j k i j k fl

nonfl fl i j k i j k fl

s k V n F n

s k V n F n

θ

θ

= ≥

= <
              (13) 

Discrete changes occur in computer programs when 
they accept new values for variables. This situation 
occurs when a fluorescence phenomenon occurs in a 
pixel ( , , )i j k ; , , ,i j k N N= − . The state , , , : 1f l i j ks =  
assigned a value of 1 to the variable , , ,f l i j ks . This leads 
to a discrete, jump-like change, as the value , , ,f l i j ks  is 
not changed smoothly, but rapidly when it suddenly 

changes from 1 to , , ,f l i j ks , causing a discrete jump of 
values , , ,f l i j ks . In this way, we obtain a discrete model of 
change , , , : 1f l i j ks = , except for the model of change (13). 

D. INVESTIGATION OF STABILITY MODEL  
OF CPBSS ON RECTANGULAR LATTICE. CONSTANT 

STATES. 
In general, the state of equilibrium 

( ), , ,,i j i j i jV Fε ≡ , , 1,i j N= , for the system (2) can be 
found as a solution of an algebraic system: 

{ } { }
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jifjifjiji

jijijijiji
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Considering ( ),, ,, jiji FV Nji ,1, = , we have the 
following cases. 

Stable state without antigens and antibodies:  
)0,0(0,00,0

, =ε≡ε ji , Nji ,1, = . 
Stable state without antibodies:  

,0,0*,0*,
, 




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


δ
β

=ε≡ε
υ

ji  Nji ,1, = . 

Identical endemic steady state. In the case if 
0, >≡ іdent

ji VV , Nji ,1, = , { }( )0ˆ
, ≡jiVS , we receive the 

stable state ( )іdentidentіdent
ji FV ,, =ε≡ε , where  

,2
f

ffіdentV
δδ+ηγ

γµ+βδ
=

υ

 
f

fіdentF
δδ+ηγ

ηγβ+δµ−
=

υ

υ
2

. 

So, if 0>+− ηγβδµ υf , then іdentε  is an endemic 
state. 

Non-identical endemic steady state. In the general 
case, we need to solve the algebraic system (14) and find 
an endemic stable state, which will be called non-identical 
stationary state ),( ,,

identnon
ji

identnon
ji

identnon FV −−− =ε , 

Nji ,1, = . In case all 0),( ,, >−− identnon
ji

identnon
ji FV , then 

identnon−ε  is an endemic state. Values identV  and identF  
can be used as the initial approximations for numerical 
methods for solving a nonlinear algebraic system (14). 

III. NUMERICAL SIMULATION CYBER-PHYSICAL 
BIOSENSORY SYSTEM 

A. RESULTS OF NUMERICAL SIMULATION  
OF MATHEMATICAL MODEL OF CPBSS ON 
RECTANGULAR LATTICE USING LATTICE 
DIFFERENCE EQUATIONS WITH DELAY. 

Consider model (10) for: 16,N =  12 min ,β −=  

min2 ,mL
gµγ ⋅=  11min ,fµ −= 0.8/ ,η γ=  g

mL
µ⋅υ =δ min5.0 , 

g
mL

f µ⋅=δ min5.0  ,2.0 min
2nmD = nm3.0=∆⋅ . 

. 

, 

. 

. 
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The results of numerical simulations were 
implemented for different values r  of time delay 
(Fig. 4 (a–c)). 

 
a 

 
b 

 
c 

Fig. 4. Image of phase planes of system (10) for antibody ,i jF , 
populations relative to antigen populations ,i jV , as a result of 

numerical simulation at 8r =  (a), 12r =  (b), 16r =  (c). 
Designation:  – initial state, ○ – identical steady state,  

● – non-identical steady state 

As Fig. 4(a) shows, the solution converges to a 
non-identical steady state, which is a stable focus.  

In Fig. 4(b), the solution converges to a stable 
boundary cycle with two local extrema in the cycle. 

Fig. 4(a) for )12,0[∈r  shows trajectories 
corresponding to a steady focus for all pixels. Hopf 
bifurcation [21] occurs for values 12=r  and the 
following trajectories correspond to stable boundary 
cycles of the ellipsoidal shape for all pixels. 

Phase diagrams for 12=r  show that the solution is 
a boundary cycle with two local extrema (one local 
maximum and one local minimum per cycle). Chaotic 
behaviour is observed for 16=r  (Fig. 4(c)), i.e. no 
periodic behaviour over a large time interval. Initial 
conditions were disturbed to test the sensitivity of the 
system to verify that the solution is chaotic for 16=r . 
Comparisons of solutions for the population of 

antigens 3,1V  with the initial conditions 1)(3,1 =tV , 
]0,[,001.1)(3,1 rntV −∈=  and all other identical initial 

conditions, show chaotic behaviour. Namely, at the 
initial time, the two solutions appear to be the same, but 
with the increase of time there is a difference between 
the solutions, which confirms the conclusion that the 
behaviour of the system is chaotic at 16=r . 

The model of the biosensor was analyzed using a 
lattice graph representing the probability of binding of 
antigens to antibodies in the pixels of system (10)  
(Fig. 5). It was accepted 5,1=Θ fl . 

 

 
Fig. 5. Lattice images of the probability of binding of antigens 

to antibodies in pixels of system (10) at 8=r  

The study of phase diagrams and lattice images of 
the binding of antigens to antibodies in the pixels of 
system (10) is completely consistent with previous 
studies [9–10] regarding the stability of the array of 
biopixels in CРBSS. 

B. RESULTS OF NUMERICAL SIMULATION  
OF MATHEMATICAL MODEL OF CPBSS  

ON HEXAGONAL LATTICE USING LATTICE 
DIFFERENCE EQUATIONS WITH DELAY. 

Model (2) is considered at 20.01h = ; 2hβ = ; 
2hγ = ; f hµ = ; 0.01184 /η γ= ; 0.5hυδ = ; 

0.5f hδ = ; 2/ 2.22D h∆ = ; 4N = . 
Similar to the model based on the differential 

equations [17], in a system with the discrete time when 
the delay time value is changed r  we observe the 
qualitative changes in the behavior of biopixels and the 
model under study as a whole. Numerical modeling is 
performed at the values of the parameters given above. 
In this case, the long-term behavior of the system (2), 
which describes a hexagonal array of biopixels at 4N =  
for 5r = ; 17r = ; 22r = . Phase diagrams of antibody 
and antigen populations for pixel and adjacent pixels at 
different values are shown in Fig. 6−7. 

Thus at 16r ≤  there are trajectories that 
correspond to a stable focus for all pixels (Fig. 6 (a)). At 
a value 17r =  Hopf bifurcation occurs − the following 
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trajectories correspond to stable ellipsoidal boundary 
cycles for all pixels (Fig. 5 (b)). The results of numerical 
modeling are consistent with the theoretical results on 
the basis of the theorem on the Hopf bifurcation [21], 
which confirms the appearance of small invariant cycles 
of the radius ( )Ο h . 

 
a 

 
b 

 
c 

Fig. 6. Results of numerical modeling of the system (2) at 
5r =  (a), 17r =  (b), 22r = (c). The image of the phase 

planes in coordinates ( ), , , ,,i j k i j kV F  for the pixel (0,0,0) . 

Designation: ○ − identical stable state, ● − non-identical 
steady state 

Fig. 6 (c) for 22r =  shows the phase diagrams, 
which are the limit cycles with two extremums (one 
local maximum and one local minimum). 

Lattice graphs were used for numerical modeling of 
the cyber-physical model of the biosensor. Firstly, the 
corresponding graphs were constructed, where the 
probability of antigen-antibody contact was given for 
each pixel, and as , , , ,i j k i j kV F×  at 5r = , 17r = , 22r = , 
are shown in Fig. 7 (а–c). 

 

 
a 

 
b 

 
c 

Fig. 7. Lattice images of the probability  
of antibody bonds with antibodies in pixels of the system (2)  

at 5r =  (а), 17r =  (b), 22r =  (c) 



V. Martsenyuk, A. Sverstiuk, O. Bagriy-Zayats, A. Kłos-Witkowska 98 

As it was shown by the numerical analysis 
fluorescing states in biopixels are changed according to 
the laws of discrete dynamics. Analyzing the obtained 
results, it was concluded that when changing the values 
of r , the behavior of pixels and CPBSS changes 
qualitatively. 

C.  COMPARATIVE ANALYSIS OF RESULTS  
OF NUMERICAL MODELING OF MATHEMATICAL 

MODELS OF CPBSS ON HEXAGONAL AND 
RECTANGULAR LATTICES USING LATTICE 

DIFFERENCE EQUATIONS 
The results of comparative analysis of numerical 

modeling of the studied mathematical models of CPBSS 
in the form of phase diagrams of populations of antigens, 
antibodies (Fig. 4(a), 5(a)) and lattice images of the 
binding of antigens to antibodies from biopixels of the 
studied systems (Figs. 5(a)), 6(a) that for 8r =  
(rectangular lattice)  and 5r =  (hexagonal lattice) the 
solutions of the respective systems (2) and (10) tend to 
non-identical endemic states, which in this case are 
stable focuses. A similar dependence was observed for 
all biopixels of the CPBSS model on the rectangular  
lattice for [ )0,12r ∈  (Figs. 3(a), 4), and in the case of 
using a hexagonal lattice a non-identical endemic state 
was observed for [ )0,17r ∈  (Figs. 6(a), 7(a)).  

According to the results of the phase diagrams of 
antigen populations, antibodies and lattice images, the 
probability of antigen to antibody binding in CPBSS 
biopixels, we can conclude that for 12r =  (in the case of 
a rectangular lattice (4b))  and 17r =  (in the case of 
hexagonal lattice (Figs. 6(b), 7(b)) Hopf bifurcation 
occurs and all subsequent trajectories correspond to stable 
boundary cycles for all pixels (Figs. 4(c), 6(c), 7(c)). 

The results of numerical analysis, the probability of 
binding of antigens to antibodies in the biopixels of the 
studied models, change according to the laws of discrete 
dynamics. Analyzing the results, it is concluded that for 
r  the behavior of the biopixels and CPBSS changes 
qualitatively. 

IV. CONCLUSIONS 
In the work a comparative analysis of CPBSS 

models on rectangular and hexagonal lattices using 
differenсе equations was performed. The general scheme 
of the cyber-physical sensor system proposed in [11] was 
used. Taking into account the features of biosensors the 
basic model has been modified. Lattice images in 
biopixels are modified according to the laws of discrete 
dynamics. The developed models take into account the 
interaction of biopixels with each other by antigen 
diffusion. 

The mathematical description of the CPBSS 
contains discrete population dynamics, which is 
combined with the dynamic logic used for discrete 
events. The paper uses a class of time-lattice difference 
equations that model the interaction of antigens and 

antibodies in biopixels. Spatial operators model the 
interaction of diffusion type between biopixels. Dynamic 
mathematical modeling is insufficient to simulate 
discrete dynamics in the systems under study. To address 
this drawback, we used the dynamic logic syntax 
proposed for Platzer cyber-physical systems to describe 
the discrete states of a biopixel as a result of 
fluorescence. 

In the paper the results of numerical simulations in 
the form of phase plane images and lattice images of the 
probability of antigen to antibody binding in the 
biopixels of cyber-physical biosensor systems for 
antibody populations relative to antigen populations 
were represented. The obtained experimental results 
make it possible to carry out a comparative analysis of 
the stability of mathematical models of cyber-physical 
biosensor systems on rectangular and hexagonal lattices. 
We can conclude that for 12r =  (in the case of a 
rectangular lattice) and 17r =  (in the case of hexagonal 
lattice) Hopf bifurcation occurs and all subsequent 
trajectories correspond to stable boundary cycles for all 
pixels. 

The numerical simulation results obtained in the 
paper make it possible to carry out stability analysis and 
comparisons of the studied models, taking into account 
the time delay. Future research plans to study cyber-
physical biosensor systems using fast dynamic wireless 
networks [22]. Also, as records are accumulated in the 
systems under study, it is planned to analyze them in 
order to optimize the distributed database structure, 
according to [23]. 
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