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Abstract: This article deals with the use of block code for 
the entire amount of data. A hash function is used to 
increase the number of errors that can be detected. The 
automatic parallelization of this code by using special 
means is considered. 

Index Terms: GPGPU, Hamming code, hash function, 
automatic parallelization. 

 

I. INTRODUCTION 
The peculiarity of the block error-correction codes 

is that they are applied separately to the data blocks. 
Using graphical accelerator block code can be applied to 
the entire amount of data as a single unit. It will reduce 
the number of additional bits to error correcting.  

II. MODIFYING THE HAMMING CODE USING A 
HASH FUNCTION 

If we apply the Hamming code [1] to all the data at 
once, one bit can be corrected with just a few dozen of 
additional bits. Equality 1 shows how many maximum i-
bits of information can be used when applying additional 
k-bits: 

12max −−= ki k  (1)
For example, 48 additional bits is enough to correct 

a single error of 281 trillion bits (32 Tbytes). 
With the application of (Table 1). It will allow to 

detect almost any accidental change of data. 
Given the presence of bitwise instructions in 

modern processors, it is possible to effectively apply the 
Hamming code to independent bit positions (Fig. 1). If 1 
byte is used as an elementary part of data, then can be 
corrected up to 8 erroneous bits in different bit positions. 

When there are errors in the same bits of different 
bytes of data, the Hamming code for such bits will not 
work correctly and may indicate an error in a byte that 
does not actually have the errors. If we can detect the 
largest number of errors in a given byte, we can 
conditionally assume that the Hamming code worked 
correctly for these bits. This byte can now be considered 
as a central one and the value of adjacent bytes is 
matched to the hash function convergence with the 
expected value. If the assumption was false, it would not 
be possible to find a value for the hash function 
convergence, which would indicate an error that cannot 
be corrected (Fig. 2). 

Table 1 

The Hamming code and the hash function  
 hash function Hamming code 
Changes in one bit 
of data 

detection detection and 
correction 

Changes in a few 
bits of data 

detection – 

Change in a large 
piece of data 

detection* – 

* Accidentally changing data to obtain the same hash value 
is unlikely. 
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Fig. 1. Multiple Hamming code 
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Fig. 2. Central error byte position 

If the error bits that do not belong to the central 
byte are symmetrically relative to it, then it will be 
possible to correct a fragment of one and a half bytes  
(12 bits) according to the ratio: 

3
2

HN
cN = , (2) 

where HN  – the number of Hamming encodings used. In 
any other case, even if these bits are located on one side 
of the central byte, it will be possible to correct one bit 
less (11 bits): 

min
3

2 1HN
cN = −     (3) 

When applying more than 1-byte base fragment, for 
example 2-, 4-, or 8-byte fragment, the number of errors 
that can be corrected increases. Such encodings can also 
be implemented effectively on the 32-bit and 64-bit 
instruction set architecture of modern processors. 

When evaluating the effectiveness of a error-
correcting code, the indicator such as code rate is often 
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used, which is the ratio of bits that directly encode data 
into the total number of code bits. This ratio for effective 
coding should be close to 1. Fig. 3 shows that this ratio is 
already approaching 1 for 8 kilobytes of information. 
 

 

Fig. 3. Code efficiency 

So, the proposed code is based on the following 
principles:  

• all bits in a byte (or 2, 4 or 8 bytes) are encoded 
independently by the Hamming code; 

• all messages are signed by the hash function; 
• hash function is repeatedly written and read 

using the majority function; 
• in the case of unsuccessful decoding, when the 

value of the hash function does not match the message 
received, an attempt is made to find the central fragment 
of the error and to select for it and the neighboring 
fragments of values that would allow to form the correct 
value of the hash function. 

Then the proposed coding (Fig. 4) will contain the 
hash function and the data represented by the Hamming 
code. Since the hash value is much smaller, it can be 
represented by majority coding. 
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Fig. 4. Data fields 

The total amount of data will be equal to the size of 
the hash function 5 * 16 bytes = 80 bytes. The number of 
additional bits of data for the Hemming code is 
estimated at 64 bytes. Incremental error codes are used 
when using codes (Table 2). 

In general, there are 5 levels of work with the 
proposed code (Table 3). 

Also, code can be applied in partial modes, and full 
mode may not look for collisions. In addition, data bits 
can be used without any functions for error detection and 
correction, since these bits are presented unchanged. 
This may be relevant in cases where such code is 
generated by a stationary computer system and a low-
performance embedded computer system acts as the 
recipient of the data.  

Table 2 

The number of Hamming code encodings  
in the proposed code 

The proposed code 
The number of Hamming 

code encodings in the 
proposed code 

 

8 16 32 64 
MD5 80 80 80 80 
K-bits of the Hamming 
code set (number of 
bytes) 

64 128 256 512 

The total amount of 
additional data 

144 208 336 592 

Detection and correction 11 23 47 95 
Detection and possible 
correction 

12 24 48 96 

Detection Detect any error 
 

Table 3 

5 levels of work  
Level Usage 

1 Error analysis is not applicable. The K and M 
bytes are not analyzed 

2 Only Hamming code is used. M-bytes are not 
parsed 

3 Hamming code correction and hash validation 
4 Hamming code correction and hash validation. If 

the value of the hash does not match, it is assumed 
that the error occurred in the byte with the highest 
number of erroneous bits. This byte is matched by 
the value of the hash drop 

5 Hamming code correction and hash validation. If 
the hash value does not match, all the bytes in 
which the wrong bits were detected using the 
Hamming code are erroneous. All erroneous bytes 
detected are matched to the hash function 
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Fig. 5. Encoding and error-correction:  
a – coding; b – correction 
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Fig. 5 shows a simple algorithm for encoding and 
error correction when applying the proposed code 
composition. 

III. PARALLELIZATION 
Some parts of the proposed algorithm can be 

parallelized. Firstly, the calculation of the control K-bits 
of the Hamming code can be parallelized (Fig. 6). Also, 
hash values (MD5) can be calculated in parallel when 
selecting values in bytes for various attempts to correct 
erroneous data. 

 
Fig. 6. Parallel calculation of control bits  

for the Hamming code 

IV.  IMPLEMENTATION ON CUDA 
From the very beginning of the development of 

GPGPU technology [3], CUDA technology [2] is mainly 
used to perform mathematical calculations [4, 5, 6, 7, 8]. 
Therefore, this technology is well-suited to error-
correcting code. 
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Fig. 7. The general model of execution 

For effective use of CUDA technology, compute 
process must consist of many execution kernels [9]. 
Significant restrictions are imposed on the execution of 
the code of each such kernel [10, 11]. 

The process of decoding will have the structure 
which is shown in Fig. 7. 

Synchronization points are provided for part of the 
CUDA code to execute directly on the GPU (Fig. 8). 
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Fig. 8. The model of performance  
on the graphic accelerator 

Each such stream of execution has access to several 
types of memory (Fig. 9). 

 

register file

thread shared memoryglobal memory

 

Fig. 9. The local context of the workflow for the system 

The basic code execution constraints on the 
graphical accelerator will be imposed when working 
with shared memory [12]. The following macro was 
created for efficient operation. 
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Listing 1 
 

#define GET_SHARED_INDEX(BASE, BASE_INDEX, PART_INDEX) \ 
 (BASE ? BASE - PART_INDEX * BLOCK_ALIGNED_COUNT - \ 
  BASE_INDEX / SHARED_CHANEL_COUNT * SHARED_CHANEL_COUNT + \ 
  BASE_INDEX % SHARED_CHANEL_COUNT : \ 
  PART_INDEX * BLOCK_ALIGNED_COUNT + BASE_INDEX) 

 
A prototype of the CUDA execution kernels is 

listed in Listing 2. 
Listing 2 

 
DF_SPECIFY 
DF_RETURN_TYPE f_out( 
unsigned int * local,  
unsigned int * shared,  
unsigned int * secondShared,  
unsigned int * data,  
unsigned int sharedArgsStartIndex,  
unsigned int sharedResultsStartIndex,  
unsigned int stageIndex = 0,  
unsigned int baseIndex = 0); 

 
The initialization of the structure of a parallel 

program is formed as the following function: 
Listing 3 

 
RDF_SPECIFY 
RDF_RETURN_TYPE 
reInitParallelComputeModel2(DF_RETURN_TYPE(*(*parallelComputeModel) 
[BLOCK_COUNT + 1])(unsigned int *, unsigned int *, unsigned int *, 
unsigned int *, unsigned int, unsigned int, unsigned int, unsigned int)){ 
 parallelComputeModel[0][0] = f_in; 
 parallelComputeModel[0][1] = NULL; 
 unsigned int index = 0; 
 for (; index < BLOCK_COUNT; ++index){ 
  parallelComputeModel[1][index] = f0; 
 } 
 parallelComputeModel[1][index] = NULL; 
 parallelComputeModel[2][0] = f1; 
 parallelComputeModel[2][1] = NULL; 
 index = 0; 
 for (; index < BLOCK_COUNT; ++index){ 
  parallelComputeModel[3][index] = f2; 
 } 
 parallelComputeModel[3][index] = NULL; 
 parallelComputeModel[4][0] = f3; 
 parallelComputeModel[4][1] = NULL; 
 parallelComputeModel[5][0] = f_out; 
 parallelComputeModel[5][1] = NULL; 
 parallelComputeModel[6][0] = NULL; 
   
 RDF_RETURN 
} 

 
The code for executing such kernels is given in 

Listing 4. 
Listing 4 

 
void cudaRunParallelComputeModel( 
 DF_RETURN_TYPE(*(*parallelComputeModel)[BLOCK_COUNT + 
1])(unsigned int *, unsigned int *, unsigned int *, unsigned int 
*, unsigned int, unsigned int, unsigned int, unsigned int), 
unsigned int * host_data) { 
 
 unsigned int * data; 
 cudaMalloc((void**)&data, MAJORITY_RANK * MD5_SIZE + 
K_MAX_SIZE + DATA_SIZE * sizeof(unsigned char)); 
 
 begin(data);  
 begin_device(host_data, data); 
 
 for (unsigned int startStageIndex = 0; startStageIndex 
< STAGE_COUNT + 1; ++startStageIndex){ 
  for (unsigned int startIndex = 0; startIndex 
< BLOCK_COUNT + 1; startIndex += CUDA_ITERATION_BLOCK_COUNT * 
CUDA_BLOCK_SIZE){  
   cudaRunParallelComputeModel__core 
<<< CUDA_ITERATION_BLOCK_COUNT, CUDA_BLOCK_SIZE >>>  
    (parallelComputeModel, 
data, startStageIndex, startStageIndex + 1, startIndex, 
startIndex + CUDA_ITERATION_BLOCK_COUNT * CUDA_BLOCK_SIZE); 
   cudaDeviceSynchronize(); 
  } 
 } 
 
 end_device(host_data, data); // TODO: move cudaFree 
 end(host_data); 
 cudaFree(data); 
} 

In non-hash mode, the CUDA acceleration results 
are shown in Table 4. 

Table 4 
Run time for 4MB data 

 Run time for 4MB data 
(Hamming code only) 

Sequential execution ≈2.192 s 
Run on CUDA ≈0.296 s 

 
In full mode, the CUDA acceleration results are 

shown in Table 5. 
Table 5 

Run time for data size 16kB 
 Run time for data size 16kB 
Sequential execution ≈19.832 s 
Run on CUDA ≈1.211 s 

V. CONCLUSION 
The proposed data correction based on Hamming 

coding and hash function allows:  
• to use a small number of additional bits; 
• to detect any error; 
• to correct er• to attempt to correct multiple errors in 

adjacent bytes; 
rors in different bit positions; 
• to use 5 different modes for systems with different 

performance. 
The proposed data correction also shows: 
•  possibility of parallel execution; 
• increased performance when using CUDA techology. 
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