
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 4, No. 2, 2019

DATA CORRECTION USING HAMMING CODING AND HASH
FUNCTION AND ITS CUDA IMPLEMENTATION

Anatoliy Melnyk, Nazar Kozak

Lviv Polytechnic National University, 12, S. Bandery Str., Lviv, 79013, Ukraine
Authors’ e-mail: aomelnyk@lp.edu.ua, nazar.kozak@mail.com

Submitted on 28.11.2019

© Melnyk A., Kozak N., 2019

Abstract: This article deals with the use of block code for
the entire amount of data. A hash function is used to
increase the number of errors that can be detected. The
automatic parallelization of this code by using special
means is considered.

Index Terms: GPGPU, Hamming code, hash function,
automatic parallelization.

I. INTRODUCTION
The peculiarity of the block error-correction codes

is that they are applied separately to the data blocks.
Using graphical accelerator block code can be applied to
the entire amount of data as a single unit. It will reduce
the number of additional bits to error correcting.

II. MODIFYING THE HAMMING CODE USING A
HASH FUNCTION

If we apply the Hamming code [1] to all the data at
once, one bit can be corrected with just a few dozen of
additional bits. Equality 1 shows how many maximum i-
bits of information can be used when applying additional
k-bits:

12max −−= ki k (1)
For example, 48 additional bits is enough to correct

a single error of 281 trillion bits (32 Tbytes).
With the application of (Table 1). It will allow to

detect almost any accidental change of data.
Given the presence of bitwise instructions in

modern processors, it is possible to effectively apply the
Hamming code to independent bit positions (Fig. 1). If 1
byte is used as an elementary part of data, then can be
corrected up to 8 erroneous bits in different bit positions.

When there are errors in the same bits of different
bytes of data, the Hamming code for such bits will not
work correctly and may indicate an error in a byte that
does not actually have the errors. If we can detect the
largest number of errors in a given byte, we can
conditionally assume that the Hamming code worked
correctly for these bits. This byte can now be considered
as a central one and the value of adjacent bytes is
matched to the hash function convergence with the
expected value. If the assumption was false, it would not
be possible to find a value for the hash function
convergence, which would indicate an error that cannot
be corrected (Fig. 2).

Table 1

The Hamming code and the hash function
 hash function Hamming code
Changes in one bit
of data

detection detection and
correction

Changes in a few
bits of data

detection –

Change in a large
piece of data

detection* –

* Accidentally changing data to obtain the same hash value
is unlikely.

co ding rou nd 7

co ding rou nd 6

co ding rou nd 5

co ding rou nd 4

co ding rou nd 3

co ding rou nd 2

co ding rou nd 1

co ding rou nd 0

byte N - 2 byte N - 1 byte N byte N + 1 byte N + 2
7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 0

77777

66666

55555

44444

33333

22222

11111

00000

Fig. 1. Multiple Hamming code
Area of error

byte N - 2 byte N - 1 byte N byte N + 1 byte N + 2

Fig. 2. Central error byte position

If the error bits that do not belong to the central
byte are symmetrically relative to it, then it will be
possible to correct a fragment of one and a half bytes
(12 bits) according to the ratio:

3
2

HN
cN = , (2)

where HN – the number of Hamming encodings used. In
any other case, even if these bits are located on one side
of the central byte, it will be possible to correct one bit
less (11 bits):

min
3

2 1HN
cN = − (3)

When applying more than 1-byte base fragment, for
example 2-, 4-, or 8-byte fragment, the number of errors
that can be corrected increases. Such encodings can also
be implemented effectively on the 32-bit and 64-bit
instruction set architecture of modern processors.

When evaluating the effectiveness of a error-
correcting code, the indicator such as code rate is often

Data Correction Using Hamming Coding and Hash Function and its CUDA Implementation 101

used, which is the ratio of bits that directly encode data
into the total number of code bits. This ratio for effective
coding should be close to 1. Fig. 3 shows that this ratio is
already approaching 1 for 8 kilobytes of information.

Fig. 3. Code efficiency

So, the proposed code is based on the following
principles:

• all bits in a byte (or 2, 4 or 8 bytes) are encoded
independently by the Hamming code;

• all messages are signed by the hash function;
• hash function is repeatedly written and read

using the majority function;
• in the case of unsuccessful decoding, when the

value of the hash function does not match the message
received, an attempt is made to find the central fragment
of the error and to select for it and the neighboring
fragments of values that would allow to form the correct
value of the hash function.

Then the proposed coding (Fig. 4) will contain the
hash function and the data represented by the Hamming
code. Since the hash value is much smaller, it can be
represented by majority coding.

MD5
(Use majority function)

DATA (Hamming code)

K-bytes I-bytes

Fig. 4. Data fields

The total amount of data will be equal to the size of
the hash function 5 * 16 bytes = 80 bytes. The number of
additional bits of data for the Hemming code is
estimated at 64 bytes. Incremental error codes are used
when using codes (Table 2).

In general, there are 5 levels of work with the
proposed code (Table 3).

Also, code can be applied in partial modes, and full
mode may not look for collisions. In addition, data bits
can be used without any functions for error detection and
correction, since these bits are presented unchanged.
This may be relevant in cases where such code is
generated by a stationary computer system and a low-
performance embedded computer system acts as the
recipient of the data.

Table 2

The number of Hamming code encodings
in the proposed code

The proposed code
The number of Hamming

code encodings in the
proposed code

8 16 32 64
MD5 80 80 80 80
K-bits of the Hamming
code set (number of
bytes)

64 128 256 512

The total amount of
additional data

144 208 336 592

Detection and correction 11 23 47 95
Detection and possible
correction

12 24 48 96

Detection Detect any error

Table 3

5 levels of work
Level Usage

1 Error analysis is not applicable. The K and M
bytes are not analyzed

2 Only Hamming code is used. M-bytes are not
parsed

3 Hamming code correction and hash validation
4 Hamming code correction and hash validation. If

the value of the hash does not match, it is assumed
that the error occurred in the byte with the highest
number of erroneous bits. This byte is matched by
the value of the hash drop

5 Hamming code correction and hash validation. If
the hash value does not match, all the bytes in
which the wrong bits were detected using the
Hamming code are erroneous. All erroneous bytes
detected are matched to the hash function

Bit-position encoding of
message by Hem ing code

Calcula te MD5

Five-fold writing of the
generated MD5

Begin

End

Finding bytes with false
bits

Correction of false bytes

MD5 decoding from
message by using
majority function

Begin

End

Calculate MD5

1

1

Selection of fals e bytes

The value is expected?
Yes

No

 а b

Fig. 5. Encoding and error-correction:
a – coding; b – correction

Anatoliy Melnyk, Nazar Kozak 102

Fig. 5 shows a simple algorithm for encoding and
error correction when applying the proposed code
composition.

III. PARALLELIZATION
Some parts of the proposed algorithm can be

parallelized. Firstly, the calculation of the control K-bits
of the Hamming code can be parallelized (Fig. 6). Also,
hash values (MD5) can be calculated in parallel when
selecting values in bytes for various attempts to correct
erroneous data.

Fig. 6. Parallel calculation of control bits

for the Hamming code

IV. IMPLEMENTATION ON CUDA
From the very beginning of the development of

GPGPU technology [3], CUDA technology [2] is mainly
used to perform mathematical calculations [4, 5, 6, 7, 8].
Therefore, this technology is well-suited to error-
correcting code.

compute

Ініціаліза
ці 1

ініціаліза
ція 2

f_in

f_0 f_0 f_0 f_0

f_1

f_out

деініціалі
зація 2

деініціалі
заці 1

t0

t1

t2

t3

t4

t5

t6

t7

CPU GPU
thread 0

(CPU
)

thread 0
(GPU)

thread 1
(GPU)

thread 2
(GPU)

thread 3
(GPU)

t8

t9

f_2 f_2 f_2 f_2

f_3

Fig. 7. The general model of execution

For effective use of CUDA technology, compute
process must consist of many execution kernels [9].
Significant restrictions are imposed on the execution of
the code of each such kernel [10, 11].

The process of decoding will have the structure
which is shown in Fig. 7.

Synchronization points are provided for part of the
CUDA code to execute directly on the GPU (Fig. 8).

f_in

f_0 f_0 f_0 f_0

f_1

f_out

f_k

f_k
0

f_k
1

f_k
2

f_k
3

s

s

s

s

s s s

s s s

s s s

s s s

t2

t3

t4

thread 0
(GPU)

thread 1
(GPU)

thread 2
(GPU)

thread 3
(GPU)

f_2 f_2 f_2 f_2

f_3

s

s

s s s

s s s

t5

t6

t7

Fig. 8. The model of performance
on the graphic accelerator

Each such stream of execution has access to several
types of memory (Fig. 9).

register file

thread shared memoryglobal memory

Fig. 9. The local context of the workflow for the system

The basic code execution constraints on the
graphical accelerator will be imposed when working
with shared memory [12]. The following macro was
created for efficient operation.

Data Correction Using Hamming Coding and Hash Function and its CUDA Implementation 103

Listing 1

#define GET_SHARED_INDEX(BASE, BASE_INDEX, PART_INDEX) \
 (BASE ? BASE - PART_INDEX * BLOCK_ALIGNED_COUNT - \
 BASE_INDEX / SHARED_CHANEL_COUNT * SHARED_CHANEL_COUNT + \
 BASE_INDEX % SHARED_CHANEL_COUNT : \
 PART_INDEX * BLOCK_ALIGNED_COUNT + BASE_INDEX)

A prototype of the CUDA execution kernels is

listed in Listing 2.
Listing 2

DF_SPECIFY
DF_RETURN_TYPE f_out(
unsigned int * local,
unsigned int * shared,
unsigned int * secondShared,
unsigned int * data,
unsigned int sharedArgsStartIndex,
unsigned int sharedResultsStartIndex,
unsigned int stageIndex = 0,
unsigned int baseIndex = 0);

The initialization of the structure of a parallel

program is formed as the following function:
Listing 3

RDF_SPECIFY
RDF_RETURN_TYPE
reInitParallelComputeModel2(DF_RETURN_TYPE(*(*parallelComputeModel)
[BLOCK_COUNT + 1])(unsigned int *, unsigned int *, unsigned int *,
unsigned int *, unsigned int, unsigned int, unsigned int, unsigned int)){
 parallelComputeModel[0][0] = f_in;
 parallelComputeModel[0][1] = NULL;
 unsigned int index = 0;
 for (; index < BLOCK_COUNT; ++index){
 parallelComputeModel[1][index] = f0;
 }
 parallelComputeModel[1][index] = NULL;
 parallelComputeModel[2][0] = f1;
 parallelComputeModel[2][1] = NULL;
 index = 0;
 for (; index < BLOCK_COUNT; ++index){
 parallelComputeModel[3][index] = f2;
 }
 parallelComputeModel[3][index] = NULL;
 parallelComputeModel[4][0] = f3;
 parallelComputeModel[4][1] = NULL;
 parallelComputeModel[5][0] = f_out;
 parallelComputeModel[5][1] = NULL;
 parallelComputeModel[6][0] = NULL;

 RDF_RETURN
}

The code for executing such kernels is given in

Listing 4.
Listing 4

void cudaRunParallelComputeModel(
 DF_RETURN_TYPE(*(*parallelComputeModel)[BLOCK_COUNT +
1])(unsigned int *, unsigned int *, unsigned int *, unsigned int
*, unsigned int, unsigned int, unsigned int, unsigned int),
unsigned int * host_data) {

 unsigned int * data;
 cudaMalloc((void**)&data, MAJORITY_RANK * MD5_SIZE +
K_MAX_SIZE + DATA_SIZE * sizeof(unsigned char));

 begin(data);
 begin_device(host_data, data);

 for (unsigned int startStageIndex = 0; startStageIndex
< STAGE_COUNT + 1; ++startStageIndex){
 for (unsigned int startIndex = 0; startIndex
< BLOCK_COUNT + 1; startIndex += CUDA_ITERATION_BLOCK_COUNT *
CUDA_BLOCK_SIZE){
 cudaRunParallelComputeModel__core
<<< CUDA_ITERATION_BLOCK_COUNT, CUDA_BLOCK_SIZE >>>
 (parallelComputeModel,
data, startStageIndex, startStageIndex + 1, startIndex,
startIndex + CUDA_ITERATION_BLOCK_COUNT * CUDA_BLOCK_SIZE);
 cudaDeviceSynchronize();
 }
 }

 end_device(host_data, data); // TODO: move cudaFree
 end(host_data);
 cudaFree(data);
}

In non-hash mode, the CUDA acceleration results
are shown in Table 4.

Table 4
Run time for 4MB data

 Run time for 4MB data
(Hamming code only)

Sequential execution ≈2.192 s
Run on CUDA ≈0.296 s

In full mode, the CUDA acceleration results are

shown in Table 5.
Table 5

Run time for data size 16kB
 Run time for data size 16kB
Sequential execution ≈19.832 s
Run on CUDA ≈1.211 s

V. CONCLUSION
The proposed data correction based on Hamming

coding and hash function allows:
• to use a small number of additional bits;
• to detect any error;
• to correct er• to attempt to correct multiple errors in

adjacent bytes;
rors in different bit positions;
• to use 5 different modes for systems with different

performance.
The proposed data correction also shows:
• possibility of parallel execution;
• increased performance when using CUDA techology.

REFERENCES
[1] History of Hamming Codes. Archived from the original on

2007-10-25. Retrieved 2008-04-03.
[2] NVIDIA CUDA Programming Guide, Version 2.1, 2008
[3] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Rama-

nujam, A. Rountev, and P. Sadayappan. A Compiler Framework
for Optimization of Affine Loop Nests for GPGPUs. In Proc.
International Conference on Supercomputing, 2008.

[4] N. Fujimoto. Fast Matrix-Vector Multiplication on GeForce 8800
GTX. In Proc. IEEE International Parallel & Distributed
Processing Symposium, 2008

[5] N. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and
J. Manferdelli. High performance discrete Fourier transforms on
graphics processors. In Proc. Supercomputing, 2008.

[6] G. Ruetsch and P. Micikevicius. Optimize matrix transpose in
CUDA. NVIDIA, 2009.

[7] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu. CUDA-
lite: Reducing GPU programming Complexity, In Proc. Works-
ops on Languages and Compilers for Parallel Computing, 2008

[8] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune
dense linear algebra. In Proc. Supercomputing, 2008.

[9] J. A. Stratton, S. S. Stone, and W. W. Hwu. MCUDA:An
efficient implementation of CUDA kernels on multicores.
IMPACT Technical Report IMPACT-08-01, UIUC, Feb. 2008.

[10] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Ueng,
J. A. Stratton, and W. W. Hwu. Optimization space pruning for a
multithreaded GPU. In Proc. International Symposium on Code
Generation and Optimization, 2008.

[11] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone,
D. B. Kirk, and W.W. Hwu. Optimization principles and
application performance evaluation of a multithreaded GPU using
CUDA. In Proc. ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2008.

[12] S. Hong and H. Kim. An analytical model for GPU architecture
with memory-level and thread-level parallelism awareness. In
Proc. International Symposium on Computer Architecture, 2009.

Anatoliy Melnyk, Nazar Kozak 104

 Anatoliy Melnyk has been a
Head of Computer Engineering De-
partment at Lviv Polytechnic
National University since 1994. He
graduated from Lviv Polytechnic
Institute with the Engineer Degree in
Computer Engineering in 1978. In
1985 he obtained his Ph.D in
Computer Systems at Moscow
Power Engineering Institute. In
1992, he received his D.Sc. degree

at the Institute of Modelling Problems in Power Engineering of
the National Academy of Science of Ukraine. He was recognized
for his outstanding contributions into high-performance
computer systems design as a Fellow Scientific Researcher in
1988. He became a Professor of Computer Engineering in 1996.
From 1982 to 1994 he was a Head of Department of Signal
Processing Systems at Lviv Radio Engineering Research
Institute. From 1994 to 2008 he was a Scientific Director
of the Institute of Measurement and Computer Technique at Lviv

Polytechnic National University. From 1999 to 2009 he was a
Dean of the Department of Computer and Information
Technologies at the Institute of Business and Perspective
Technologies, Lviv, Ukraine. Since 2000 he has served as a
President and CEO of Intron ltd. He has also been a professor at
Kielce University of Technology, University of Information
Technology and Management, Rzeszow, University of Bielsko-
Biala, John Paul II Catholic University of Lublin.

Nazar Kozak was born in
1985 in Ukraine. He received the
B.S. and the M.S. degrees in
computer engineering at Lviv
Polytechnic National University in
2007 and 2008. He has been doing
scientific and research work since
2008. His work resulted in 13
publications. Currently, he is an
assistant proessor at the Computer
Engieering Deparment, Lviv
Polytechnic National University.

