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Abstract. This article is devoted to the development of calculation method of seismic waves 
on the free surface of a horizontally-layered half-space, which are perturbed by local sources. 
Previous obtained relations for scalar potentials of direct waves P, SV and SH from the simple force 
in a homogeneous environment are used for this purpose. It let us derive formulas for a complete 
wave field in the horizontally-layered isotropic elastic half-space, which is perturbed by the point 
source in the form of the simple time-depend force by using modified Thomson-Haskell’s matrix 
method. Exact expressions for three-dimensional displacement vector on the free surface are 
developed. Obtained results are generalized on the case of absorbing environments. 

The algorithm is built and the computer program for calculation of three-component synthetic 
seismograms in the horizontally-layered isotropic environment with absorption is written on the base 
of developed method of direct problem solving. 

In order to verify the efficiency and stability of the algorithm, full synthetic seismograms were 
calculated  on the test examples. 

Keywords: mathematical modelling, seismic wave field, Thompson-Haskell method, 
horizontally-layered environment, seismic quality factor, tensor of seismic moment, synthetic 
seismogram, local resonance. 

Introduction 

Mathematical modelling of wave fields is an effective tool, which is used particularly for seismic 
image environment construction, for inversion of seismic data for determination of the earthquake source 
parameters, for design of the observation systems, for theoretical investigations of the wave processes. 

Processing and interpretation of seismic data, with the aim to determine the parameters of the 
environment or source, are based on the use of registered wave field and iterative process of refinement, on 
each stage of which the direct problem is solving. The direct problem (wave field synthesis) can be solved 
with the use of mathematical modelling. The environmental parameters can vary in all directions, so 3D-
modeling requires significant resources of the computer time and large amount of RAM. So, these methods 
are difficult to be used for solving of the inverse problems because the multiple wave field synthesis is 
required for this. In addition, only full wave fields can be calculated by these universal methods and in 
many cases it is desirable to have a certain definite part of this field. Therefore, the wave field synthesis by 
matrix method is still widely used. It has the unique properties. In particular this is considering of the 
effects of anisotropy, absorption, availability of free surface and curved limits of separation, ability to 
specify arbitrary types of sources, getting of the part of the wave field which contains the required types of 
the waves. Additionally, the matrix method is often used for inversion of seismic moment tensor. However, 
during the direct computer implementation of the method, it is necessary to find sums of the growing and 
falling exponents, what leads to the loss of calculation accuracy [1]. 
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Review of Modern Information Sources on the Subject of the Paper 

It was suggested a number of methods to eliminate this disadvantage. For example, the use of minors 
instead of propagators [2], the transition to matrixes of the high order [1], application of recursive formulas 
for calculating minors considering different behaviour of exponents depending on the wave number [3], 
recursive algorithm for calculation of reflection matrix and refractive matrix at each boundary [4]. 
Recursive algorithm is the part of the reflectivity method [5], and discrete wavenumber method [6]. 

In this regard, it is the necessity to develop the methods of mathematical modelling, which would 
allow to calculate quickly and accurately all components of the wave fields, generated by the sources of 
different types. In this paper the method of mathematical modelling of wave field on the free surface of the 
horizontally-layered half-space from a point source is offered. Here the approach, described in the 
monograph [1] is generalized for the other types of wave sources (simple force and couple) and its location 
in any layer of horizontally-layered half-space at the presence of absorption. The test results of the 
algorithm and program for calculating seismograms based on method are also described in the article. 

Objectives and Problems of Research 

Let’s consider horizontally-layered half-space in a cylindrical coordinate system (r, �, z) which 
consists of ( 1)n   homogeneous, isotropic, linear-elastic layers with flat boundaries of the division. The 

origin of the coordinate system is on the free surface of this environment and the axis Oz is directed 
downwards towards the layers. Assume that on the layers boundaries, which are characterized by 
thickness, density, velocity of longitudinal and transverse spreading of waves  ih , i , Piv , Siv  

respectively  ( 1, 2, , 1)i n  , the conditions of rigid contact are executed. It is considered that 

1nh     is for ( 1)n   layer. Let the arbitrary layer at the moment of time 0t   the point source begins 

to act as a concentrated force ( ) ( ( ), ( ), ( ))Tr zt f t f t f tf . This layer let be imaginary divided by 

horizontal boundary passing through the point of the application of force. Thus, two layers are formed, the 
top of which will have number s, and the bottom layer will be numbered s + 1. Then the source is situated 
on the s boundary at the point (0, 0, )sz . 

Elastic wave propagation in every layer described by differential equation [7] 

 2i i i i i i iρ = (λ + μ ) ( ) μ     u u u , (1)

where ( , )i i tu u r  is displacement vector, ρi  is density, i  and i  are Lame parameters for i-th layer. It 

is assumed that the intensity of source ( )tf  for 0t   becomes zero, so formed wave field must satisfy 

initial zero conditions: 

 , 0 0i u r ,   , 0 0i u r . (2)

Wave field must also satisfy boundary conditions: 

1
i i

i iz H z H u u , 1
i i

zli zliz H z H
    when (0,0, )szr , ( 1, 2, ,i n  ); 

0
0zl z

   ; 

(0,0, )

( ) ( )
[ ( , )]

2s

l
zl z

f t r
t

r




  
r

r . 

(3)

It is assumed that radiation condition is given : the waves from the half-space are not returning back. 
By the symbol [ ( , )]zl t r  the jump ( 0) ( 0)zl s zl sz z     of function ( , )zl t r  for sz z , { , , }l r z  is 

marked. In formulas (3) stress tensor components for a given layer marked by letter   with indexes, iH  is 

the distance from the free surface to the bottom boundary of i -layer, ( )r  is Dirac function. 

There is a potential of field of displacements i , i , i  for equation (1), [7], which related to the 

components of the displacement vector and stress tensor elements by formulas: 
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 i i i i        u k k ; 

, , , ,2

1 1
2 2rzi i i rz i zzr i z i ttr

Si
r v

   
 
      
 
 

; 

, , , ,2

1
2 2i

z i i z i zz i rz i tt
Si

r
r v

   


  
 

      
  

; 

, , , ,2 2

1
2i

zzi i tt i i zz i zzz i ttz
pi Siv v


   

 
      
 
 

. 

(4)

These potentials satisfy the wave equation: 
2

i Pi iv   ,     2
i S i iv   ,     2

i S i iv   . (5)

After introducing transformation 

0

1
( ) exp( )

4 2

j

j

dk
Y Y Y kt d

j




 

  

 

 
      , 1j   , (6)

the relationship for images of potentials for direct (primary) waves P, SV and SH, perturbed by a given 

source in the layer number s, respectively φu
s , u

s , χu
s  and in the layer with number s + 1 respectively 

1φd
s , 1

d
s , 1χd

s  can be written. The image of potentials for a homogeneous isotropic environment, 

obtained in article [8], is used for this. Considering that the point source is in the layer with number s, we 
get: 

1( )1 (2)1
0 ( ) ( ) s s

kα k z Hu ( )+ s s
s 1 r s z s

(z H )
φ = J (kr)F (kη)X e +J kr F k X e   
 ; 

1 2
1 01 1

kα kα( ) ( )u s+1 s s+1 s
s+ 1 r zs+ s+

(H z) (H z)
φ = J (kr)F (kη)X e +J (kr)F (kη)X e   ; 

1 1 21 1
1 0

kβ kβu 1 ( )+ ( )+s s s s
s r s z s

(z H ) (z H )
Ψ = k J (kr)F (kη)Y e +k J (kr)F (kη)Y e    ; 

1 21
1 1 01 1

kβ kβ( ) ( )d 1 s+1 s s+1 s
s+ r zs+ s+

(H z) (H z)
Ψ = k J (kr)F (kη)Y e +k J (kr)F (kη)Y e    ; 

1kβd + s s
s 1 s

(z H )
χ = J (kr)F (kη)Z e  ; 

1 1
kβd s+1 s

s+ 1 s+
(H z)

χ = J (kr)F (kη)Z e
  , 

(7)

where 

1
2

kαs s( )+
s

s

h
e

X =
α η


; 2

2

kαs s( )+
s

h
e

X =
η


 ; 1

1 2
1

1( )
s+

s+

X =
α η

 ; 2
1 2

1( )
s+X =

η

 ; 1
2

kβs s( )+
s

h
e

Y =
η


 ; 

2
2

kβs s( )+
s

s

h
e

Y =
β η


; 1

1 2

1( )
s+Y =

η

 ; 2
1 2

1

1( )
s+

s+

Y =
β η

 ; 
2

2

1
kβs s

+ s
s

s

h
(β ) e

Z =
β η


; 

2
1

1 2
1

1
kβs+1 s

s+
s+

s+

h
(β ) e

Z =
β η


 

. 

(8)

In formulas (7) and (8) 2 21 /s S sv   , 2 21 /s Psv   , s sH z , 0 ( )J kr , 1( )J kr  are 

Bessel functions of order 0 and 1, ( )rF k , ( )F k  , ( )zF k  are images of functions respectively ( )rf t , 

( )f t , ( )zf t  by Laplace integral 
0

( ) ( ) exp( )F k f t k t dt 


  . In order to reduce the expression, we will 

write these functions without arguments. 
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Main Material Presentation 

Solution based on the Thomson-Haskell method. 
The energy of primary waves is redistributed in the conditions of inhomogeneous half-space. 

Therefore, the solution of the wave equations (5) for every layer of the environment should be sought 
taking the initial conditions (2) into account, in the form of solutions (7) for a homogeneous space: 

(1) (2)
1 0φ i r zi iJ X F J X F  ; 

(1) (2)1 1
1 0i r zi ik J Y F k J Y F    ; 

1χ i iJ Z F , 

(9)

where 

   1 1 1k z H k H( ) (1)+ (1)i i i i
i i i

α z α
X = X e + X e

   
;    2 1 1k z H k H( ) (2)+ (2)i i i i

i i i
α z α

X = X e + X e
   

; 

   1 1 1k z H k H( ) (1)+ (1)i i i i
i i i

β z β
Y = Y e +Y e

   
;    2 1 1k z H k H( ) (2)+ (2)i i i i

i i i
β z β

Y = Y e +Y e
   

; 

   1 1k z H k H+ i i i i
i i i

β z β
Z = Z e + Z e

   
. 

These formulas contain magnitudes (amplitudes of potentials) (1)
iX  , (2)

iX  , (1)
iY  , (2)

iY  , iZ   

describing waves in the i-th layer spreading upwards (in the opposite direction of the Oz axis) and  (1)
iX  , 

(2)
iX  , (1)

iY  , (2)
iY  , iZ  describing waves spreading downwards (in the direction of the Oz axis). These 

amplitudes of potentials are the functions of variables  k  and  . 

After substituting of the relation (9) into (6), the resulting potentials will be substituted into the 
formulas (4) and the expressions for the components of the displacement vector and elements of the stress 
tensor in each layer will be obtained: 

(1) (2)2 2
0 1ri r zri riu k J U F k J U F   (2)

1( )i rri
k

J U U F
r  ; 

(1)2
0 1( )i i iri

k
u k J U F J U U F

r        ; 

(1) (2)3 3
1 0zi r zzi ziu k J U F k J U F  ; 

(1) (2)3 3
0 1rzi r zrzi rzik J T F k J T F   

2
(1)

1( )z i rrzi
k

J T T F
r  ; 

2
(1)3

0 1( )z i z i z irzi
k

k J T F J T T F
r         ; 

(1) (2)3 3
1 0zzi r zzzi zzik J T F k J T F   . 

(10)

Let’s write the expressions for functions (1)
riU , (2)

riU , iU , (1)
ziU , (2)

ziU , (1)
rziT , (2)

rziT , z iT  , (1)
zziT , (2)

zziT  

in the form of matrix equations: 
(1) (1)( )i i ii iH W A L Z ; (2) (2)( )i i ii iH W A L Z ; * * * *( )i i i i iH W A L Z ; (11)

(1) (1)
11 1( )i ii iH  W A Z ; (2) (2)

11 1( )i ii iH  W A Z ; * * *
1 1 1( )i i i iH  W A Z , (12)

where 

 T(1) (1) (1) (1) (1), , ,i ri zi rzi zziU U T TW ;  T(2) (2) (2) (2) (2), , ,i ri zi rzi zziU U T TW ;  T* ,i i z iU T W ; 

 T(1) (1) (1) (1) (1), , ,i i i i iX X Y Y   Z ;  T(2) (2) (2) (2) (2), , ,i i i i iX X Y Y   Z ; 
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 T* Z , Zi i i
 Z ; * 1 1

i
i i i i   

 
   

A ; * 0

0

i i

i i

k h

i k h

e

e





 
 
 
 

L . 

The matrices iA , iL  are given in [1]. We also will write the relation (8) in the form of components of 

the vectors: 
T

(1)
2

1
, 0, , 0

s s
s s

k h
k h

s
s

e
e







 

   
 

Z


; 
T

(1)
1 2

1

1 1
0, ,0,1s

s


 
  

 
Z


; 

T
(2)

2

1
,0, , 0

s s
s s

k h
k h

s
s

e
e







 

   
 

Z


; 
T

(2)
1 2

1

1 1
0,1, 0,s

s


 
  

 
Z


; 

T2
*

2

11
, 0s sk hs

s
s

e 


 
 
 
 

Z


; 

T2
* 1

1 2
1

11
0, s

s
s








 
 
 
 

Z


. 

For considering the processes of reflection and passing on the boundaries of the layers we will use a 
matrix method, according to which the expressions for matrices, which characterize the layers and half-
space will be established. For this purpose to every environment and every separating boundary 
corresponds (at the level of the functions under integral of the Mellin’s integrals) characteristic matrix, and 
the waves propagation process is taken into account by the production of such matrices in a certain order. 
This approach, which corresponds to the Thomson-Hasskel method, was described in the monograph [1]. 

Let us consider the first equality from formulas (11) and (12). Using the conditions for ideal contact 

between the layers (1) (1)
1( ) ( )i iii H H W W , and taking into account that the wave field in the layers s  and 

1s   is the sum of the direct wave from the source and the waves generated by the interaction of the direct 
wave with the environment over the source and below it, we obtain: 

(1) (1)1 (1)
11 1 (0)n

sn

  Z D S DW , (13)

where  T(1) (1) (1)
1 0 0(0) , , 0, 0r zU UW  is column vector of functions-images of the displacements and stresses 

on a free surface, 
T

(1) (1)
2

1 1 1
( ) , ,1,1p

s s
s

 

 
   

 
S . According to the condition of radiation we have 

 T(1) (1) (1)
1 1 10, , 0,n n nX Y 
  Z , 1

1 1n n

D A C C , 1 1

1 1 2 1 1
n
s n n s s s
 
    D A C C A L , ( 1

i i i i
C A L A  is 

layer matrix). The matrices ( )lpdD  and 1
1 ( )n s

s lpd
 D  are characteristic matrices (for waves P and SV) 

of the entire environment and the environment under the source respectively. 
From the matrix equation (13) we obtain  

4 12 3 32 1(1) (1)
0

32 11 31 121

s s
p p

pr
p

d d d d
U s

d d d d





 ;  

4 31 1 11 3(1) (1)
0

32 11 31 121

s s
p p

pz
p

d d d d
U s

d d d d





 . (14)

Considering the second equality from formulas (11) and (12), and having done similar 
transformations, we obtain 

4 12 3 32 1(2) (2)
0

32 11 31 121

s s
p p

pr
p

d d d d
U s

d d d d





 ;    

4 31 1 11 3(2) (2)
0

32 11 31 121

s s
p p

pz
p

d d d d
U s

d d d d





 , (15)

where (2)
ps  are the elements of the column vector 

T
(2)

2

1 1 1
1,1, ,

s s 

 
  

 
S . 
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For the description of the spreading of SH waves, on the basis of the third equations from formulas 
(11) and (12) we obtain the relation 

* 1* * * *
1 1 1 (0)n

n s


  Z D S D W , (16)

where * 1 * 1 * * * *
1 1 2 1 1

n
s n n s s s
 
    D A C C A L , * 1 * *

1 1n n

D A C C , ( * * * * 1

i i i i
C A L A ),  

2
T*

2

1
1, 1s

s



 


 S , 

 T*
1 0 0(0) , zU T W ,  T*

1 10,n nZ 
 Z . The matrices * *( )

lp
dD  and * 1 *

1 ( )n s
s l pd
 D  are characteristic 

matrices (for SH waves) of the entire environment and the environment under the source respectively. 
From the matrix equation (16) we obtain 

*4 1 *
0 *

1 11

s
p

p
p

d
U s

d



  . (17)

If the source is at the depth 
1

n

s i
i

z h


   (inside of the half-space), then  1
1

n
s

D  and * 1

1
n
s

D  will be 

singular matrix of the order 4 and 2, respectively. 
Described computational scheme, based on the Thomson-Haskell approach, for the case of the P-SV 

waves, leads to significant errors at high frequencies in the region of the boundary angles of wave 
spreading. The first reason for this is the bad stipulation of the matrix D ,resulting in a decreasing of the 

accuracy when calculating a minor 11 1213
12

31 32

d d
D

d d
 , which is a denominator of expressions (14), (15) [1, 

2, 9]. 
The second reason for the numerical instability is the way of calculating of numerators of the 

expressions (14) and (15). In order to show this, we will write the characteristic matrix of the environment 

D  as a product of characteristic matrices of the environment under the source 1
1

n
s

D  and over the source 

1
sD , that is 1

1 1
n s
s

D D D . Then, by expressing the elements of the matrix D  in the functions (14) and (15) 

through the elements 1
lpd  of the matrix 1

sD  and through the elements s
lpd  of the matrix 1

1
n
s

D , we obtain 

4
(1) (1)
0 13

1 12

rp
pr

p

a
U s

D
  ,  

4
(1) (1)
0 13

1 12

zp
pz

p

a
U s

D
  ,  

4
(2) (2)
0 13

1 12

rp
pr

p

a
U s

D
  ,  

4
(2) (2)
0 13

1 12

zp
pz

p

a
U s

D
  , (18)

where 
13 13 131 1 1

1 22 32 4212 13 14
s s s

ra d D d D d D    ;  13 13 131 1 1
1 21 31 4112 13 14

s s s
za d D d D d D   ; 

13 13 131 1 1
2 12 32 4212 23 24

s s s
ra d D d D d D   ;  13 13 131 1 1

2 11 31 4112 23 24
s s s

za d D d D d D    ; 

13 13 131 1 1
3 12 22 4213 23 34

s s s
ra d D d D d D   ; 13 13 131 1 1

3 11 21 4113 23 34
s s s

za d D d D d D    ; 

13 13 131 1 1
4 12 22 3214 24 34

s s s
ra d D d D d D   ; 13 13 131 1 1

4 11 21 3114 24 34
s s s

za d D d D d D    ; 

s s
ipils ik

lp s s
kl kp

d d
D

d d
  is the minor of matrix 1

1
n
s

D . 

When calculating the minors 13
12D  and s ik

lpD , large but roughly identical numbers are subtracted and 

the result may be outside the computer's bit network, or after the subtraction very few valid numerals may 
remain. These disadvantages of the Thomson-Haskell method can be eliminated by introducing other 
algorithms for calculating the minors. 
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Method of numerical stability increasing. 

For every matrix F  of the 4th order can be put in compliance the matrix F  of the 6th order: 
13 13 13 13 13 13

13 24 14 23 12 34
24 24 24 24 24 24

13 24 14 23 12 34
14 14 14 14 14 14

13 24 14 23 12 34
23 23 23 23 23 23

13 24 14 23 12 34
12 12 12 12 12 12

13 24 14 23 12 34
34 34 34 34 34 34

13 24 14 23 12 34

F F F F F F

F F F F F F

F F F F F F

F F F F F F

F F F F F F

F F F F F F

 
 
 
 


 




 

F







, (19)

elements of which are the minors of the 2nd order of the matrix F . By the rule (18) for the matrices A , 
1A , C , we create the minor matrices A , 1A , C . Next, we are using the theorem: if, for any matrices of 

the fourth order  A , B , и C , for which  A B C , we construct matrices  A , B  and C  using the formula 

(19), then equality A B C    will take place [2]. Thus, we obtain: 

1
1 1n n


D A C C          ( 1

i i i i
C A L A   —matrix of layer i); 

1 1
1 1

n
s n n s s
 
 D A C C A     . 

(20)

Replacing the minors in formulas (18) by the appropriate elements of the matrices (20), we obtain: 
4

(1) (1)
0

1 15

rp
pr

p

a
U s

d
   ,  

4
(1) (1)
0

1 15

zp
pz

p

a
U s

d
   ,  

4
(2) (2)
0

1 15

rp
pr

p

a
U s

d
   ,  

4
(2) (2)
0

1 15

zp
pz

p

a
U s

d
   , (21)

where 
1 1 1

1 22 15 32 11 42 13
s s s

ra d d d d d d      , 1 1 1
1 21 15 31 11 41 13

s s s
za d d d d d d     , 

1 1 1
2 12 15 32 14 42 12

s s s
ra d d d d d d     , 1 1 1

2 11 15 31 14 41 12
s s s

za d d d d d d      , 

1 1 1
3 12 11 22 14 42 16

s s s
ra d d d d d d     , 1 1 1

3 11 11 21 14 41 16
s s s

za d d d d d d      , 

1 1 1
4 12 13 22 12 32 16

s s s
ra d d d d d d     , 1 1 1

4 11 13 21 12 31 16
s s s

za d d d d d d      . 

To obtain the explicit expressions for the components of displacements on a free boundary, we must 
substitute formulas (21) into (10), and then the resulting expressions should be substituted into 
transformations (6). 

To take into account the absorption, we set the complex velocities of the waves of the P and S type, 
assuming that the Q  factor does not depend on the frequency  . For a model of a environment with 

constant Q  complex velocities determined by the formula [7] 

 
1

0
1

1 ln 1
2 2

j
v v

Q Q


 


  

    
   

, (22)

where 0v  is the given velocity, Q  is the quality factor of the medium. Q-values may be different for waves 

of different types. 
Modelling of local resonance effect. 
The developed method gives the possibility to get a full wave field of P-SV type or SH type, including 

multiple, exchange, diffracted and other waves, and surface waves also. 
Let us apply the described algorithm for calculating of synthetic seismograms while simulating a local 

resonance effect on the earth's surface. This phenomenon can be observed during the earthquakes (for 
example, the earthquake in Latour (India) in 1993 [10]) and it should be taken into account during the 
design of buildings. Dangerous seismic consequences are possible for buildings, own frequencies of which 
are in the local resonance band.  
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We consider a simple but realistic model of the environment (Table 1) to calculate synthetic 
seismograms [10]. In this model, the low-speed layer of soil 5 m thick is located on a basalt high-speed 
layer of thickness 300 m. The point source in the form of force is located at a depth of 3 km in the granite 
half-space. 

Table 1 
Model of horizontal-layered medium [10] 

Number of the layer or half-space  , kg/m3 Pv , m/sec Sv , m/sec PQ  SQ  h , m 

1 1300 1200 200 80 20 5 
2 2500 4500 2600 500 220 300 
3 2700 6000 3500 800 270 ∞ 

In Fig. 1 a synthetic seismogram calculated at an epicenter distance of 3 km for the environment 
model from Table. 1 is on the left, and for another environment model in which the upper soft layer is 
absent and the first layer with a thickness of 305 m has the same properties as the second layer from the 
Table 1 is on the right side. From the figure it is clear that the presence of soft soil layer leads to a 
significant increase of horizontal oscillations, and oscillations caused by S-waves are almost harmonic. On 
tangential component it is a P-wave of weak intensity due to the wave field in the near-field region. 

In Fig. 2 the amplitude spectra of synthetic seismograms are given. The value of their horizontal 
components at a resonant frequency of 10.5 Hz (in the presence of a soft layer) is several times larger than 
the appropriate components in the absence of a soft layer. At the same time, the presence or absence of a 
layer of reduced velocities slightly affects on the vertical component of oscillations. This way, the low-
speed top layer of the soil may cause the local oscillation amplification effects. 

Therefore, the synthetic seismograms can be used to estimate both the resonant frequency and the 
coefficient of soil oscillations amplification. 

Fig. 1. Comparison of synthetic seismograms for a medium model with a soft layer on the surface (left) and without a 
soft layer (right). Seismograms are calculated for a point source in the form of a force located at a depth of 3 km, an 

epicentre distance of 3 km and azimuth of 90°. The time dependence of the source is described by the function 
31 sin ( / )t   , if, 0 t   , otherwise 0, where 50   ms 
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Fig. 2. Amplitude spectra of synthetic seismograms, shown in Fig. 1 for an impulse source, if 0   

Conclusions 

On the basis of the Thomson-Haskell matrix method, an effective and stable method for calculating 
a seismic wave field for a multi-layer horizontal-layered isotropic environment with absorption has been 
developed. The method takes into account the presence of free surface, the presence of a point source in 
the form of simple force, interference phenomena associated with thin-layering. Transition from 
characteristic matrices of the fourth order to the matrices of the sixth order was made to increase the 
stability of the wave field calculation. The results are demonstrated on the example of simulation of the 
resonance phenomenon in a horizontal-layered environment associated with the presence of the upper low-
speed layer. 
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