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Abstract. The variations of a system with one degree of freedom in the presence of nonlinear 
positional friction were considered. The restoring force of the oscillator's elasticity is described by 
the power function. A nonlinear solution of the Cauchy problem for the case of a power nonlinearity 
of positional friction were constructed. It is expressed through known periodic Ateb functions, 
which in recent years have become widespread in the theory of oscillations thanks to the efforts of 
the Lviv School of Mathematics and Mechanics. Formulas for calculating the displacements of the 
oscillator in time, as well as the amplitudes and periods of oscillations caused by the initial deviation 
of the system from the equilibrium position or the initial velocity given to the oscillator in this 
position were derived. The analytical dependence of the oscillation periods on the amplitude for 
cases of soft and rigid characteristics of the elastic system was established. It was found that due to 
the non-linearity of the damping of the system of the amplitudes, it leads to a change in the period of 
the oscillations of the system during its motion. The period may decrease or increase with 
oscillation, depending on the value of the indicator of non-linearity in the expression of the restoring 
force. It is shown, that from the obtained analytical solutions, as separate cases, there were known 
formulas related to free nonlinear oscillation oscillators without friction or with linear position 
friction. In order to simplify the using of the obtained solutions, we recommend well-known 
approximations of the Ateb-functions with the help of elementary functions. Examples of 
calculations are presented, where comparison of the results obtained with the use of constructed 
analytical solutions and numerical integration of the equation of oscillation on a computer is carried 
out. The good consistency of numerical results obtained in different ways is noted. 

Keywords: dissipative oscillator, nonlinear positional friction, free nonlinear oscillations, 
periodic Ateb-functions. 

Introduction 

Despite the existence of many publications, the theory of nonlinear oscillations remains an important 
area of research in applied mechanics. This is confirmed by modern publications on the free fluctuations of 
conservative systems, which are included in the literature list in the article [1]. The using of mathematical 
models of the modern theory of Ateb-function opens up new possibilities for the analysis of oscilation 
processes. This also applies to oscillations of dissipative nonlinear systems, which are less elucidated in the 
literature and require further research. 

Problem Statement 

The purpose of this article is to develop a mathematical model of free oscillations of a oscillator with 
nonlinear position friction when the frictional force on certain areas of motion is a power function of the 
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displacement of the system. In this formulation the problem becomes essentially nonlinear, and its 
analytical solution is associated with the use of special functions. 

Analysis of modern information sources 

The theory of free oscillation oscillators with linear-position friction is highlighted in [2, 3]. Later in 
[4, 5], we also considered oscillations of the stoichiometric systems, which additionally, in addition to 
positional friction, still had viscous or dry coulomb friction, that is, it was a matter of combining energy 
dissipation. Free oscillations of the systems of variable mass with positional friction are described in [6, 7]. 
In the first of these papers [6] it was assumed that the change in mass in time passes according to the linear 
law, and in the second [7] - for the quadratic. But all these works are devoted to the analysis of the action 
of the force of linear positional friction, when it is in certain areas of motion is proportional to the 
displacement of the system. In case of violation of such dependence, the obtained results lose their validity 
and require generalization. This is the reason for the purpose of this work. 

Statement of purpose and tasks of research 

The main goal is to construct a solution of the equation of free oscillator oscillator with nonlinear 
positional friction. For its realization the following tasks are set: 1) compose the equation of motion of an 
oscillator; 2) build its analytical solution using Ateb-functions; 3) find the dependence of the oscillation 
period on the initial deviation or the initial velocity; 4) make calculations to check the adequacy of the 
constructed solutions. 

Main material presentation 

Dependence of the force of elasticity  F x  from the displacement of the system  x t  describe by 

expression: 

     sign sign signF x c c x x x x      , 

where ,c c  – oscillator stiffness characteristics; 0   – nonlinearity indicator; the dot denotes x  the 

derivative with respect to t . 

Graphically, the dependence  F x  is given in Fig. 1.  

 
Fig. 1. Dependence  F x  on the increase and decrease of x  
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At first, let us consider the free oscillations, under the action of force  F x , caused by the initial 

deviation 0x a  from the position of equilibrium 0x  . Moving the oscillator in time  x t  at intervals 

 0;t t , when it moves to the equilibrium position  0, 0x x   is described by the differential equation: 

  0 Mx F x    or  1 0 Mx c x  , (1)

where 1  c c с   ; M  – mass of the oscillator. 

Initial conditions for Eq. (1) accept: 

  00  x a   or   0 0 x  . (2)

The Cauchy problem, represented by expressions Eqs. (1) and (2), is analytically solved in [8]. This 
solution looks like: 

 
1 11

0
2

1

c
x a x

M
 


   


 ;   0

1
Ca ,1,

2
x t a

    
 

, (3)

where 
 

1
12

0
2

1

c
a t

M











; 
1

Ca ,1,
2

  
 
 

 – periodic Ateb cosine. 

It should be noted that earlier periodic Ateb-functions in the theory of mechanical oscillations were 
used in [9-12] and in other publications, which considered not only free oscillations, but also forced, 
perturbed by periodic external loads. 

From Eq. (3) it follows, that the position  0x  when 0t t , the oscillator runs at a velocity: 

 

1
1 2

0 0
2

1

c
x x a

M







  


  . 

To calculate the value of 0t  we have the relation: 

 
1

2
0 0

1

1

2

M
t a

c







   , (4)

where 
1

10 1

du

u 
 


 . 

This integral is expressed in terms of the gamma-function  z  that is tabulated in [13, 14] and is 

given by the formula [15]: 
1

1
31

2 2

 



     
    

. 

Therefore, Eq. (4) takes the form: 

 

1

2
0 0

1

1

1
3 12

2 2

M
t a

c


 

 


      
     

. 

In the case of linear friction, when 1  , the above-mentioned collisions are reduced to the 
following: 

1
0

c
x a

M
  ;   1

0 cos
c

x t a t
M

 
   

 
; 0

12

M
t

c


 , 

which is in agreement with [2]. 
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Further motion of the oscillator from the position 0x    0, 0x x   is described by the 

differential equation: 

2 sign 0 Mx c x x    or  2 0 My c y  , (5)

where    y t x t  ;  0 1;t t t ; 2  c c с   . 

As initial conditions to Eq. (5) we accept: 

 0 0 y t  ;    

1
1 2

0 0 0
2

 
1

c
y t y a

M







  


  . (6)

The first integral of equation Eq. (5) satisfying conditions Eq. (6), has the form: 

   
2 1 1 12
0 1 0 2

2 2
 

1 1

c
y y y c a c y

M M
  

 
      

 
  . 

From this it follows, that the amplitude deviation of the system 1a  at the end of the first magnitude 

of oscillation, when 0y  , is: 

1

11
1 0

2

c
x a a

c

  
      

 
. (7)

The second integral of equation Eq. (5) is expressed by the periodic Ateb-sinus product: 

    1
1

Sa ,1,
2

y t x t a
       

 
, (8)

where 
   

1
2 2

01
2

1

c
a t t

M








 


. 

The end of the first magnitude comes at: 

1
Sa , 1, 1

2

    
 

. 

The root of this equation     determines the stop time of the oscillator: 

 

1

2
1 0 1

2

1

1
3 12

2 2

M
t t a

c


 

 


       
     

. 

Thus, the duration of the first magnitude of oscillations is: 

1 1

2 2
1 0 1

1 2

1

1 11
3 12

2 2

M
t a a

с с

 
 

 


                   

, (9)

and the amplitude deviation of the system is:  
1

11
1 1 0

2

c
x t a a

c

  
      

 
. 

If 1  , then, in accordance with (7), (9): 

1
1 2

1 1

2
t M

с с

  
    

 
; 1

1 0
2

c
a a

c
 . 

These results were obtained earlier in the theory of linear-position friction in [2], where time 1t  does 

not depend on the initial deviation of the oscillator, which is characteristic of linear systems. 
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The above solutions are suitable for calculating the second and subsequent magnitudes of the 
oscillator, but we must specify the pre-computational amplitudes for system deviations from equilibrium 
positions. So, for a second scale, instead of 0a  in the formula, we must take 1a . At the end of this 

magnitude, the amplitude of the deviation 2a , taking into account Eq. (7), becomes:  

1 2

1 11 1
2 1 0

2 2

c c
a a a

c c

     
      

   
. 

It should be used in the calculation of the third scale of oscillations, etc. 
To calculate the first period of oscillations, we obtain the formula: 

1 1 1 1

2 2 2 2
2 1 0 1 1 2

1 1 2 2

1

1 1 1 11
3 12

2 2

M
t T a a a a

с с с с

   
 

 


                        

. 

As we see, when 1  , the period depends on the initial deviation of the system from the 

equilibrium position. In the case of a soft, elastic characteristic of the system  0 1  , increasing of 0a  

leads to increase of 1T , and for the rigid characteristics  1   we have the opposite tendency. 

Summarizing the results obtained, we arrive at the conclusion that in the presence of nonlinear 
position friction, the change in the amplitudes of free oscillations of the oscillator passes by the law of 
geometric progression and is described by the expression: 

2

11
0

2

n

n
c

a a
c

  
   

 
, 1, 2, ...,n   

where the denominator of progression    2/ 1
1 2/q c c    depends on the index of power nonlinearity  . 

The period of oscillation also depends on the number of the cycle and its calculation is reduced to 
the formula: 

1 11 1
2 22 2
1 1

1 1 2 2

1

1 1 1 11
32 1

2 2

n n nn n
M

T a a a a
с с с с

  
 

 


  

 

                    

. 

Let's consider further free oscillation oscillator when giving it to the position 0x   of the initial 
velocity 0  (instantaneous impulse). We will solve the first differential equation in Eq. (5) under initial 

conditions: 

 0 0 x  ;   00  x  . 

By analogy with the previous one, we obtain: 

 
2 12
0

2

1

c
x x

M



 


 ;   *

0
1

Sa ,1,
2

x t a
     

 
, (10)

where 

1
2 1* 0

0
2

1

2

M
a

c

   
 
 
 

;    

1
* 22
0

2

1

c
a t

M








 


. 

Expressions (10) describe the process of removing the oscillator from the equilibrium position. The 

oscillator stops at *t t , reaching the amplitude deviation   *
* 0x t a . A stop will happen when: 

1
Sa ,1, 1

2

    
 

. 
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Since the root of this equation    , the stopping time is determined by the formula: 

   
1

* 2
* 0

2

1

1
32 1

2 2

M
t a

с


 

 



    

    

. 

In the case of linear position friction  1  : 

2
* 0
0

2

M
a

c


 ; *

22

M
t

c


 , 

so *t  does not depend on 0 . 

A further movement of the oscillator will be caused by the initial deviation *
0x a , that was 

considered earlier. Thus, the second variant of the initial conditions in the end is reduced to the first option. 

Numerical results 

Example 1. In order to make calculations we accept: 5M kg ; 4900 /с N m ; 0, 05с с   ; 

0,5  ; 0 0, 02a m . The specified numerical data corresponds to: 1 4655 /с N m ; 2 5145 /с N m ; 

 2 / 3 1,35412  ;  7 / 6 0,92772  ; 0 0,01841t s ; 1 0,01871a m ; 1 0,03563t s . The values of 

periodic Ateb-functions are calculated using approximations [8]: 

   
 

2

2

, 0 0, 2,
1 3

Sa , 1, 0,196 0,9733 0, 2 0, 2556 0, 2 , when 0, 2 0,8,
2 4

0,8 ,1 4sin 0,3062 , JJ

 
   



           
         

 (11)

where 1, 72474J  ;  1 3 1 3
Ca , 1, Sa , 1,

2 4 2 4
J        

   
. 

Obtained by Eqs. (3), (8) and (11), the dimensionless displacements of the oscillator on its first 
oscillation at different points in time are shown in Table 1. There, too, for comparison, the value of the 
corresponding displacements obtained by numerical computer integration of Eqs. (1) and (5). 

Table 1 
Value of displacements at 0,5   

0/t t  
  0/x t a  

analit. 

  0/x t a  

num. integr. 
0/t t  

  0/x t a  

analit. 

  0/x t a  

num. integr. 
0,0 1,0000 1,0000 1,1871 0,3103 0,3097 
0,2 0,9555 0,9555 1,3741 0,5721 0,5728 
0,4 0,8241 0,8242 1,5612 0,7709 0,7710 
0,6 0,6115 0,6122 1,7483 0,8939 0,8939 
0,8 0,3317 0,3312 1,9354 0,9355 0,9355 
1,0 0,0000 0,0000 - - - 

There is good consistency of numerical results obtained by different methods, that is, the analytical 
method with the use of approximation Eq. (11) gives a fairly high accuracy of calculation. 

Information on the change of periods of oscillation is provided in Table. 2 

Table 2 
The ratio of oscillation periods at 0,5   

n  2 3 4 5 6 

1/nT T  0,9672 0,9355 0,9048 0,8751 0,8464 
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In the case of a soft characteristic of elasticity, the attenuation of amplitudes of oscillations is 
accompanied by a decrease in their periods. 

Example 2. By storing the antecedent output data, we calculate the displacement of an oscillator 
with a nonlinearity index 1,5  , it corresponding to a rigid characteristic of elasticity. For this indicator: 

 2 / 5 2, 21825  ;  0,9 1, 06867  ; 0 0,14339t s ; 1 0,01922a m ; 1 0, 28115t s . We value the 

periodic Ateb-functions by the approximate formula [8]:  

   
   

2

2

0 0, 2,
3 5

Sa , 1, 0,199 1, 0233 0, 2 0, 2111 0, 2 , when 0, 2 0,8,
2 4

0,8 ,1 4 / 3 sin 0, 6846 JJ

 
   



           
         

 (12)

where 1, 47164J  ;  3 5 3 5
Ca , 1, Sa , 1,

2 4 2 4
J        

   
. 

The results obtained using formulas (3), (8) and (12) are written in Table 3. For comparison, the 
values of displacements of the oscillator, to which the numerical compomaterial integration of equations 
(1) and (5) leads, is also indicated there. 

Table 3  
Value of displacements at 1,5   

0/t t  
  0/x t a  

analit. 

  0/x t a  

num. integr. 
0/t t  

  0/x t a  

analit. 

  0/x t a  

num. integr. 
0,0 1,0000 1,0000 1,2 0,2935 0,2921 
0,2 0,9466 0,9466 1,4 0,5626 0,5644 
0,4 0,7949 0,7949 1,6 0,7862 0,7858 
0,6 0,5648 0,5667 1,8 0,9249 0,9247 
0,8 0,2936 0,2924 1,9607 0,9610 0,9608 
1,0 0,0000 0,0000 - - - 

Differences in the results of computations by different methods are insignificant, which pitters the 
probability of analytic solutions and approximations of Ateb-functions. 

The results of calculating the variation of oscillation periods are given in Table 4. 

Table 4 
The ratio of oscillation periods at 1,5   

n  2 3 4 5 6 

1/nT T  1,0202 1,0408 1,0618 1,0833 1,1052 

In the case of a rigid characteristic of elasticity, the damping of oscillations is accompanied by an 
increase in their periods. 

The change of periods, as well as the amplitudes, takes place according to the law of geometric 
progression, whose denominator depends on the nonlinearity index  . 

Conclusions 

In the article an equation of free oscillation motion of oscillator with power nonlinear positional 
friction is compiled. The equation is obtained for oscillations with one degree of freedom for the case when 
the elastic force of the oscillator is described by the power function. 

The tasks of free oscillation oscillators with nonlinear-position frictions have an analytic discourse, 
which is expressed through the periodic Ateb-functions. 

The periods of oscillation depend on the initial deviation of the system from the equilibrium position 
or from the initial velocity given to it, which is not the case with linear friction. The fall of the oscillation 
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amplitudes passes by the law of geometric progression, the denominator of which depends on the non-
linearity indicator. As the nonlinearity index increases, the rate of oscillation decays decreases. 

Free oscillations are accompanied not only by the decrease in the amplitudes of oscillations, but also 

by the change in their periods. In systems with a soft characteristic of elasticity  0 1  , the fall of 

amplitudes is accompanied by a decrease in the oscillation periods, and in the case of a rigid characteristic 

 1   – an increase in periods. 

In the article examples of numerical calculations with different indicators of nonlinearity are given. 
The results of calculations, obtained by different methods: analytical and numerical, have good 
convergence. For the examples given, the difference in results does not exceed one per cent. This indicates 
the adequacy of the constructed analytical solutions. In the given examples, the discrepancy in the results 
does not exceed one percent. This indicates the adequacy of the constructed analytical solutions. 
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