ADVANCESIN CYBER-PHYSICAL SYSTEMS

Vol. 3, No. 1, 2018

ANALYSISAND OPTIMIZATION OF THE SIZES
OF THE ITERATION SPACE TILESDURING
THE PARALLELIZATION OF PROGRAM LOOP OPERATORS
Alexander Chemeris, Sergii Sushko

Pukhov Institute for Modeling in Energy Engineering, Ukraine
Author's e-mail: a.a.chemeris@gmail.com

Submitted on 09.12.2018
© ChemerisA., Sushko S., 2018

Abstract: The analysis of the dependency of influence of
the tile sizes of iteration space has been represented. It
involves program loop operators modification during
parallelization for multithreading architectures of the
computation systems. The particle swarm optimization
method has been considered as a method of the mini-
mization program execution time for tiling speed up.

Index Terms: softwar e optimization, loop parallelization,
tiling, particle swarm optimization.

INTRODUCTION

Software optimization is a process of modifying or
transforming of source code to achieve a specific goal. It
can be treated as a reduction of the program execution
time, improving performance, reducing program code,
saving memory, minimizing energy costs and reducing
the input/output operations.

Software optimization is a multistage process. The
main stages of optimization can be identified as:

o algorithm-level optimization,

e command-sequence optimization,

optimization of the processor operations.

The implementation of the program optimization
process is performed by using a sequence of the different
optimizing transformations, algorithms that take a
program and modify it to obtain a semanticaly
equivalent version of it but more effective in terms of
any set of the optimization goals. In [1] it was shown
that some code optimization problems are NP-complete
or even insolvable. However, in practice, many of them
are solved by heuristic methods, which give aresult in a
satisfactory time of processing of the source code of the
program.

Optimization a the algorithm level is an
improvement on the overall chain of the computations.
For example, fast Fourier transform is an improvement
of the discrete Fourier transform. Optimization of this
level is usually performed by software developer or
mathematician. Optimization at the command sequence
has a great interest since sequence of operations can vary
widely and the result will be unchanged. Optimization
on the level of the processor operations is a process of
representing of high-level language operators with some

executable processor code. This job is usually performed
by the compilers.

Optimization tasks on the command level are studied
and solved almost from the moment of the compilers
have been invented. Each compiler in fact does not just
convert high-level language commands into machine
codes or other executable codes, but also makes changes
in the sequence of executable code. It can make either
rather simple changes, such as unrolling a small loop
into a sequence of unconditional operations or complex
operations — converting severa arithmetic or logical
operations into others, converting a sequence of
computations, splitting computing tasks into parallel
kernels, and many others. Efficiency of compiler
depends largely on the optimizations at this stage.

In addition to optimizing programs at compile time
and creating executable code, other approaches to
improving program parameters have been used. The first
one is an automatic parallelization of the sequentia
algorithms and creation during the process of the parallel
program for the specific computational architecture.
Another approach is a process almost independent of the
architecture of the computing system. In this case, an
output of the optimization process is a generation of
some transformed program of the high-level language.
This program can be optimized both sequential and
parallelized for execution on the multiprocessor
computers. Since the main computational work has been
concentrated in loops, parallelization and optimization of
loops is the most perspective task.

SOFTWARE OPTIMIZATION PROBLEM

The optimization problem for each i-th computing
loop can be determined by the formula:

F; = argmin(f(ﬁi,l_’)i)) 1)

where F; are parameters that should be optimized, M is
vector of the optimization methods, P is vector of the
parameters of the optimization vectors. Function argmin
is aset of points x, for which f(x) attains the function's
lowest value (if it exists):

arxgmin(f(x)) e{x|Vy:f(x) < f(»)} 2

2 Alexander Chemeris, Sergii Sushko

Optimization problem for the entire program which
consists of N computational loop in this case is
determined by the formula:

N

F = argmin(Zf(ﬁl,)m. 3

1. ITERATION SPACE

Most of the computations in programs are
concentrated in the loops that deal with index variables
representing n-dimensional data arrays — vectors,
matrices, etc. Loop parallelization is the most essential
resource for the increasing computing performance.

In general, we consider nested loops, each of which
definesits own index variable. The set of index variables
defines an index vector of the loop nest
[=(,1,..,1,). For any loop, whereindex of loop I
varies from value of L to U with step S an iteration
number i equalstothevalue(l - L+ § /S wherel isan
index value for thisiteration.

For n nested loops iteration vector | for the innermost
loop is a vector containing an integer number of the
iterations for each loop in order for the loops to be
nested. In other words, an iteration number of
multidimensional nested loop is determined according to
the form I = {i,i,....,i,), where i) is the iteration
number of the loop for the nested level k.

Definition 1. The iteration space of loop is a set of all
integer vectorsI = (Iy, I, ... , I;) that satisfy the system
of inequalities

Li < xi < Ui, (4)
wherei = 1..n.

Inequalities (4) define the boundaries of loops and
limits of iteration space by convex polyhedron.

Definition 2. Let two occurrences of the variables u
and v have d common loops. Consider set of all
iterations I = (I, Iizs o0 Lient) and
Ji = Uk1:Jkzs = Jknz» Where v[J,] depends on u[ly].
Each vector (Jix = Ik, Jiz = Tkzo o0 Jka = Lea) (fOT
particular K) let it be called a distance vector of v of u
and a set of the different vectors
D = (i1 - L Jxz = Iizs -0 Jiea = Iiq) Will be caled as
set of distance vectors for the dependence of v on u.

Distance of dependency plays an important role in
the analyzing loops for parallelism. This value makes it
possible to determine type of the data dependence and
possibility of splitting of the iterative space into
responsibility zones for the parallel execution. The body
of loop consists of set of operators S. Dependencies
between operators exist both inside loop and between
iterations. Let’'s describe unfolded few steps of execution
of the loop operator in the iteration space.

In Fig. 1a an example of loop is shown and Fig. 1b
has its iterations, where dependencies inside a loop body
are represented by the solid lines and dotted lines
represent the inter-iteration dependencies. For the array a

there are data dependencies. While for the array b there
are inter-iteration data dependencies.

for(i=1; i<N; i++)
for(j=1; j<N; j++) {
gij] = b[i,j-1] + c[j+1];
bli+1,j] = &i,j] +d;

a[1,1]=b[1,01+c[2); | a[1.2]=b[1,1]+c[3]; | a[1.3]=b[1,2]+c[4];
b21]=a[1,11+d |b22]=a12]+d |b2,3]=2[13]+d

a[1,4]=b[1,3]+[5];
bl2,4] = a[1,4] + d

N
a[2,1]=b[2,0]+c[2] a[g@[g 1]+c[3];
b[31]1=a[2,1]+d |b[32]=2a[22]+d

¥ "N
al1.41=b[2 3}+cl5);

a[2,3]=b[2,2]+c[4];
b[L;,F’a[zs] +d | b[34]=a[24]+d

[

4
a[3.4]=b[3 3]+clS];

b[4,4] = a[3,4] + d

< —
a[3,21=b[3,1}+c[3]; | a[3.3]=b[3,2}+c[4];
b[4,2] =*5(3,2] + d bﬁg?’ala_s] +d

3 | al3.1)=b(3,01+c(2)

bl4,1] = a[3,1] + d

b
Fig. 1. Dependencies inside loop and between iterations

In the nest of n nested loops a set of distance vectors
is approximated by an integer value | from the interval
[1,n] U {0}, which is defined as the largest integer, so
that the first [- 1 components of the distance vectors are
zeros. Dependence at the level [<n means that
dependence is found at the level | of the loop nest, that

is, at agiven iteration [- 1 of external loops. In this case,
it is said that the dependence is an inter-iteration
dependence and such dependencies are called loop-
carried at level I. If [= oo, then dependence occursinside
the body of loop, between two different operators. Such
dependencies are called loop-independent. The value of |
iscalled aslevel of dependency.

Thus, define iteration space as a directed graph in
which vertices are operators of the loop body and arcs
are dependencies between these operators. Then the
paraleling problem is represented in the mathematical
formulation as the problem of cutting a graph into sub-
graphs. In order to do this, well-known mathematical
optimization methods can be used. Cutting a graph into
sub-graphs, the methods for its transformation and
parallelization can be considered.

One of the effective models for working with
computational loops is a polyhedral model. Polyhedral
model allows to apply various optimization methods to
the computational loops. At the same time, the model
itself operates with the concepts of set theory, affine
transformations and Presburger arithmetic [2].
Presburger arithmetic is the theory of describing integers
including {=, <, +, 0, 1} and it operates with such
concepts as a tuple, set, relation. Based on this approach,
an iterative loop space can be built and processing
operations of such space are provided.

As an example, consider aloop whose code is shown
in Fig. 2a. Fig. 2b represents the relationship system
obtained by analyzing the dependencies of the loop
operatorsin Fig. 2a.

Analysis and Optimization of the Szes of the Iteration Space Tiles During ... 3

The iteration space is determined by the boundaries
of the loop indices and, since nesting of the loop is two,
then we consider two-dimensional case in which the
variables of the loop vary within 1<i<6; 1<j<10.

The integer rectangular area bounded by these values
represents the iteration space (Figure 3). Each point of
the integer space is associated with iteration of the loop
with the corresponding values of the iteration variable.
Analyzing the program code, one can see that the
operator has three inter-iteration dependencies, which
can be represented in analytical form as a system of the
relations (Figure 2b). In addition, polyhedra model
allows not only to represent an arbitrary computational
loop as a set of mathematical dependencies, but also to
change them and restore a new source code out of them.

fori=1to 6 do
forj=1to 10 do
i+, 3*i+j+3) = ai+j+1,

anti R1 = {[i,2] ->[i,2i+1] : 1
<=i<=4}
anti R2={[ij] > [i"i++1] 1} =

i+2%j+4) 2'&& 1<=i<i'<=5}
endfor flow R3 = {[i,j] -> [j-i-1,2] :
endfor 2i+2<=j<=i+7,10&& 1<=i}

a b

Fig. 2. Example of the loop (a) and system of the relations
which describes relation graph (b)

e B _F
'Aoooooooooo
O 0.0 0.0 0.0 QQ Q
O 0. 0. 0. 0. Om O+ 30
o) oooxgg—ug\o*oo
O O—=>0~~0 ™0 ™0 ™0 O 0 0O

Fig. 3. Graphic form of the iteration space
for theloop in the Fig. 2a

Considering the whole set of approaches for the
modification of computational loops, such method as
tiling should be noted [3]. However, questions about size
of the tiles and their shape still remain. Currently, there
are the following restrictions. 1) only the rectangular
block shape is considered and 2) tiles of iterative space
have the same size. In [4] a survey was conducted on the
nature of the influence of the block sizes on the
execution time of various test programs. Experiments
have shown that it is impossible to define a certain
pattern of the dependencies between tiles sizes and
execution time.

The source of test programs was Polybench test [5]
which contains about three dozen agorithms used in
practice from the different data processing domains. 17
package test programs were investigated for the
execution time depending on the tile size. To minimize
the measurement error five measurements were made for
each mode. The largest and the smallest values were not

taken into account and the average value among the
other three was taken as a valid mean value. The tests
were conducted on a personal computer with a quad-core
Intel Core i5-4670K processor running on Ubuntu 14.04
LTS operating system.

The examples of the research results are shown in
Figs. 4-8.

Processing time depending on the Tiles
File: lu. Options: tie.
Max time: 0.0238 s, Mean time: 0.0089 s, Min time: 0.0080 s, Mean/Min Ratio 1.1135, Max/Min Ratio 2.9699

Fig. 4. Example of the execution time on the test program Lu

Processing time depending on the Tiles
Filo: covariance. Options: tilo.
Max time: 0.0028 5, Mean time: 0.0016 5, Min time: 0.0015 s, Mean/Min Ratio 1.0826, Max/Min Ratio 1.8738

Fig. 5. Example of the execution time
on the test program Covariance

As anyone can see, on the one hand, tiles sizes
significantly affect the execution time of the programs.
But, on the other hand, there are no obvious relationships
between tiles' sizes and program execution time. The
best pair of the tiles sizes for these tests cannot be
determined before the experiment. In addition, the
examples presented only the two-dimensional case. With
an increase in the dimension of the problem, its
complexity increases significantly. Therefore, the search
for the best tile size can be carried out by successively
checking various test tile size pairs. The algorithm itself
for the finding of the optimal solution can be built on the
basis of the mathematical optimization methods.

4 Alexander Chemeris, Sergii Sushko

Promising in this area are the methods of "swarm
intelligence” such as the method of ants, bees, particle
digging, as well as genetic algorithms. Next, we consider
the particle swarm method in details.

Processing time depending on the Tiles
Filo: doitgen. Options: tile, innerpar, parallel.
Max time: 0.2122 s, Mean time: 0.1081 5, Min time: 0.0709 s, Mean/Min Ratio 1.5256, Max/Min Ratio 29942

Fig. 6. Example of the execution time
on the test program Doitgen

Processing time depending on the Tiles.
ilo: g 5:

Max time: 0.0337 5, Mean time: 0.0153 s, Min time: 0.0122 s, Mean/Min Ratio 1.2520, Max/Min Ratio 27536

Fig. 7. Example of the execution time on the test program
Gesummv

“Swarm Intelligence” in Optimization Problems

Swarm agorithms were used to solve various
problems quite intensively, since they are promising in
terms of obtaining a global extremum of the target
function. In particular, they are widely used for splitting
and coloring of graphs, solving the traveling salesman
problem, routing traffic, assignment tasks, and other [6].
It is shown that this class of methods demonstrates high
efficiency for graph problems. In this case, efficiency
must be understood as the possibility of obtaining an
optimal solution and also as speed of the obtaining a
rational solution. In particular, the method was used to
solve the problem of scheduling of mobile brigades
servicing ATMs, which is considered as a special case of
the NP-difficult task of transport routing [7].

Processing time depending on the Tiles

File: atax. Options: tile, innerpar, parallel.
Max time: 0.1209 s, Mean time: 0.0054 s, Min time: 0.0037 s, Mean/Min Ratio 1.4683, Max/Min Ratio 32.8580

Fig. 8. Example of the execution time on the test program Atax

Considering the problem of partitioning of iteration
space into blocks in the tiling method, this is a specid
case of the graph partitioning problem which is studied
in [8]. The task belongs to the class of NP-complete
tasks, i.e. to such problems; its solution time depends on
the dimension of the inputs. To obtain the exact solution
usualy a brute force algorithms are used. These include
such as breadth-first search, depth-first search, the
methods of the dynamic programming, branch and
bound method, etc. The main disadvantage of using such
methods is that it takes much time to find the results. If
the dimension of the problem is n then n! comparisons
should be performed. Such methods based on the brute
force of the options can be used for tasks that have a
small dimension. The usage of heuristic agorithms
allows to reduce time to solve the problem but the
solution will be approximate. Heuristics limit the search
based on certain mathematical laws that reduce the
temporal and spatial complexity of the algorithm [9].

One of the modern directions of the obtaining afairly
accurate solution of the problem in the satisfactory time
is the usage of the multi-agent methods of the
intellectual optimization, which are based on the
modeling of the collective intelligence [10]. There are a
number of methods that model collective intelligence.
For example, such modifications are known as ant and
bee algorithms presented in [11, 12]. The optimization
using a particle swarm (Particle Swarm Optimization,
PSO) is a more generalized search method that is based
on the notion of a population and models the behavior of
swarm [13, 14].

In [15] the results of using the particle swarm
optimization method for the methodology of creating
multi-version software (SW), which is based on two
main principles, are the following: 1) software consists
of modules; and 2) each module has several independent
versions that can be combined. The main problem of
creating such software is a selection of the optimal
version composition of each module in order to satisfy
the predetermined restrictions and minimize or maximize
certain parameters.

Analysis and Optimization of the Szes of the Iteration Space Tiles During ... 5

The man statements of the concept of swarm
intelligence were introduced by Gerardo Beni and Wang
Jing in [16]. A swarm is defined as a decentralized
system which consists of a set of simple uniform
elements that interact with each other and with the
environment to achieve a predetermined goa in
accordance with certain rules. The concept of swarm
intelligence is built on an additive, synergistic effect,
which is manifested when agents are combined into a
system. Elements of the swarm are called agents. The
model describing the decision of particles in a swarm is
based on the position of each particle in the swarm and
direction vector. The particle decides on movement
based on three factors: its current speed, which causes
the particle to continue moving and to explore new
regions in the search area; knowledge of your own best
state and the best state of the entire swarm or the nearest
neighborhood of the particle.

V. CANONICAL PARTICLE SWARM METHOD

Let F(X) be an objective function in the
n-dimensiona space R™. Then the globa minimization
problem is considered as:

min F(X) = F(X") ®)

Set of particles is denoted by P = {P;,i € 1..N},
where N is a number of particlesin swarm or population
size. At t =0,1,2, ... coordinates of the particle P, are
determined by the vector X;. = (x;¢1, Xi¢2, - Xitn)
and its speed is a vector Vi, = (Vit1, Vigzr s Vien)-
Initial coordinates and velocities of the particles P; are
Xio = X2, Vi =V, respectively.

Xitr1 = Xipg + Viesrs (6)

Vitrr = a Vi +U[0,0] ® (th
Ul0,¢c] @ (Xp: — Xie)s

—Xie) + (7)

Here U[a, b] isan-dimensional vector of the pseudo-
random numbers, uniformly distributed in the interval [a,
b]; ® — symbol of component multiplication of vectors;
X7, is the vector of the particle coordinates P; with the
best (in the sense of (4)) value of the objective function
@(X) for the entire time of the search; X; . is a vector of
coordinates of the adjacent particle to a given particle
with the best value of the objective function @(X) during
the search; a, b, ¢ —free parameters of the algorithm.

During the iterations process vector X{, forms the so-
called private guide of the particle P;, and the vector Xz ,
forms a local guide of this particle. Free parameter
a determines the “inertial” properties of the particles
(for a < 1 movement of particles slows down).
Recommended value for a is 0.7298. In the optimization
process a gradual decrease of the coefficient a from 0.9
to 0.4 can be effective. At the same time large values of

the parameter provide a wide field of the search space
and the small ones — precise localization of the minimum
of the goal function. The recommended values of the
free parameters b and ¢ are 1.49618 [17].

Thus, the formalized definition of the algorithm of
swarm intelligence is determined by a system, as follows
[14]:

SI = {S,M,A,P,1,0}, (8)
where S — set of agents, M — object for the exchange of
experience between agents — a certain matrix or vector to
which all agents of the swarm have access according to
certain rules and which is used in A; A — rules of
creation, behavior, modification of agents;
P — parameters (heuristic coefficients) used in formulas
A; , I; isan input system, which an objective function is
applied to, restrictions — an input for feedback;
0 = {01,0¢,}, 0, isan output (the best solution found
for the problem), O, is an output for feedback.

Using the swarm algorithm for the problem of
optimally chosen tiles' size requires representing of the
iteration space as a weighted hypergraph, in which
weights are introduced. It corresponds to the
computational load of loop operators and graph arcs that
correspond to the dependencies in the program.
Hypergraph of the iteration space H = (X, E), where
X={x]i=12,..,n} is a set of vertices and
E={elecX,j=12,..,m}isaset of edges. Vertex
weight is given by the set @={¢, |i=12,..,n} and
weight of the edgesissetby ¥'={y, |i = 12,..,n}. It
is necessary to form K nodes, i.e. set X is divided into K
non-empty and non-intersecting subsets X,
X=X, (Vi)D[Xi nX; = 0], X,#0[8].

Restrictions are applied to the formed nodes. Using
vector S={s,|v=12,..,k} sets a maximum
permissible total weight of the vertices assigned to the v-
th node. Maximum allowable number of vertices
assigned to node v is defined by vector N = {n, |v =
=1,2,..,k}. Expression (9) is a limit of maximum
weight of node and expression (10) is a limit of
maximum number of vertices in the node.

ZqoiSsv,Iz{ilxiExv}, v ©)
i€l

=12, ..,k

X, <n,,v=12, ..,k (10)

Multidimensional search space is populated by
swarm of particles in heuristic swarm intelligence
algorithms. Each particle represents a solution. In our
case, this is a solution of the partitioning problem.
Process of finding solutions consists in the successive
movement of the particlesin the search space.

Let's organize an iterative process of moving
particles of a swarm and in the finite number of
iterations all particles will be concentrated in the
extremum. This solution will give the optimal value of
tile sizes at the extremum of the objective function, for
example, aminimum program execution time.

6 Alexander Chemeris, Sergii Sushko

V. CONCLUSION

The approach to use the particle swarm method to
automate the process of finding of the optimal size of
tiles of the iteration space of loop operators when the
target function reaches the extremum has been
considered in the article. The target function can be
treated as a program execution time, power consumption
of the computing system, size of the program or data
memory, etc.

The iteration space is a multidimensional convex
polyhedron that is bounded by the values of loop
variables. A polyhedron is a directed graph consisting of
vertices defined by loop operators. The vertices are
connected by arcs in accordance with the dependencies
between the operators. To achieve the best performance
in paralelizing loops objective function is
Fr = f(51,52,..,5,), where n is a dimension of loop
space. Fr is a multidimensional function that contains
local and global extremums.

To determine extremum of function, the usage of
optimization methods based on “swarm intelligence” has
been regarded. This set of methods is characterized as
methods of global optimization which are very likely to
find a global extremum. The article describes particle
swarm optimization method as the most generalized
among many methods of the “swarm intelligence”.

Thus, the usage of particle swarm optimization
method to find optimal tile size will reduce the time for
the automatic parallelization of programs or time for
design of the parallel program.

REFERENCES

[1] A. Aho, M. Lam, R. Sethi, J Ullman Conmpilers: Principles,
Techniques and Tools. 2nd ed. Moscow “Williams’, p. 1184,
ISBN 978-5-8459-1349-4, 2008.

[2] P. Feautrier and C. Lengauer, “The Polyhedron Mode” in
Encyclopedia of Parallel Computing, Springer-Verlag, 2011,
pp. pp. 1581-1592.

[3] Xue, J. Loop Tiling for Parallelism. Kluwer Academic Publishers.
2000. — p. 256.

Aleksander Chemeris.
Deputy director of PIMEE
NASU. Strong background of
elaborating and constructing of
high-performance hardware, ela-
borating and applying program
models for the computer simu-
lation as well as developing ori-
gina programs for the parallel
architectures. Good experience in
teaching the programming

>

|
il

languages. Main scientific interests arein ‘Green' computing.

4

(9

(€l

1

(8l

9
(10

(11

(12

(13
(14

(19

[16]

(17

S. Sushko, O. Chemerys “Influence of the tiles sizes operations
on the computer program execution time’, Modeling and
informational technologies. vol. 82, pp. 110-117, 2018, (in

Ukrainian).

L.- N.Pouchet, (2018, Dec) The polyhedral benchmark suite
[Onling]. Available: http://web.cse.ohio-state.edu/~
pouchet.2/software/polybench/.

V. Kureichik, A. Kazharov “Using a swarm intellect in solving
NP-problems’ News of YUFU. Technical sciences. — No. 7 (120).
pp. 30-37. 2011, (in Russian).

A. Filipova, E.Diaminova, E.Andreeva, E.Laptenok Matrix
particle swarm agorithm for support adoption of decision for
scheduling service teams. Proceedings of Sxth All-Russian
scientific conference “Informational technology of intellectual
support of decision adoption” , Ufa-Stavropol’, pp. 125-128, 2018,
(in Russian).

B. Lebedev, V. Lebedev Splitting based on swarm intelligence and
genetic evolution. Proceedings of V International Scientific and
Practical Conference Integrated Models and Soft Computing in
Artificia Intelligence, Kolomna, Fizmatlit, 2009, (in Russian).

J. McConnel, Fundamentals of modern algorithms. Moscow
Technosfera, 2004, (in Russian).

Engelbrecht A. P. Fundamentals of Computational Swarm
Intelligence. Chichester, UK, John Wiley & Sons, 2005.

V. Kureichik, A. Kazharov Algorithms of evolutionary swarm
intelligence in solving problem of partitioning of graph. Taganrog.
Ed. TRTU, 2012, (in Russian).

G. Samigulina, Zh. Masimkanova “ Review of modern methods of
swarm intelligence for computer molecular design of drugs’,
Computer science problems, No. 2 (31), — pp. 50-61, 2016, (in
Russian).

Clerc M. Particle Swarm Optimization. ISTE, London, UK, 2006.
P. Matrenin, V. Sekaev “System description of the swarm
intelligence agorithms’, Software Engineering, Theoretical and
Applied Scientific and Technical Journal, ISSN 2220-3397,
val. 12, pp. 3945, 2013, (in Russian).

I. Kovdev, E. Soloviev, D. Kovalev, K. Bahmareva, A. Demish.
“Using the particle swarm method to form a multiversion software
composition”, Instruments and systems. Management, control,
diagnostics, Moscow, Nauchtechlitizdat, ISSN: 2073-0004,
No. 3, - pp. 1-6, 2013, (in Russian).

G. Beni, J Wang, “Swarm Intelligence in Cellular Robotic
Systems,” Proceed. NATO Advanced Workshop on Robots and
Biological Systems, Tuscany, Italy, June 26-30, 1989.

A. Karpenko, E. Sdlivestrov, Overview of the particle swarm
methods for the global optimization problem, Scientic ed. of
MGTU Baumana “Science and education”, GFBOU VPO
"MGTU of Bauman". |SSN 1994-0408. No. 3, 2009, (in Russian).

Sergii Sushko. Postgraduate
student of Pukhov Ingtitute for
Modeling in Energy Engineering,

NASU, Kyiv, Ukraine. The author has
a great experience of the practica
software development and opti-
mization. Area of research: methods
of software optimization, automatic
source code improvement, energy
efficiency of computations, code
parallelization and tiling.

