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Purpose. Parameters of Earth’s gravitational field (C

n

> S, ) are determinated by its figure and internal filling (mass

distribution) that have a different influence on their formation. Using a well-known representation of the planet masses

distribution functions in the biorthogonal series form it is necessary to establish the Stokes constants C,,, S

&> S, presentation

through the planet potential expansion coefficients b,

. and liner combinations of ellipsoid geometric parameters. Based on
these formulas, it is the objective to investigate the possible influence of the inhomogeneity of the mass distribution function
of the Earth’s interior and the representation of its shape with an ellipsoid of rotation onto the values of the Stokes constants
and to explore the contribution of the radial distribution of the Earth’s mass density to these constants. Methodology. The
presentation of the planet's interior density function as a sum of the Legendre polynomials of three variables and the
approximation of its surface by an ellipsoid, as well as the representation of internal spherical functions in a rectangular

coordinate system, makes it possible to integrate expressions for Stokes constant C

nk>

S, and obtain the relation between
these values of different orders and the linear combination of the planet potential expansion coefficients b, and geometric

parameters of ellipsoid o,B,y . Numerical data obtained from the derived relationships and the constructed graphs make it
possible to analyze the influence of the inhomogeneity of the mass’s interior distribution of an ellipsoidal planet onto the
value of the Stokes constants and determine the intervals of maximum impact. Results. The general relations between the

expansion coefficients b, , of the distribution function and the integrals from spherical functions on an ellipsoidal surface

that determine Stokes constants of a definite order are established. Herewith Stokes constants of » order are expressed in
terms of values C,

x> S, of lower orders. The presented calculations give a procedure for the formation of Stokes constant
values, which clearly implies the conclusion about the small effect of the planet’s ellipsoidal form on the magnitude and
three-dimensionality of the Earth’s gravitational field as a result of the inhomogeneous of its interior masses distribution.

Also known dependence of the values C,,, , on the geometric compression of the biaxial Earth ellipsoid of constant density

is confirmed. Scientific novelty. The formulas for the relation between Stokes constants of different orders and linear
combinations of parameters a,f,y are determined. The calculations and verification of the obtained relations for different

sets of potential expansion coefficients b, allow us to conclude that the three-dimensional gravity field of the Earth

predominantly contributes to the Stokes constants, except C,,, and the constructed graphs determine its maximum

contribution to the mass distribution in depth. Practical significance. The obtained dependences allow us to check the
approximation degree of the constructed density model of ellipsoidal planet by comparing Stokes constants which are
calculated using model and are obtained from the observations. In addition, it is possible to optimally reconcile the geometric
characteristics of the planet’s ellipsoid with its gravitational field.

Key words: planet potential, masses distribution model, Stokes constant, ellipsoid, spherical function.

Introduction formation values C,,, S

.4 1S an important element

Characteristics of external gravitational field with
seismology data are important elements to study the
Earth’s internal structure especially in researching
mass distribution function of the Earth. Since
difference from zero of Stokes constants is an
indicator of planet inhomogeneity and its three-
dimensionality, the establishment area of possible
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in this study. It should be noted that such problem is
not considered for the first time. For example, in
papers (Tarakanov,1979; Vinnik, 1978) proposed to
place abnormal masses at a depth of 600-800 km with
interpretation of Stokes’ constants of 2—6" order, and
for constants of 2-4™ order to shift the center of
occurrence down to 1000 km. Similar studies are
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proposed in (Ostach & Ageeva, 1982) and associated
with choosing the placement of point masses for the
best approximation of the potential. The theoretical
aspects of this problem are discussed in detail in the
monography (Antonov, Timoshkova & Kholshev-
nikov 1988). The continuation of these studies was
carried out in (Kholshevnikov & Shaidulin, 2015),
and a partial case is considered in (Kholshevnikov,
Milanov & Shaidulin, 2017). Further detailing of the
integrand function (specifically representing a sum of
the Legendre polynomials of three variables) will
allow us to represent formulas for Stokes constants as

a linear combination of coefficients b, and the geo-

N

metric parameters of the ellipsoid, and to investigate
their features.

Purpose

Using well-known a representation of the planet
masses distribution functions in the biorthogonal
series form it is necessary to establish the Stokes

constants C, ;, S,

& Dresentation through the planet
potential expansion coefficients b, ,, . Based on these

formulas, the objective is to investigate the possible
influence of the inhomogeneity of the mass
distribution function of the Earth’s interior and the
representation of its shape with an ellipsoid of
rotation onto the values of Stokes constants and to
explore the contribution of the radial distribution of
the Earth’s mass density to these constants.

Methodology

Stokes constants of the planet o which figure is
limited by the surface Q, are completely determined
by the integral formula

1

Cop +iS, 4 =——[8(Up +iV, )de,mk =0,1,2,...(1)

a, o
where M,a, — mass and equatorial radius of the planet
respectively; & — mass distribution function of the pla-
net’s interior; U, ,V,, — internal spherical functions and
U+ V= T (0 +iBpg 3P x8x5 . (2)
p+q+s=n

Analysis of the planet’s gravitational field parameters

(1) indicate the inhomogeneity of the masses distribution
and the deviation from spherical shape. If the body
surface is homogeneous in the three axial ellipsoid then
the Stokes constants is C,,,, # 0 (in the case two axial
ellipsoid just C,,,#0). This fact is one of the

conditions of the hydrostatic state of the planet.

18

Further the Earth's figure is taken as an ellipsoid

2 2 2
XX X . .
| 2 .4
Ty +—5+—<1 with semi axis g;,a,,a;. We
a a4,

complement the piecewise continuous function of
mass distribution 8(x;,x,,x;) as

5(P)a P(x]axZaxfs)eo-a

3
0, Pert/o. ®)

§°(P)= {

In this interpretation, all the integral characteristics

associated with the masses distribution of the planet’s
interior stay unchanged, that is,

[6 (P)f(P)do =[5"(P)f(P)dr.

In this regard, we consider the task: to analyze the
influence of a three-dimensional structure of the
planet’s interior mass distribution and its figure
approximation by the ellipsoid to the values of Stokes
constant (1).

Under the assumption (3), the piecewise
continuity of the investigated function allows it to be
presented as a series decomposition (Meshcheriakov,
1991)

0

5= 3

N=m+n+k=0

bmnkank +5O(p)’ (4)

where 6°(p) — one of the generally accepted radial

(spherical) models of density, W, — generalized

Legendre polynomials of three variables (Bateman,

1953; Meshcheriakov, 1991), b, — expansion
coefficients, m+n+k=N and
ank =
N
1 N 23 ox
:mnkN mnk_2+_2+_2_l’
a'ayay 2" minlk!ox"Oxy0x; \ af  a; @
)
W, bdt
by =——. (6)
IWmnkwmnde
T

For further research, it is convenient to use the
representation of the internal spherical functions in a
rectangular coordinate system (Fys, Zazuliak &
Zajats’, 2004) using complex variables

U +iV, =

nk

_ RR(n—k)![ 2 }xg-’f-z"’ D" (x5 +x3)"
Ma2* 2o (n—k—2m)\(k+m)!m!

(x; +ixy ) =
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= Z (a;qs + iﬂ;qs )xlpxgxg . (7)
prq+s=n

Substituting (4), (5) and (7) in (1) gives

n
. _ pr -Qpr t .ot
Cyp +iS, 4 = CPl +iSP + zo( Wi *iShi ) (®)
1=

where  C, .S, x given Stokes constant;

Cl ST CrirSnk Stokes constant, calculated
using the PREM model and the coefficients b,,, of

t order and

k
2 n—k
. RR(n—k)! b dp” - [2} 1mnk2mx+x .
i)y = TR o (k s ED (6 20" (i) e, )
2°Ma!  prams=t 2 plq!s! alalasoxtoxdons | m=o (n—k—2m)!m!(k+m)!
[n_k “k2m, 2 2
o RR(n—k)! (hrakm 2 2y

cro+iSh =———— + dr. 10
nk Tk sz n { ( )mz:(){ r— 2m)‘m'(k+m)'(xl lx2) T ( )

Transition to a generalized spherical coordinate
system using equality
X, =apsindcos,
X, =a,psinIsini, (11)
X3 = aypCcos I,

o 3RR(—K)KIS, !
cryisry =22 0

and integrating give us the next formula where
4 .

9 a
=_aB =y =—":
ae ae ae

n—k
[ 2 J(_])k(n—k—zm—l)”k!"_k_zma2m+k—lﬁl><

c n+2
25+ <I> Hpp"dp

J

n+D! w0 22" (n—k—=2m)!(k+m)! =0

(D2 @m+k=1=DUE=DY 5 (12)
e (m=)lilk— )1

In particular, for constant density &, we obtain

3RR(n—k)'k!8, [f

m, n—k—2m
D"y 2tk

CP iSSP =
R R 4318,

J
e |

=0 22" (n—k=2m)"\(k +m)! =0

J @2 Bl 4k —1 1)t ’ (13)

i i m—i)\(k = j)!j!

and for spheroid (¢, =a, ), respectively

cr 38 n! 2 ( D"y
"0 S0 (n+3) o (n—2m)(m) 122"

:350 (%)( —l)”22 ; (- l)m an(aZ)mzm
TR TR

, (14)

or, finally,

n

35, (-1

cr.=2% \" )
" S0 (n+1)(n+3)

(15)

where 6. —average density.

(-

This expression is a well-known relation between
Stokes constants and the geometric compression for a
homogeneous biaxial ellipsoidal planet (Cunnin-
gham,1970), and equality (13) determines the
contribution of the radial masses distribution and is
one of the conditions of the planet hydrostatic state.
Stokes constants values, except C,,, do not correlate

with the expression (15), that means there is a
deviation of the Earth’s state from a hydrostatically
equilibrium state.

We continue to study contribution of hetero-
geneity of the masses distribution function and the
planet's figure approximation by ellipsoid to the value
of Stokes constants. Firstly, we note that three-
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dimensionality is determined by the presence of series
elements (4) in the expression (9), and indices ¢ and

n affect Stokes constants formation. First of all, all
values in (9) are converted to zero if ¢t >n (¢ -order
derivative of a polynomial of lower degree).
Therefore, in the sum (8), the decomposition of
function & in series (4) is limited to the coefficients

b, up to the n degree. For the case n=1, the term

(9) is as follows
Cy, +iSy, =

3wy bpqS( pas ’ﬂpqS)]I(

p+q+s=n 2"
(a;qs +iﬂ1',’qs)bpqs (16)

)n p’dp =

3 n!
5. 2n+3)! ,,H,zﬂzn

n .on
or Coe TiSy =

RR(n—k)!

= (u”k+lv )1 n—t+2
> (J)p ((

pHqt+s=n 0 C

l)t)dp, 17)

where

. 3 n! & ok
n n o_ 2
Hpe 1V = 5c (2n+3)!!p+l§s:n(apqs +’ﬂpqs)bpqs .

Thus, the coefficients for the values of bp in the

qs
Stokes constants of »n order are the same as in the
of variables the

combinations X, Xy, X3 In

corresponding internal spherical functions U, , V,; .,

which further allows us to determine their linear
combinations through given Stokes constants.

Let's analyze the structure of the terms in expression
(9) when ¢ < n . For this we submit (9) as follows:

b Pgs o'

t Lot _
n,k +1Sn,k - % P
2" Ma,

i

( 1)m n—k— me'k'

MN

X

1=pra+s 2' plgls!| ¢ oxPoxlox;

(-

W@ iy,

m=0 22" mV(n—k = 2m)l(m+k)! =0 2r+j=1 (m—r)r'(k— J)']'

_1)tpn7t+2dp
pgs

2, |

n—k

2 } )"y T 2m k) 2k

1
k' (p?
0
J

 (n-rs1)

i
x 3 (_l)z(i)j [2

]11(2m+k—1)!a2'"*"*’ﬂ’

prgrs=t PIGIS! mmo 22" (m+ k) (n—k—-2m—s)!! =

(18)

2t y=1 (M=)l = ) j1Cm+ k-1 p)N({I

We can assume that equality (18) is a set of
expressions (9) of corresponding orders and quantities
a, B,y , which are surface integrals over an ellipsoid

from internal spherical functions. The verification of
this hypothesis is based on concrete examples in the
paper (Fys, 1982). Given this, the expression (18) can
be written as follows:

uk + Sy =
Ly (c)+is, )ju dr,1<n (19)
T(thn43)5o g T
and, taking into account (8) and (16), we get

2 (a;qs +iﬂ;qS)bpqs =

pHq+s=n

Sc(2n+3)!

S0 e HiS, ——
2" n!3 " c,o(

The right-hand side of (20) is expressed in terms of
the given Stokes constants of n order. The value of

+iS! )j (20)

20

-

the sum is

coefficients bpqs s

constants lower orders. Therefore, in the final result,
the right-hand side (20) is the sum of Stokes constants
to n order inclusive, and is therefore similarly
constant with the right-hand side (8).
Equality (20) can be represented as follows
Cn,k + iSn,k =

:—ZJ{ (ufz+inz)Jun_t,.de}(pz—l)t p"dp (21)
Ls Q

5ct00

calculated using combinations of
which are calculated using Stokes

Expression (19) is a linear combination of coeffi-

cients b, and parameters «,f3,y . This is explained

by the fact that the derivatives of spherical functions
are the sum again of spherical functions of lower
orders. It is extremely difficult to establish the general
form of such dependence, since it requires laborious
and complex transformations, but this is not necessary
for solving our problem, since due to the ambiguity of
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the potential representation, it is sufficient to establish
only some of the coefficients that ensure the equalities
(linear combinations in (16)).

First of all, in all relations (19), except for the

case of k=n, there is a term C 75, [u,(dQ (or after
Q

transformations (y2 —I)C,:’_‘zz’k ), which means there is
inconsistency between the fall in the values of the
Stokes constants of these orders and the power law.
The values C, .S, ; are obtained mainly due to the
inhomogeneity of the mass distribution, which is quite
expected, because for the spherical planet in (19) the

sum is absent, since everything [u,dr=0 or
T

[u,,dQ2=0, except for the case n=k =0.
Q

Thus, a short algorithm for the implementation of
the above methodology is as follows:
1. We determine the coefficients byy, , bygo» Py »

by of zero and first order by the given Stokes

constants.

2. We calculate, using second-order Stokes
constants and formulas (16), one of the variants of the
coefficients b, (p+q+s=2).

3. Using the already known second order

coefficients b we calculate the third order

pas >
coefficients according to (20).
4. The iterative process is continued with the
established order M.
5. At each step, using the already calculated values

b, » we return to the definition of the coefficients of

the polynomials p!,,v!, by which we further

construct graphs of integrand functions (21), and also
A+4 ‘ A+2 ‘

calculate the sequences 3 C,,, XS, that
=0 =0

determine the Stokes constants C,; , S,

. by the
formula (20).

Results

According to this algorithm, we performed
calculations using one of the models of the Earth’s
gravitational field (EGM2008) and in Table 1 we

gave the values C7,, S’ obtained by formula (20),

0, (n—k)—even,

where A ={ We  constructed

1 (n—k)—odd
graphs of the dependence of the mass distribution
contribution (21) along the radius (depth) in Stokes
constants (see Fig. 1.2) and analyzed the results.

Table 1
The values of given Stokes constants (model EGM2008)
and calculated values for different orders

A ‘ A+2 p A+4 p A+6 p 248 . A+2 y A+4 . 2+6 p A+8 .

n |k Cn k Z Cn,k Z n,k Z Cn,k Py Cn,/c Z n,k Sn,k Z Sn,k z Sn,/c Z Sn,k Z Sn,k
> =0 =0 t=0 =0 =0 =0 =0 = =0

1|2 3 4 5 6 7 8 9 10 11 12 13
0 |0 | 1.OE+00 | 1.0E+00 | 0.0E+00 - - - - - - - -
1|0 | 0.0E+00 | 0.0E+00 | 0.0E+00 - - — | 0.0E+00 - - - -
1 |1 | 0.0E+00 | 0.0E+00 | 0.0E+00 - - — | 0.0E+00 - - - -
2 {0 | -1.1E-03 | -1.3E-03 | -1.1E-03 - — — | 0.0E+00 — - - -
2 (1 | -2.8E-10 | 0.0E+00 | -2.8E-10 - - - 1.9E-09 1.9E-09 - - —
212 1.6E-06 | 0.0E+00 1.6E-06 - - - | -9.0E-07 | -9.0E-07 - - -
310 2.5E-06 | 0.0E+00 | 0.0E+00 2.5E-06 - — | 0.0E+00 | 0.0E+00 — — —
311 2.2E-06 | 0.0E+00 | 0.0E+00 2.2E-06 - - 2.7E-07 | 0.0E+00 2.7E-07 - -
312 3.1E-07 | 0.0E+00 | 0.0E+00 3.1E-07 - — | -2.1E-07 | 0.0E+00 | -2.1E-07 - -
313 1.0E-07 | 0.0E+00 | 0.0E+00 1.0E-07 - - 2.0E-07 | 0.0E+00 2.0E-07 - -
4 10 1.6E-06 3.8E-06 2.7E-06 1.6E-06 — — | 0.0E+00 | 0.0E+00 — — —
4 |1 | -5.1E-07 | 0.0E+00 6.3E-13 | -5.1E-07 - — | -4.5E-07 | 4.2E-12 | -4.5E-07 - -
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Continuation of Table 1

1 3 4 5 6 7 8 9 10 11 12 13

4 7.8E-08 | 0.0E+00 | -1.2E-09 | 7.8E-08 - - | 1.5E-07 | 6.7E-10 1.5E-07 - -
4 5.9E-08 | 0.0E+00 | 0.0E+00 | 5.9E-08 - — | -1.2E-08 | 0.0E+00 | -1.2E-08 - -
4 -4.0E-09 | -2.2E-15 | -2.2E-15 | -4.0E-09 - — | 6.5E-09 | 0.0E+00 | 6.5E-09 - -
5 2.3E-07 | 0.0E+00 | 0.0E+00 | -1.5E-08 | 2.3E-07 — | 0.0E+00 | 0.0E+00 | 0.0E+00 | 0.0E+00 -
5 -5.4E-08 | 0.0E+00 | 0.0E+00 | -8.0E-09 | -5.4E-08 — | -8.1E-08 | 0.0E+00 | -9.8E-10 | -8.1E-08 -
5 1.1E-07 | 0.0E+00 | 0.0E+00 | -5.6E-10 | 1.1E-07 — | -5.2E-08 | 0.0E+00 | 3.9E-10 | -5.2E-08 -
5 -1.5E-08 | 0.0E+00 | 0.0E+00 | -6.1E-11 | -1.5E-08 — | -7.1E-09 | 0.0E+00 | -1.2E-10 | -7.1E-09 -
5 -2.3E-09 | 0.0E+00 | 0.0E+00 | 8&.5E-21 | -2.3E-09 — | 3.9E-10 | 0.0E+00 | 0.0E+00 | 3.9E-10 -
5 4.3E-10 | 0.0E+00 | 0.0E+00 | -1.4E-21 | 4.3E-10 — | -1.6E-09 | 0.0E+00 | 8.2E-21 | -1.6E-09 -
6 -5.4E-07 | -1.4E-08 | -9.1E-09 | -7.4E-10 | -5.4E-07 — | 0.0E+00 | 0.0E+00 | 0.0E+00 | 0.0E+00 -
6 -6.0E-08 | 0.0E+00 | -1.9E-15 | 2.6E-09 | -6.0E-08 - | 2.1E-08 | 1.3E-14 | 23E-09 | 2.1E-08 -
6 6.1E-09 | 0.0E+00 | 2.1E-12 | -2.4E-10 | 6.1E-09 - | 4.7E-08 | -1.2E-12 | -4.6E-10 | -4.7E-08 -
6 1.2E-09 | 0.0E+00 | -8.7E-25 | -9.1E-11 1.2E-09 - | 1.9E-10 | -5.8E-24 1.9E-11 1.9E-10 -
6 -2.3E-11 | -3.6E-16 | -3.6E-16 | 2.1E-12 | -2.3E-11 — | -1.8E-09 | 0.0E+00 | -3.4E-12 | -1.8E-09 -
6 -2.2E-10 | 0.0E+00 | -1.1E-25 | -6.9E-22 | -2.2E-10 — | 4.3E-10 | -3.6E-25 | -4.2E-22 | 4.3E-10 -
6 2.2E-12 | 3.0E-17 | 3.0E-17 | 3.0E-17 | 2.2E-12 — | -5.5E-11 | -1.7E-22 | -4.0E-22 | -5.5E-11 -
7 3.5E-07 | 0.0E+00 | 0.0E+00 | 8.3E-11 | -2.2E-09 | 3.5E-07 | 0.0E+00 | 0.0E+00 | 0.0E+00 | 0.0E+00 | 0.0E+00
7 2.1E-07 | 0.0E+00 | 0.0E+00 | 3.1E-11 34E-10 | 2.1E-07 | 7.0E-08 | 0.0E+00 | 3.8E-12 | 5.4E-10 | 7.0E-08
7 3.3E-08 | 0.0E+00 | 0.0E+00 1.5E-12 | -4.7E-10 | 3.3E-08 | 9.3E-09 | 0.0E+00 | -9.9E-13 | 2.3E-10 | 9.3E-09
7 3.5E-09 | 0.0E+00 | 0.0E+00 | 9.5E-14 | 4.0E-11 3.5E-09 | -3.1E-09 | 0.0E+00 1.9E-13 1.9E-11 | -3.1E-09
7 -5.8E-10 | 0.0E+00 | 0.0E+00 | -1.5E-20 | 3.1E-12 | -5.8E-10 | -2.6E-10 | 0.0E+00 | 0.0E+00 | -5.2E-13 | -2.6E-10
7 5.9E-13 | 0.0E+00 | 0.0E+00 | 4.6E-22 | -1.9E-13 | 59E-13 | 6.3E-12 | 0.0E+00 | -3.1E-22 | 7.4E-13 | 6.3E-12
7 -2.5E-11 | 0.0E+00 | 0.0E+00 1.0E-22 | 1.0E-22 | -2.5E-11 1.1E-11 | 0.0E+00 | -2.8E-23 | -4.0E-23 1.1E-11
7 2.8E-14 | 0.0E+00 | 0.0E+00 | 9.3E-23 | 8.0E-23 | 2.8E-14 | 4.5E-13 | 0.0E+00 | 2.4E-22 | 2.4E-22 | 4.5E-13
8 2.0E-07 | 6.3E-11 3.8E-11 | -1.4E-11 5.9E-09 | 2.0E-07 | 0.0E+00 | 0.0E+00 | 0.0E+00 | 0.0E+00 | 0.0E+00
8 1.6E-08 | 0.0E+00 | 6.9E-18 | -1.2E-11 5.0E-10 1.6E-08 | 4.0E-08 | -4.6E-17 | -1.1E-11 | -1.6E-10 | 4.0E-08
8 6.6E-09 1.7E-15 | -3.8E-15 | 8.2E-13 | -3.6E-11 6.6E-09 | 5.4E-09 | 3.2E-15 1.5E-12 | 2.7E-10 | 5.4E-09
8 -2.0E-10 | 0.0E+00 | 2.5E-24 | 2.0E-13 | 4.8E-12 | -2.0E-10 | -8.7E-10 | 1.8E-23 | -4.1E-14 | -7.0E-13 | -8.7E-10
8 -3.2E-10 | -1.4E-16 | -14E-16 | -2.9E-15 | 5.6E-14 | -3.2E-10 | 9.1E-11 3.2E-22 | 4.5E-15 | 4.2E-12 | 9.1E-11
8 -4.7E-12 | 0.0E+00 | 0.0E+00 | -1.4E-21 2.5E-13 | 4.7E-12 | 1.6E-11 | -2.8E-26 1.9E-22 | 5.1E-13 1.6E-11
8 -1.8E-12 1.0E-18 | 1.0E-18 1.0E-18 | -8.7E-16 | -1.8E-12 | 8.6E-12 | -3.3E-23 | -5.7E-23 | 2.2E-14 | 8.6E-12
8 3.4E-13 | 0.0E+00 | -6.5E-29 | 4.0E-23 | 4.6E-23 | 3.4E-13 | 3.8E-13 1.5E-26 | -1.0E-23 | -1.0E-23 | 3.8E-13
8 -1.6E-13 | -3.6E-19 | -3.6E-19 | -3.6E-19 | -3.6E-19 | -1.6E-13 1.5E-13 | 0.0E+00 1.6E-24 | 5.0E-24 1.5E-13
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Fig. 1. Graphs of the dependence of the contribution
of mass distribution along a radius in the Stokes constants C,,
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Given that the influence of the ellipsoidal shape of

the planet is manifested in the values [u,,dt , which
T

are multipliers in the sum (20), and the results of
calculations with Table 1, one can argue the
insignificant influence of ellipsoidalness on the
formation of the Stokes constant values. Indeed, the
total contribution effect of the computed constants

Crio Syr (A<n) is small and tangible except for

values C, ,C, . Therefore, we can conclude that the

values of the Stokes constants are formed mainly due
to the anisotropy of the planet mass distribution,
described by the elements of the sum (19) when t=n,

and deviations of the figure from the spherical shape
don’t significantly affect the formation of the values
of the Earth’s gravitational field parameters.

Treating in relation (21) the integrand function as
the average over the unit sphere value

1 =2=x

=10 5(9,A,p)sin9d9d A,
P~ 0 0

it is possible to construct its graphs (Fig. 1, 2), giving
a general idea of the total density contribution along
the radius.

From these figures, it can be seen that the
maximum effect for the reduced range of Stokes
constants is reached mainly for relative radii
0.3<p<0.6 when the sign of the corresponding

1
L 15(9.2,p)d02=
S (Bp)d= g

Stokes constant is stored. Again, for the value of C,

its formation is realized at p > 0.5 in the mantle of

the Earth. The value C,, gets its true value when
p >0.7, that is, in the upper mantle. Obviously, the

results obtained for the above method are connected,
first of all, with the extremums of the function

(p2 —l)n p? at points p = ! .

V2n+1
Thus, the conducted study requires further deve-
lopments, primarily in the direction of establishing
general relations between the quantities that are
determined through the fixed Stokes constants, and
the geometric characteristics, represented as integrals
of spherical functions. However, the obtained results

allow us to draw some conclusions.

Conclusions

1. The general relations between the expansion
coefficients b,,, of the masses distribution of the

planet’s interior and the integrals of spherical func-
tions on the ellipsoidal surface, which determine the
Stokes constants of a given order, are obtained.

2. The formation of the parameters of the pla-
net‘s external gravitational field is mainly influenced
by deviation from the radial distribution of the interior
planet’s masses.

3.  The value of lower-order Stokes constants is
included in the cumulative effect of the contribution
to the values of upper-order Stokes constants.

4.  The small contribution of the ellipsoidal form
to lower-order Stokes constants values is due to

multipliers [u,, dt, which are zero for a sphere,
T

while for a biaxial ellipsoid, they are proportional to

n
(7/2 —1)2 (n=2m,k=0).
5. The deviation of the decrease of the Stokes

constants C, ;, S, from the potential law can be

partially explained by the presence of the terms

(»’ —1)% Crzpar(7 —1)% Spapes for mk>2.

6. The construction of the dependence of the
contribution of the radial mass distribution of the
planet’s interior to the values of Stokes constants on
depth reveals an ambiguous interpretation. It can only
be stated that the values of the constants are mainly
formed within the relative radius 0.3< p <0.6.

7.  For a more complete study, it is necessary to
derive formulas for the dependence of the Stokes
constants among themselves and on the geometric
characteristics of the planet, in particular, on the semi-
axes of the Earth’s ellipsoid.

8.  Taking into account the geometry (semiaxes)
and the parameters of the gravitational field of the
planet simultaneously can give a more precise
agreement between them when imposing additional
conditions, for example, the minimum deviation
between the calculated and the given potential of the
general Earth ellipsoid.
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AOCJIJUKEHHA BIUIMBY HEOAHOPIJHOCTI PO3IIOALTY MAC HAJIP INTAHETH
EJIITICOIAAJIBHOI ®OPMU HA If CTOKCOBI ITOCTIMHI

Mera. Ilapamerpu rpasirauiitnoro momst 3emii (C,

n

> S, ;) BE3HAYAIOTECA ii ()iryporo Ta BHYTPIINHIM HallOBHEHHSM

(po3nozinoM Mac), sKi MO-pi3HOMY BIUIMBAaIOTh Ha ix ¢opmyBanHs. Ilonatoum (GyHKIiO pO3NOAiNYy Mac Hajap IUIAHETH y
BUI'JISI OiOPTOrOHANBHMX PsJiB, BCTAHOBMMO 300pa)KeHHs CTOKCOBMX mocridiamx C, ., S,, uepe3 koedillieHTH b

mnk
pO3KJIay MOTEHLialy IUIAHeTH Ta JIiHiHHI KoMOiHalii reoMeTpHYHUX XapaKTepUCTHK einincoina. Ha OCHOBI orpumaHmx
(bopMyI1 BUBUMTH MOXJIMBHUI BIUIMB HEOAHOpinHOCTI GyHKIIT po3noniny Mac Hanp 3emii Ta nopaHs ii ¢irypu emnincoigom
o0epTaHHs Ha 3HAUCHHS BEJIMYMH CTOKCOBHX IOCTIHHMX Ta JOCHIIAUTH BKJIAJ pa/liallbHOrO PO3HOIUTY I'YCTHHU Mac 3eMil y
3HA4YCHHS LUX NocTiiHux. Meroauka. IlonanHs GyHKUIT TyCTHHY Haap IUIAHETH Y BUIVIAI CyMH MHOrowieHiB Jlexxanapa
TPbOX 3MIHHHX 1 ampoKcHMallis il NMOBEpXHi EJIINCOIAOM, a TaKoX IPEJCTABICHHS BHYTDIIIHIX KyJIbOBUX (YHKIIH y

HPSMOKYTHIHM cHcTeMi KOOpAMHAT, POOJSATh MOXIIMBUM IHTEIPYBaHHS BHpa3iB Ul CTOKCOBUX HocTiHHX C,

nk>

S, T2

OTPUMAHH CIIiBBIAHOIIEHHS MK UMMM BEJIMYMHAMHU Pi3HUX MOPS/IKIB 1 JiHIHHOIO KoMOiHawi€ro KoedilieHTiB poskiany b,

MOTEHIIaly IUIAHETH U TEeOMETPUYHHMX IapaMerpiB emincoima o,y . UucnoBi naHi, OTpuMaHi 3a BHBEICHUMH CIIiB-
BiJJHOIIICHHSIMH, 1 OOy 0BaHi rpad)iky Jar0Th MOXIIMBICTh POBECTH aHAJi3 BIUIMBY HEOIHOPIAHOCTI PO3MOILTY Mac Haap
IUIAHETH eJIINcoifanbHoi (OPMU Ha 3HAYCHHS CTOKCOBHX IOCTIMHHMX Ta BU3HAUMTH IHTEPBAaJM MaKCHMAaJbHOTO BILIMBY.

Pe3yabraTn. OTpuMaHO 3araibHi CIIiBBIJHOIICHHS MiX KoedilieHTamu poskiany b, yHkuii posnoainy Ta iHTerpanamMmu

mnk

Bijl Ky/nbOBHX (yHKLIH 1O eJiIcoifanbHii MOBEpXHi, SIKi BU3HAYAIOTh CTOKCOBI MOCTiiHI 3anaHoro nopsuky. IIpu npomy
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cTOKCOBI TocTiliHi P -ro nopsaxy BupaxatoThes uepes semmunnn C, ., S,

+ HIWKYNX nopsnkis. TIposeneni o0uucaeHHs

JIAI0Th 3arajibHy KapTHHY (OpMyBaHHS 3Ha4eHb CTOKCOBMX IOCTIMHMX, 3 SIKOi YITKO BHMIUIMBA€ BHCHOBOK IIPO HEBEIMKHI
BIUIMB €JIICOIAAJIBHOI (JOPMH IUTAHETH Ha IX BEIMYMHY Ta IPO TPUBHMIPHICTH IpaBiTaIlifHOrO Noist 3eMill SIK pe3ysbTaTy

HEOJIHOPI/THOrO 3a BCiMa KOOpAMHATAMHU po3noxiny Mac ii Haap. Ilinreep/pkena 3anexmnicts 3Hauens Bennunun C,, o Bi
Te€OMETPHYHOI0 CTUCHEHHSI IBOXOCHOBOI'O 36MHOI'0 €JIiIcoiza nocriiiHoi rycriuau. HaykoBa HoBu3Ha. BusnaueHi popmyiu
3B 13Ky MK CTOKCOBHMH IIOCTIHHUMH Pi3HMX IOPSIKIB Ta JIHIHHMMH KOMOIHAIlsIMM TMapaMeTpiB erirncoina o, f,y .

IlpoBeneHi oOYMCIICHHS Ta NepeBipka OTPMMAHMX CIIBBiJHOIIEHb UL pPi3HMX HabopiB koediuieHTiB b pgs  POSKIANLY

N
MOTEHILialy Aal0Th MOXIIMBICTH 3pOOMTH BHCHOBOK IIPO NEPEBayKHUH BKJIAJ TPUBHMIPHOCTI rpaBiTaliiiHoOro noys 3emii B
3HAYEHHs CTOKCOBUX MOCTiHHMX, 3a BUHATKOM C,,, a noOynoBaHi rpadiky BM3HAYalOTh iHTEpPBAIM 1i MAKCUMAaJbHOI'O
BKJIaJly B pO31oAin Mac 3a ruouHowo. Ipakrnyna 3Hauymicts. OTpyMaHi 3a1€XHOCTI 03BONSAIOTH NEPEBIPATH CTEIHB
HaOMKEHHs 100yI0BaHOI MOJIeIIi TYCTHHH €JIICOIAAJIBHOI IUIAHETH LIISIXOM TIOPiBHSIHHS O0YMCIICHHX 3a HEIO Ta B3SATHUX 31
CIIOCTEPEIKEHb CTOKCOBUX IMOCTIHHMX. KpiM 11bOro, 3’sIBISETHCS MOMJIUBICTD ONTHMAJIBHOIO Y3TODKCHHS I'€OMETPHYHUX
XapaKTePUCTHK eJIICoiia IIaHeTH 3 il rpaBiTalliiHUM T10JIEM.
Kniouogi crnosa: moTeHIian IaHETH, MOZIENIb PO3MOALTY Mac, CTOKCOBI ITOCTilHI, €TIICOI.
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