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Abstract: Classical quantum computer is an analog 
probabilistic computer. The digital quantum computer that 
can be implemented in FPGA has been described in the 
article. Digital quantum coprocessor is designed to 
implement algorithms for execution on the analog quantum 
computers. A digital quantum coprocessor operates under 
the control of a classical computer and together they are 
digital quantum computer. The digital quantum 
coprocessor is a set of digital units called digital qubits that 
have multi-bit data input and single-bit data output each. 
The digital qubit is a wave function calculator. There is a 
pseudo random number generator (PRNG) in the described 
digital qubit to generate the probabilistic output bit. Single-
bit qubit output qb has been formed by the probable 
reduction of its multi-bit result x to single-bit (0 or 1) 
according to result value x and pseudo random code k (x is 
an angle which determines the position of normalized 
vector with length 1 in polar grid, it is a result of multi-bit 
input data calculation). The decision about output state has 
been made after the functional conversion of the qubit 
multi-bit result x to result probability p = sin2x and 
subsequent comparison p with the pseudo random code k. 
Qb=1 when k < p. In the article, the inverse variant of 
decision option with p = arcsin (sqrt (k)) and qb = 1 when  
x > p has been described. This variant allows to use one 
PRNG for all digital qubits. Possible schemes for digital 
qubit and digital quantum coprocessors based on them 
have been discussed in the paper. The presentation of data 
in digital qubits and the basic operations they perform have 
been also considered. The results of the simulation of a 
four-qubit digital quantum coprocessor and the results of 
the qubit implementation in FPGA have been presented. 

Index Terms: digital quantum coprocessor, digital qubit 

I. INTRODUCTION  

Classic quantum computers (QC) are analog computing 
devices. As for any analog calculator digital equivalent can 
be built for the classical analog quantum computer. It will 
successfully solve the same task. Such digital quantum 
computers form another class of computing devices – along 
with the devices with an access to data by addresses (ROM, 
RAM) and by content (associative memory, cache) form a 
class of devices with an access to data by probability [24]. 
The digital quantum computer that can be implemented in 
FPGA is described in the article. Digital quantum 
coprocessor is designed to implement algorithms for 
execution on the analog quantum computers. A digital 
quantum coprocessor operates under the control of a 
classical computer and together they are digital quantum 

computer. The digital quantum coprocessor is a set of 
digital units called digital qubits that have multi-bit data 
input and single-bit data output each. The digital qubit is a 
wave function calculator. There is a pseudo random number 
generator (PRNG) in the described digital qubit to generate 
the probabilistic output bit.  

Possible schemes for digital qubit and digital quantum 
coprocessors based on them are discussed in the paper. The 
presentation of data in digital qubits and the basic 
instructions they perform are also considered. The results of 
the simulation of a four-qubit digital quantum coprocessor 
and the results of the qubit implementation in FPGA are 
presented. 

In the literature, you can find the definition of a 
quantum computer – a computing device that uses the 
phenomena of quantum mechanics (quantum superposition, 
quantum entanglement) to transfer and process data. A 
quantum computer (as opposed to a normal classical 
computer) does not operate with bits (capable of accepting 
either 0 or 1), but qubits, which have values of both 0 and 1 
simultaneously. As a result, it is possible to process all 
possible states simultaneously, attaining gigantic superiority 
over classical computers in a number of algorithms [2]. 
Often, the superposition principle is treated as such, which 
allows you to save all 2n numbers from 0 до 2n-1 in the n-
qubit register at the same time. However, this statement is 
misleading: since the result of measuring the state of a 
quantum register is always one of the possible basic states, 
the maximum available amount of information that can be 
obtained from one qubit is one bit, as in the classic case. A 
full-fledged universal quantum computer is still a 
hypothetical device [2], however, recently there have been 
reports on the creation of quantum computers with 72 
qubits [4, 2]. Also 2048 qubit The D-Wave QPU [31] is 
well known. It is built from a lattice of tiny loops of the 
metal niobium, each of which is one qubit (shown on the 
next page, in red). Below temperatures of 9.2 kelvin, 
niobium becomes a superconductor and exhibits quantum 
mechanical effects. When in a quantum state, current flows 
in both directions simultaneously, which means that the 
qubit is in superposition–that is, in both a 0 and a 1 state at 
the same time. At the end of the problem-solving process, 
this superposition collapses into one of the two classical 
states, 0 or 1. 

In computational complexity theory, bounded-error 
quantum polynomial time (BQP) is the class of decision 
problems solvable by a quantum computer in polynomial 
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time, with an error probability of at most 1/3 for all 
instances. 

The number of qubits in the computer is allowed to be 
a polynomial function of the instance size. For example, 
algorithms are known for factoring an n-bit integer using 
just over 2n qubits (Shor's algorithm [10]). 

Usually, computation on a quantum computer ends with 
a measurement. This leads to a collapse of quantum state to 
one of the basis states. It can be said that the quantum state 
is measured to be in the correct state with high probability. 

Quantum computers have gained widespread interest 
because some problems of practical interest are known to be 
in BQP, but suspected to be outside P. Some prominent 
examples are: 

• Integer factorization (Shor's algorithm [10]) 
• Discrete logarithm 
• Simulation of quantum systems 
• Approximating the Jones polynomial at certain 

roots of unity [35] 
Research in the field of quantum computing creates 

new challenges for cryptography. When using a quantum 
computer and Shor's algorithm [10] currently known public 
key cryptographic algorithms may be compromised.  

This is estimated to take at least 4000 qubits (but could 
be more depending upon the algorithm used [34]) to factor 
a 2048 bit number in order to break RSA encryption with a 
2048 bit key.  

Today, standardization centers such as NIST and ETSI 
are already conducting research in creating standards for 
post-quantum cryptography [6, [5]. On this subject, 
international conferences and seminars are held, including 
those in Ukraine [7]. 

Real quantum computers are analog and probabilistic 
devices. Their implementation is a very difficult and 
expensive task. All this underlines the relevance of work on 
the study of the characteristics of quantum computers, the 
creation of their digital models and digital samples, as well 
as the training of specialists to work with them. 

II. QUANTUM COMPUTER BASIS 

If a classic computer at any moment can be in exactly 
one of the states 1N...,,1,0 −  (Dirac notation), then 

QC at each moment is simultaneously in all these basic 
states, and in each j  state – with its complex amplitude 

jλ . This quantum state is called “quantum superposition” 

of these classical states and is denoted as the wave function 

∑
−

=

=
1N

0j
i jλψ . In this case, the sum of all probabilities 

1P
1N

0j

2
i == ∑

−

=

λ  [2]. 

The quantum state ψ  can change in time in two 
fundamentally different ways: by unitary quantum 
operation and by measurement [4]. 

Any unitary transformation of the wave function 
ψ

 
can be represented as a simple displacement of a point over 
the surface or sphere of unit radius (Bloch sphere for 
complex amplitudes, Fig. 2, [8]), or a circle of unit radius 
(for real amplitudes. In this case, the position of the vector 

at an angle of 0 radian corresponds to the state 0 , and at 

an angle π / 2 radian – state 1 ). That is, the condition P = 1 
is fulfilled both for the input and for the output with a 
unitary transformation. There are objects whose behavior is 
described by wave functions; therefore, quantum gates can 
be implemented on the basis of these objects [1], which, in 
turn, can serve as the element base for the construction of 
QC. The examples of such objects are solid-state quantum 
dots on semiconductors [2], where the directions of the 
electronic spin at a given quantum dot are used as logical 
qubits. The control is carried out by external potentials or a 
laser pulse. 

It is also possible to realize the calculation of wave 
functions by digital methods – software or hardware (for 
example, on the FPGA). 

The state of one qubit is written in the QC as 
1B0A +  – this is called a quantum superposition. For 

the Bloch sphere (Fig. 2) the amplitudes )2/cos(A θ=  
and )2/sin(eB i θϕ= , for a unit circle – θcosA =  and 

θsinB = , respectively. Then, for the unit circle 
1sin0cos θθΨ += . If the qubit is in a 

state 121021 + , then as a result of the 

measurement with probability ( ) 2121
2

=  it can be 
determined as 0  and with the same probability as 1  (it is 
the undefined state of qubit). The indefinite state of two 
qubits is written as 1121102101210021 +++  
– two qubits can be in each of their states with probability 
( ) 4121 2 = . 

The vector representation of a single qubit is 
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The vector representation of two qubits is 
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The action of the gate on a specific quantum state is 

found by multiplying the vector ab , which represents the 

state by the matrix U  representing the gate abU  [1]. 
In atomic theory and quantum mechanics, an atomic 

orbital  is a mathematical function that describes the wave-
like behavior of either one electron (in Fig. 3) or a pair of 
electrons in an atom [32]. So electron spin in Fig. 1 can be 
illustrated by a vector on a Bloch sphere in Fig. 2. 
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Fig. 1. An electron spin 

The scientists were able to manipulate how long it 
would take for the electron to flip its spin and emit a pho- 
ton – from one to 20 nanoseconds [33]. 

QC and classical computers tend to work together [12]. 
In addition to [12], it should be noted that in algorithms for 
QC a significant part of the calculations is performed by 
classical computers. For example, in Shor's algorithm [10, 
11], the share of classic computers is the tabulation of the 
function Mmodt)x(f x= , where t is a prime number, M 
is a large number that needs to be factorized, x = 0, 1, …, 
N-1, N is about 2 times bigger than M. Also, a classical 
computer is engaged in final processing of the results and 
checking their reliability and suitability (QC is a 
probabilistic computer, and it gives the correct result with a 
certain probability).  

 

 

Fig. 2. Representation of a qubit in the form  
of a Bloch sphere for complex amplitudes (above) and a unit 

circle for real ones (below) 
 
 
 
 

 

 

Fig. 3. The shapes of the first s-, p-, d-  
and  f- atomic orbitals 
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III. QUANTUM GATES  

Quantum gate (quantum logic element) is the basic 
element of a quantum computer, which transforms the input 
states of qubits in the output ones according to a certain law. 
It differs from ordinary logic gates by working with qubits, 
and, therefore, obeys quantum logic. Quantum gates, unlike 
many classical ones, are always reversible. 

In classical computers, a set of logical two-input gates 
AND, OR and one-input gate NOT create a functionally 
complete system of functions of the algebra of logic (basis), 
which allows to build all possible logic schemes on their 
basis. Similarly, a set of quantum gates, consisting of C-
NOT gate and all one-input gates, also create a basis that 
allows the creation of circuits of different QC, for example, 
for quantum Fourier transformation [14]. Unlike logic gates 
that process bits, quantum gates handle qubits (varying 
wave function coefficients that describe the state of a qubit). 

There are software tools that allow you to create circuits 
from quantum gates and simulate their work [13]. 

Table 1 

Preparation for factoring 
j=T=2 j=T=3 j=T=4 j=T=5 j=T=6 j=T=7

x 2x 2xmod15 xmod2 xmod3 xmod4 xmod5 xmod6 xmod7
0 1 1 0 0 0 0 0 0
1 2 2 1 1 1 1 1 1
2 4 4 0 2 2 2 2 2
3 8 8 1 0 3 3 3 3
4 16 1 0 1 0 4 4 4
5 32 2 1 2 1 0 5 5
6 64 4 0 0 2 1 0 6
7 128 8 1 1 3 2 1 0
8 256 1 0 2 0 3 2 1
9 512 2 1 0 1 4 3 2
10 1024 4 0 1 2 0 4 3
11 2048 8 1 2 3 1 5 4
12 4096 1 0 0 0 2 0 5
13 8192 2 1 1 1 3 1 6
14 16384 4 0 2 2 4 2 0
15 32768 8 1 0 3 0 3 1
16 65536 1 0 1 0 1 4 2
17 131072 2 1 2 1 2 5 3
18 262144 4 0 0 2 3 0 4
19 524288 8 1 1 3 4 1 5
20 1048576 1 0 2 0 0 2 6
21 2097152 2 1 0 1 1 3 0
22 4194304 4 0 1 2 2 4 1
23 8388608 8 1 2 3 3 5 2

Nj 5 1 5 1 1 0
FJ=xmax/T 12 8 6 5 4 4
λ j=Nj/Fj 0,42 0,13 0,83 0,20 0,25 0,00
pj=(λj)2 0,17 0,02 0,69 0,04 0,06 0,00  

IV. EXAMPLE OF USING  
A QUANTUM COMPUTER 

The example shows how the number 15 decomposes; it 
was succeeded in the QC prototype [15]. The problem of 
decomposing on the factors of the number M reduces to the 
problem of determining the period of a function y = 
2xmodM. The course of calculations of the period for the 
number M = 15 is summarized in the Table 1 (it is clear that 
the period is 4 because 2xmod15 = 1, 2, 4, 8, 1, …). When 

finding the desired period T, the frequency of finding value 
xmodT=0, when the function y = 2xmodM =1 is determined 
by viewing the table values with all possible periods T (T = 
2, 3, 4, …, 2M): the number Nj of detected values 
xmodT=0  is counted, the frequency Fj, with which 
xmodT=0 is repeated for all selected periods T is 
determined, the situation xmodT=0 detection frequency iλ  
is determined and it is verified that the sum of the 
probabilities pj of the wave function is 1. The wave function 

has the form ∑
=

=
7

2j
ji Tλψ . To calculate the frequencies 

Fj in the Shor’s algorithm [10], [11]  the quantum Fourier 
transform is used [14]. 

After completing the work of the QC, when reading its 
state, a correctly defined period T = 4 will be read with the 
highest probability p4 = 0.69. The result is checked by a 
classical computer, which it then uses to determine the 
multipliers of the number 15. 

In quantum algorithms, usage of complex amplitudes 
and the representation of vectors using the Bloch sphere 
(Fig. 2) is the most common case. But the use of real 
amplitudes and the representation of vectors by means of a 
unit circle is also popular. For example, the American 
Mathematical Society used the representation of states of 
qubits in this way (Fig. 4 [26]), illustrating the execution of 
a quantum computer factorization of numbers by Shor's 
algorithm [10].  

 

 

Fig. 4. The change of the state of qubits  
by circular diagrams 

V. AN ERROR RATE FOR  
QUANTUM COMPUTERS 

A minimum error rate for quantum computers needs to 
be in the range of less than 1 %, coupled with close to 100 
qubits. Google seems to have achieved this so far with 72-
qubit Bristlecone and its 1 % error rate for readout, 0.1 % 
for single-qubit gates, and 0.6 % for two-qubit gates. 
Quantum computers will begin to become highly useful in 

70 
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solving real-world problems when we can achieve error 
rates of 0.1–1 % coupled with hundreds of thousand to 
millions of qubits. According to Google, an ideal quantum 
computer would have at least hundreds of millions of qubits 
and an error rate lower than 0.01 %. That may take several 
decades to achieve, even if we assume a “Moore's Law” of 
some kind for quantum computers [36]. 

VI. SOFTWARE IMPLEMENTATION OF DIGITAL 
QUANTUM COMPUTERS – MICROSOFT 

QUANTUM KATAS 

Today, quantum programming plays a major role in the 
research of leading companies in the world. The existence 
of a quantum computer is no longer a science fiction, but 
rather a matter of time. One of these companies is 
Microsoft, it has not built a quantum computer yet, and 
even if it were, it would be very unprofitable to perform 
certain calculations. Therefore, a new Q # programming 
language was implemented, which solves the problem of 
the inability to teach programmers to encrypt quantum 
computers on a real device. It also allows you to encode a 
quantum computer program with the confidence that this 
code will work after the hardware has been created. 

What is Q#? According to Microsoft: Q# is a scalable, 
multi-paradigm, domain-specific programming language 
for quantum computing. So, what do these terms actually 
mean? Let us dive into the details. Scalable: Q# allows us to 
write code that can be executed on machines of varying 
computing abilities. We can use it to simulate a few Qubits 
on our local machine, or even thousands of Qubits for an 
enterprise level application. Multi-paradigm: Q# is a multi-
paradigm programming language. It supports both 
functional and imperative programming styles. Domain-
specific: Q# is a programming language for quantum 
computing. It is to be used for writing algorithms and code 
snippets that are executed on quantum processors [22]. 

Development tools are integrated into the well-known 
platform programmers, Visual Studio. Features include a 
local simulator and cost estimator, so early experiments can 
determine how many qubits are needed, for example. And 
this is really important, because when you are studying a 
new programming language, you immediately want to try 
new knowledge in practice. Therefore, programmers do not 
need access to a quantum computer to use Q # and 
applications. Q # has a pretty good documentation and 
environment setup is a fairly simple process. Each 
programmer can access it [23]. 

This solution has already several libraries, which have 
many operations and functions, such as quantum  
I / O, and interact with the usual data. Currently, the 
simulator is a sbo machine that consists of 30 qubits (with 
40 qubits at Azure in the near future). Using cost estimates, 
users can launch programs at an early stage on a scale, 
display complex programs, and see the time delay of the 
scheme, the use of qubits, and detailed error information. 

This is an opportunity, as well as a problem at the same 
time. Quantum physics is a strange area of teleportation and 
the likelihood that it does not adhere to the rules we are 

familiar with. Many people do not understand quantum 
mechanics. Developers are no exception, people who will 
have to program quantum computers for application use. 

However, programmers do not necessarily have to 
know quantum physics, in order to write programs on  
Q #. Just try creating a program, or use ready-made test 
software from libraries, and follow the compilation result. 
Launching Q # using the target equipment for specific 
challenges with cloud resource invocation. The 
programming environment offered by Microsoft, Q #, is 
very similar to what programmers are using in the present 
with other programming languages. 

What is Quantum Katas? This is a tool by which 
Microsoft aims to encourage and teach programmers to use 
Q #. In general, it is a set of freely available training 
programs that can help programmers get to know Q #. Each 
task is a task for solving a given issue related to the topic of 
quantum computing. This tool is not intended to solve it at 
one time, or not wrongly. On the contrary, mistakenly, 
programmers will go deeper into the essence of quantum 
programming. And it really works, because when passing 
this program, people with zero knowledge of quantum 
physics, can begin to program quantum computers [23]. 

With this approach, programmers begin to relate to 
quantum programming from the other side. Why? Because 
there is a transition from obscure quantum theories to 
practical solutions, not having a quantum computer, they 
see the result, it works or not. Q # and Quantum Katas build 
a so-called proxy between programmers and quantum 
physics, enabling programmers to understand the essence of 
the work of quantum computing and what choice they are 
spoilt for [23]. 

By downloading the Quantum Development Kit, part of 
which is Q #, interested programmers cannot just use it and 
learn, but also refine it. In this way, promoting the 
community of developers, as well as expanding the 
database, adding new algorithms and documentation will 
definitely improve the future work of developers  
with Q #. 

An important point is that even non-experienced 
programmers can begin to work with Q #, so begin to 
understand quantum computing by experimenting with 
Quantum Development Kit. This is useful not only for 
them, but also for quantum physics in general. Since 
quantum physics is considered difficult to explain and 
understand, and it is difficult to compare with classical 
physics, this is yet another step for understanding quantum 
physics. Especially considering that in quantum physics it is 
difficult to see any results of experiments, taking into 
account its features, then in this case, programmers still see 
the result of their quantum program [23]. 

Microsoft hopes Q # will be the point of convergence of 
quantum computing and programmers. Programmers do not 
need to know quantum physics or quantum theories. No 
need to spend years studying them. Simply write the Q # 
program, run it, and look at the result. 

Learning programmers will take a lot of time, but 
Microsoft and their Q # is a big step forward. 
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Let's move on to practice and examples. 
In the classical theory of computation, logic gates are 

used to perform operations on bits. For the manipulation of 
the Qbits used similar designs – quantum gates. For 
example, the NOT gate performs transformations 0 → 1 
and 1 → 0. The quantum gate NOT is similar to its classical 
ancestor: it performs transformations 〉0|  → 〉1|  and 〉1|  
→ 〉0| . This means that after passing such a gate, the qubit 

from the state 〉+〉 1|0| βα changes to the state 

〉+〉 0|1| βα . The gate NOT can be written in the form 
of a matrix (X), which swaps 0 and 1 in the state matrix  
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Since 〉0|  and 〉1|  in vector form are written as 







1
0

 

and 







0
1

. The first column of the matrix X can be 

considered as a transformation of the vector 〉0| , and the 
second column as a transformation of the vector 〉1| . 

It would seem that the difference from the classical case 
is not so great. But do not forget what we said in the 
previous section: measuring the state of a qubit is 
probabilistic in nature. As it is known from elementary 
probability theory, the sum of the probabilities of the 
complete group of incompatible events is equal to one. 

Therefore, 1|||| 22 =+ βα  for the quantum state, 

〉+〉 1|0| βα . 
It follows that not all imaginable gates can exist in the 

quantum world. Here is one of the limitations: the condition 
for the normalization of the quantum state of a qubit, 

1|||| 22 =+ βα , must be observed both before and after 
the passage of the gate. In terms of matrix algebra, this 
condition will be satisfied if the matrix is unitary. 

VII. IMPORTANT GATES: GATE Z  
AND HADAMARD GATE. 

The Z gate works very simply: it saves the component 
〉0|  and changes the sign of the component 〉1| . It can be 

written as a matrix 







−

≡
10

01
Z  which converts the 

states of qubits as follows 〉0|  → 〉0| , 〉1|  → 〉− 1|  

(remember that the first column of the matrix describes the 
transformation of the vector 〉0| , the second – the 
transformation of the vector 〉1| ). 

The Hadamard gate creates a superposition of states 
〉0|  and 〉1| , similar to those discussed above. Its matrix 

notation looks like this: 







−

≡
11

11
2

1H   which 

corresponds to the following state transformations of qubits: 

2
1|0|0| 〉+〉

→〉 ; 
2

1|0|1| 〉−〉
→〉 . Also, for this gate 

the following designation is used  

VIII. ANOTHER IMPORTANT GATES 

We have already dismantled the work of the NOT gate. 
Next in line is the CNOT (controlled-NOT, “NOT 
controlled”) gate (Fig. 5). At its entrance serves two qubits. 
The first is called the manager, the second – managed. If the 
controlling qubit is 〉0| , then the state of the controlled 
qubit does not change. If the controlling qubit is 〉1| , then 
the NOT operation is applied to the managed qubit. 

The CNOT operation can be interpreted in several 
ways. Like the gates X, Z and H, it can be written in matrix 
form, which is denoted by the letter U. 



















≡

0100
1000
0010
0001

CNU  

 
Also for this gate the following designation is used (the 

upper part corresponds to the control qubit, the lower part – 
to the controlled one): 

 

 

Fig. 5. CNOT gate 

There are four wonderful states of Bell. One of them 
( 〉+ϕ| ) will be used in the quantum program below. Let's 
consider it. 

2
11|00|| 〉+〉

=〉+ϕ  

Suppose we measure the state of the first qubit. Result 

〉0|  we get with probability 
2

2
1

. This means that the 

state after the measurement 〉=〉 00|'| ϕ , or 〉1|  with the 
same probability (0.5), and the state after the measurement 
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〉=〉 11|'| ϕ . For the curious incident, we give the 
complete set of Bell states (they are the simplest cases of 
quantum entanglement): 

2
11|00|| 〉±〉

=〉±ϕ
2

10|01|| 〉±〉
=〉±ϕ   

Now, suppose that we measured the state of the second 
qubit. According to the same reasoning, after measuring the 
steam will be in the state 〉00|  or 〉11| . If, after this, we 
decide to measure the state of the first qubit, the 
probabilities will no longer be equal to 0.5. We will get 

〉0|  with a probability of 1 or 0, depending on what the 
measurement result was. Here it is important to understand 
that these results are related. The first to notice this were 
Albert Einstein, Boris Podolsky and Nathan Rosen 
(therefore, these states are sometimes called “EPR pairs”). 
Subsequently, their theory was developed by John Bell. 

One final observation: Bell states can be generated 
using the Hadamard gate and the CNOT gate (Fig. 6). 
Hadamard's gate puts the first qubit into a superposition 
state. Then this qubit is fed to the control input of the 
CNOT gate. Table 2 shows how this process can be 
represented using a circuit diagram.  

Table 2  

Factorization 

In Out 

〉00|  
〉=

〉+〉
00|

2
11|00|

β  

〉01|  
〉=

〉+〉
01|

2
10|01|

β  

〉10|  
〉=

〉+〉
10|

2
11|00|

β  

〉11|  
〉=

〉+〉
11|

2
10|01|

β  

 

Fig. 6. Bell states generation 

Let’s see how to use it with Q#. 
namespace Quantum.Bell 

{ 
    open Microsoft.Quantum.Primitive; 
    open Microsoft.Quantum.Canon; 
 
    operation Set (desired: Result, q1: Qubit) : () 
    { 
        body 

        { 
            let current = M(q1); 
            if (desired != current) 
            { 
                X(q1); 
            } 
        } 
    } 
} 

This operation converts our qubit to the selected (by us) 
state – 0 or 1. First, we measure the qubit (this operation is 
denoted by the letter M), and it collapses into the state 0 or 
1. If the measured state does not correspond to the desired 
one, we change it with the help of the gate NOT, X. 
Otherwise, nothing needs to be done [21]. 

 
operation BellTest (count : Int, initial: Result) : (Int,Int) 

    { 
        body 
        { 
            mutable numOnes = 0; 
            using (qubits = Qubit[1]) 
            { 
                for (test in 1..count) 
                { 
                    Set (initial, qubits[0]); 
                    let res = M (qubits[0]); 
                    // Count the number of ones we saw: 
                    if (res == One) 
                    { 
                        set numOnes = numOnes + 1; 
                    } 
                } 
                Set(Zero, qubits[0]); 
            } 
            // Return number of times we saw a |0> and number 
of times we saw a |1> 
            return (count-numOnes, numOnes); 
        } 
    } 

This small piece of code is intended to test the operation 
we just wrote. This is a very simple program: it checks that 
the qubit has been transferred to the state we need. 

To do this, it takes a measurement in a cycle and counts 
the number of results 1 using the variable numOnes. 

The entry “Qubit [1]” means to “create an array of 
qubits from one element”. The array elements are indexed 
from scratch. To select two qubits (we will need to do this 
later), we need to write “Qubit [2]”. Qubits in such an array 
correspond to numbers 0 and 1. 

In the for-loop, we set the qubit allocated for a specific 
initial state – One or Zero (in the Driver.cs file, to which we 
will soon move on, this is done explicitly). We measure this 
state, and if it is One, we increase the value of the counter 
by one. The function then returns the number of monitored 
states One and Zero. At the end, the qubit is placed in the 
Zero state (just to leave it in some known state) [21]. 
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           using (var sim = new QuantumSimulator()) 
            { 
                // Try initial values 
                Result[] initials = new Result[] { Result.Zero, 
Result.One }; 
                foreach (Result initial in initials) 
                { 
                    var res = BellTest.Run(sim, 1000, 
initial).Result; 
                    var (numZeros, numOnes) = res; 
                    System.Console.WriteLine( 
                        $"Init:{initial,-4} 0s={numZeros,-4} 
1s={numOnes,-4}"); 
                } 
            } 
            System.Console.WriteLine("Press any key to 
continue..."); 
            System.Console.ReadKey(); 

 
This driver creates a quantum simulator and an array of 

initial values that need to be checked (Zero and One). Then 
the simulation is repeated 1000 times, and the result for 
debugging is displayed on the screen using the 
System.Console.WriteLine function 

 
Init:Zero 0s=1000 1s=0 
Init:One 0s=0 1s=1000 
Press any key to continue… 
 
If everything is in order, the display should look like the 

one shown above. This result means that if we transfer the 
initial qubit to the Zero state and perform a thousand 
repetitions, then the number of states 〉0|  according to the 
observation results will be 1000. The same should be done 
for the One state [21]. 

Let's try something more interesting. Here we change 
the state of the qubit using the NOT gate. 

 
X(qubits[0]); 

      let res = M (qubits[0]); 
Then we run the program again and see that the results 

are reversed. 
Init:Zero 0s=0 1s=1000 
Init:One 0s=1000 1s=0 
Then the NOT gate is replaced with the Hadamard gate 

(H). As a result, as we know, the qubit will go into a 
superposition of states, and the result of its measurement 
can be equal to both 〉0|  and 〉1| , with a certain 
probability. 

 

H(qubits[0]); 
      let res = M (qubits[0]); 

If you run the program again, we get a rather interesting 
result. 

Init: Zero 0s = 484 1s = 516 
Init: One 0s = 522 1s = 478 
The number of measurement results 〉0|  and 〉1|  will 

be approximately equal. 

 
operation BellTest (count : Int, initial: Result) : (Int,Int) 

    { 
        body 
        { 
            mutable numOnes = 0; 
            using (qubits = Qubit[2]) 
            { 
                for (test in 1..count) 
                { 
                    Set (initial, qubits[0]); 
                    Set (Zero, qubits[1]); 
 
                    H(qubits[0]); 
                    CNOT(qubits[0],qubits[1]); 
                    let res = M (qubits[0]); 
 
                    // Count the number of ones we saw: 
                    if (res == One) 
                    { 
                        set numOnes = numOnes + 1; 
                    } 
                } 
 
                Set(Zero, qubits[0]); 
                Set(Zero, qubits[1]); 
            } 
            // Return number of times we saw a |0> and number 
of times we saw a |1> 
            return (count-numOnes, numOnes); 
        } 
    } 

 
According to the diagram, the first qubit, qubits [0], 

needs to be passed through the Hadamard gate. As a result, 
he will be in superposition. Then we pass the qubits through 
the CNOT gate (qubits [0] – the controlling qubit, qubits [1] 
– controlled) and measure the result. 

To understand what results to expect, we repeat once 
again how our state of Bell works. If we measure the first 
qubit, we get the value 〉0|  with probability 0.5. This 
means that after the measurement the state will be 

〉=〉 00|'| ϕ  or 〉=〉 11|'| ϕ  with the same probabilities 

(0.5) 〉=〉 11|'| ϕ . Thus, the result of measuring the state 

of the second qubit will be 〉0|  if the first qubit was in the 

state 〉0| , and 〉1|  if the first qubit was in the state 〉1| . If 
the states of two qubits were successfully entangled, then 
our results should show that the first and second qubits are 
in the same states [21]. 

In our code, we check if the measurement result of 
qubits [1] is equal to the measurement result of qubits [0], 
using the if operator. 

 
operation BellTest (count : Int, initial: Result) : 

(Int,Int,Int) 
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    { 
        body 
        { 
            mutable numOnes = 0; 
            mutable agree = 0; 
            using (qubits = Qubit[2]) 
            { 
                for (test in 1..count) 
                { 
                    Set (initial, qubits[0]); 
                    Set (Zero, qubits[1]); 
 
                    H(qubits[0]); 
                    CNOT(qubits[0],qubits[1]); 
                    let res = M (qubits[0]); 
 
                    if (M (qubits[1]) == res)  
                    { 
                        set agree = agree + 1; 
                    } 
 
                    // Count the number of ones we saw: 
                    if (res == One) 
                    { 
                        set numOnes = numOnes + 1; 
                    } 
                } 
 
                Set(Zero, qubits[0]); 
                Set(Zero, qubits[1]); 
            } 
            // Return number of times we saw a |0> and number 
of times we saw a |1> 
            return (count-numOnes, numOnes, agree); 
        } 

    } 
Before checking the results, you need to make another 

change to the Driver.cs file: add the variable agree. 
using (var sim = new QuantumSimulator()) 

            { 
                // Try initial values 
                Result[] initials = new Result[] { Result.Zero, 
Result.One }; 
                foreach (Result initial in initials) 
                { 
                    var res = BellTest.Run(sim, 1000, 
initial).Result; 
                    var (numZeros, numOnes, agree) = res; 
                    System.Console.WriteLine( 
                        $"Init:{initial,-4} 0s={numZeros,-4} 
1s={numOnes,-4} agree={agree,-4}"); 
                } 
            } 
            System.Console.WriteLine("Press any key to 
continue..."); 
            System.Console.ReadKey(); 

Now the program can be run. What do these results 
mean? If the first qubit was initially placed in the Zero state 
(that is, we applied the value 〉00|  to the input), then the 
Hadamard gate puts the qubits in the superposition state, 

and the measurement result is 〉0|  in 50 % of cases and 
〉1|  in 50 %. The fulfillment of this condition can be 

estimated by the number of zeros and ones. If the 
measurement of the state of the first bit did not affect the 
state of the second, it would remain equal to 〉0| , and 
consistency would be achieved only in 499 cases [21]. 

But, as we can see, the states of the first and second 
qubit are completely consistent: the number of results 〉0|  
and 〉1|  (approximately) coincide. Thus, the results are 
consistent in each of the 1000 cases. This is how Bell states 
should work. 

Init: Zero 0s = 499 1s = 501 agree = 1000 
Init: One 0s = 490 1s = 510 agree = 1000 

IX. PROBLEM STATEMENT 

There are several approaches to design quantum 
computers FPGAs ([20], [25]). But there is no systematic 
approach to designing a digital quantum computer as a 
digital co-processor, which can be implemented in FPGA. 

The variants of such coprocessor circuits, the variants of 
coding the state of its digital qubits, and the calculation of 
probability functions are not considered. 

The errors of the results of such co-processors were not 
carried out. 

Also, the complexity of the coprocessor implemented in 
the FPGA was not evaluated. 

This article is an attempt to answer the above 
formulated tasks. 

X. THE DIGITAL QUANTUM COMPUTER 

A quantum computer is an analog probabilistic 
computer. His schemes consist only of gates. They have no 
memory elements.  Therefore, there are no programs. Prog-
rams are performed only by a classic computer that controls 
a quantum computer. So the quantum computer is actually a 
co-processor with respect to the classic computer.  The 
quantum computer functional scheme is induced in Fig. 7. 

Table 3 

Comparison of digital and analog methods of 
information processing  

Characteristic Analog 
processing 
methods 

Digital 
processing 
methods 

Speed + - 
Versatility – + 

Microminiaturization – + 
Accuracy – + 

Zoom – + 
Transmission in space – + 
Transmission in time 

(memory) 
– + 

Immunity – + 
Reliability – + 

Testing, debugging, 
diagnostics 

– + 
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A digital quantum coprocessor consists of digital qubits. 
As a precursor to the class of discrete devices, the digital 
qubit has the advantage over the analog qubit (Table 3, ‘+’ 
– advantage, ‘-‘ – disadvantage). This causes an interest in 
constructing precisely the digital qubits to perform 
probabilistic algorithms on them. 
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Fig. 7. A digital quantum computer 

The digital quantum coprocessor consists of several 
qubits or it can be assumed that several single-chip digital 
quantum coprocessors are connected to one classical 
computer (Fig. 8). 

 

 

Fig. 8. A quantum computer with multiple  
digital quantum coprocessors 

A classical computer manages the work of a quantum 
coprocessor, provides it with an input data, stream of 
instructions and checks the result of its work. Some options 
for constructing digital quantum computers are discussed in 
[20]. The classification of quantum computers is 
represented in Fig. 9. A generalized functional scheme of a 
quantum coprocessor is given in Fig. 10. Digital quantum 
coprocessor in Fig. 10 is represented as a set of finite-state 
machines (FSMs), one of them is a controller and one or 
more implement the functions of a digital qubit. The 
connection between the latters can be carried out through 
the pipeline registers (pRG). 

The programmable switch matrix of the coprocessor 
makes it similar to the Complex Programmable Logic 
Device (CPLD [30], Fig. 11). The inputs of the matrix are 
the outputs of all digital qubits (Result1, …, Resultn), from 

the side of the classical computer the matrix can be 
programmed, so that the inputs of any qubit were fed out of 
any other qubit (Resultp, …, Resultq). 

The simplest version of a digital quantum coprocessor 
on a FPGA has only one digital qubit, which consistently 
performs operations that correspond to operations of 
quantum gates. The classical computer determines the 
sequence of these operations. The more complex 
coprocessor has a chain of several digital qubits (Fig. 10), as 
well as several qubit chains. Data transfer from one qubit to 
another can be done through conveyor registers. 

A classical analog qubit forms only one output bit. 
Unlike the analog qubit in the digital qubit with a single-bit 
output, you can also organize a multi-bit output, which will 
precisely determine its current state in Fig. 16. The use of a 
multi-bit output by a classical computer allows you to 
arrange interruptions of quantum programs and call 
quantum procedures and functions (programs, procedures, 
functions, and interruptions that are executed and processed 
by a classical computer in the process of controlling a 
digital quantum coprocessor, will be called quantum ones). 
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Fig. 9. Options for quantum computers design 

Control 
FSM

pRG1Qbit1 Qbitn pRGn

Instructions

Result

From/to 
Classical 
Computer PRNG1

k1

PRNGn

kn

Instruction1 Instructionn

Data1 Datan

CI C1 Cn-1 CO

 

Fig. 10. A generalized functional diagram  
of a digital quantum coprocessor 

XI. DIGITAL QUANTUM COPROCESSOR  
FOR REAL AMPLITUDES 

To explain the principles of digital quantum 
coprocessor design, it will be first implemented for the case 
of real amplitudes.  

Two methods are possible to determine the position of 
the vector in a unit circle – using Cartesian and polar 
coordinates (Fig. 12). 

In this paper, to represent the position of the vector, a 
polar coordinate system is selected (it is necessary to 
specify and define only one coordinate – the angle θ 
(Fig. 13), in contrast to the Cartesian coordinate system, 
where it is necessary to specify two coordinates, x  
and y). 
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Fig. 11. A generalized functional diagram of a digital  
quantum coprocessor with a switching matrix 

 

Fig. 12. Encoding formats of qubits state  
in a digital quantum computer 

 

The data format that a classical computer transmits to a 
quantum coprocessor (angle θ and quadrant number) is 
shown in Fig. 14. 

The codes used to set the angle θ are shown in Fig. 15. 
The codes xx.0..0 are special: they belong to two quadrants 
at once and can encode both state 0  and state 1 . 
During the measurement, all angles are reduced to the 
angles of the first quadrant (0≤θ≤π / 2) with the codes 
corresponding from 00.0..0 (the code for 0 )  to 01.0..0 

(the code for 1 ). The number of such codes is odd – 
2n+1, where n is the angle θ code bit number. The midpoint 
of the range is exactly 00.10..0 (π/4 angle, 

sin(π/4)=cos(π/4)= 21 , so it is the point of qubit 
undefined state). There are 2n-1 codes smaller than it (from 
00.0...0 to 00.01..1) and 2n-1 codes bigger than it (from 
00.10..01 to 01.0..0), which is taken into account when 
measuring the state of the qubit. 

θ n20,1001 πθ +=+

n22/,1100 ππθ +=+

n2,1001 ππθ +=+−

n22/3,1100 ππθ +=−

1sin0cos θθ +

 

Fig. 13. Representation of a qubit state on a unit circle 

 

Fig. 14. Data exchange format 

θ

n20,1001 πθ +=+

n22/,1100 ππθ +=+

n22/3,1100 ππθ +=−

n2,1001 ππθ +=+−

 

Fig. 15. Vectors position codes (angle θ codes) 

Quantum gates [1] are used to convert coefficients jλ  

of wave functions ψ .  

XII.  REALIZATION OF A DIGITAL QUBITE  
ON FPGA 

There are several approaches to design quantum 
computers FPGAs [20, 25]. The peculiarity of the proposed 
in the paper option is the implementation of a digital 
quantum coprocessor  and the use of polar coordinates to 
represent the position of the vector on a unit circle. For the 
realization of probabilistic functions a generator of 
pseudorandom codes k is used with their subsequent 
transformations into a form suitable for estimating the 
probabilities of the results as p = arcsin(sqrt(k)), where sqrt 
(k) is the square root of k. 

A qubit that can be controlled by a classical computer, 
appears as a finite-state machine (FSM) (Fig. 16) with the 
measurement device on the output. 

One of the main elements of a digital quantum 
coprocessor on a FPGA is the true random code generator 
(TRNG, external) or pseudorandom code generator  
(PRNG, internal, based on shift registers with linear 
feedback with the period 232-1 [27]), and a functional 
converter on its output, which is used to measure the qubit 
state (Fig. 20). Functional converters can be created 
according to well-known solutions [16, 17]. 

Each qubit can have its own pseudo-random code 
generator (the measurement scheme for this case is shown 
in Fig. 20) or qubites can use one generic generator, 
referring to it at different times (possible measurement 
circuits shown in Fig. 21, Fig. 25, Fig. 24, time chart in 
Fig. 26 illustrates this process. 

The additional and optional multi-bit output (Multi-
bitQbitOut) allows to interrupt digital qubit control 
programs performed by a classical computer. This output 
allows you to read the exact internal state S0 of the digital 
qubit, to download the new S1 state through the DataIn 
input, to perform a series of instructions starting from this 
state S1, to read the exact state of S2, in which the qubit will 
appear after their execution, to save S2 in the memory of the 
classic computer, then to read from the memory of a 
classical computer previously saved qubit previous state S0, 
to load it into a qubit and continue to execute instructions 
from this state S0. 
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Fig. 16. Qubit as a finite-state machine (FSM) 

To encode the position of the vector in the range from 0 
(the code 00.00..0) to π/2 (the code 01.00..0), an odd 
number of codes (2n + 1) is required. 

To determine the state of the qubit during the 
measurement using the classical method (Fig. 20), the 
operation y=sin2x must be performed (Fig. 20), then 
compare the code y with (pseudo) random code that can 
have any value in the same range (from 00.00..0 to 
01.00..0). Accordingly, it is necessary to have a random 
code generator of the same range. The value 1  is formed 
if the code y is less (pseudo) random code k or equals to the 
code 01.00..0, the result 0  is formed if the code y is more 
(pseudo) random code k or equals to the code 00.00..0. If 
y = k – the decision about the state of the digital qubit is 
taken into account of additional parameters which are not 
discussed now. The disadvantage of this method is the 
presence of a functional converter y = sin2x at the output of 
each qubit. 

To reduce the correlation of the results of measuring the 
states of different digital qubits, it is desirable to use 
generators of pseudorandom codes with different and large 
periods (for example, 2128-1, 219937-1 [28] and various initial 
vectors. 

XIII. MAIN INSTRUCTIONS WHICH A DIGITAL 
QUBBIT MAY PERFORM 

The instructions that a digital qubit can perform must be 
universal – form a functionally complete system of 
functions, that is, using a set of such instructions, you can 
recreate the work of any other quantum gate. 

Quantum gates perform unitary operations that do not 
change the vector norm on the Bloch sphere; they only 
move a point along the sphere. 

The simplest one-qubit gates:  
• identical transformation  

• negation (Pauli Gates) X, Y, Z  

• phase shift Rm  

• Hadamard transform H  
There are gates having two inputs (and two outputs, 

since the number of inputs and outputs at quantum gates 
must match due to the unitarity requirement). One of them 

is controlled NOT (C-NOT)  

There are special measurements gate . 
The gate set, consisting of the C-NOT gate and all 

single-qubit gates, is universal. 

XIV. INSTRUCTIONS FOR DIGITAL QUBIT, 
WHICH WORKS WITH REAL NUMBERS 

The negation instruction performs the conversion 
1A0B1B0A +→+ . Its performance for real 

numbers is illustrated in Fig. 17. 
If the vector is in the first quadrant and its position is 

given by the angle α=θ, The digital qubit ALU for 
determining the position of the vector after inversion (to 
determine the angle αNOT) must perform the actions 
αNO = π/2 – θ = π/2 – α. If π/2 is encoded as 01.0..00, then 
this operation is reduced to the definition of two’s 
complement binary code for (-θ). 

For the second quadrant  
α=π/2 + θ and αNOT= 2π+π/2 -(π/2 + θ) = π/2 – α.  
For the third quadrant 
α=π + θ and αNOT= 2π+π/2 -(π + θ) = π/2 – α.  
For the fourth quadrant  
α=2π – θ and αNOT= π/2 + θ = π/2 – α. 
The phase shift of the vector with the coordinate θ by 

the angle φ is performed as the addition θRφ =θ + φ. 
Hadamard transform sets the vector defined by the 

angle θ at an angle 
θθ
θθ

β
sin_cos
sincosarctg −

= . In fact, the 

dependence of the angles is linear (Fig. 18, for the first 
quadrant β = π/4 – θ) and the new angle is easily calculated 
by the digital qubit. Repeating the Hadamard transform 
returns the vector to its previous state. In particular, from 
the position 0 , the Hadamard transform translates a qubit 

to unstable equilibrium 1
2

10
2

1H += , 

measurement in which will result 0  with the probability 
of 50 % or with the same probability of 50 % – the result 
1 . 

θ

θ
1y0x θθ +

1x0y θθ +

0

1

1−

0−
θ

θ

1y0x θθ +

1x0y θθ +
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Fig. 17. Pairs of inter-inverse vectors 
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Controlled NOT in a digital quantum qubit in the 
simplest case is reduced to a sequence of two commands of 
a quantum program: 

measurement of the state of one digital qubit; 
inverting another qubit if the state of the first was 1 . 
To perform quantum interrupts, procedures, and 

functions, additional commands for loading an arbitrary 
initial angle (Load) and unloading the multi-bit current 
position of a digital qubit (Store, which cannot be achieved 
in a classic analog qubit) are used.  

XV.  ORGANIZATION OF QUANTUM 
COMPUTATIONS 

On the whole, the organization of quantum 
computations in k-qubit (q1, q2, …, qk) coprocessor is 
illustrated in Fig. 19: 

 

 

Fig. 18. Changing the angle of the vector  
as a result of the Hadamard transform 

 

Fig. 19. Computation scheme in a quantum coprocessor 

transfer all qubits to the initial state 0 ; 
transfer of qubits to a state of unstable equilibrium 

using Hadamard transforms H; 
impact on qubits either from the side of a classical 

computer or from other qubits with the help of the so-called 
phase request Ui to bring them out of a state of unstable 
equilibrium; 

re-impact on qubits by Hadamard transform H; 
qubit state measurement. 
The measured result is checked by a classic computer 

and the process is repeated. 

XVI. MULTIPLE QUBBIT DIGITAL QUANTUM 
COPROCESSOR FOR FPGA. 

Consider an alternative way of measuring the qubit 
state of a digital quantum coprocessor (Fig. 21), in which 
the functional converter is transferred to the output of the 
generator of random codes (now it is a converter 

xarcsiny = ). Such a scheme facilitates the creation of 
multi-qubit digital quantum coprocessors with several 
comparators (Fig. 25) or with one comparator (Fig. 24).  

The time diagram of the classical computer's reading of 
the results of a quantum coprocessor (Fig. 24) is shown in 
Fig. 26. 

XVII. FPGA DIGITAL QUANTUM COPROCESSOR 
FOR COMPLEX AMPLITUDE  

In contrast to the real amplitudes and the representation 
of the vectors by their positions on the unit circle, for which 
it is necessary to set only one angle θ, the use of complex 
amplitudes and the Bloch sphere requires working with two 
angles θ and φ (latitude and longitude). The principles 
described above for constructing a quantum coprocessor for 
real amplitudes can also be applied to the construction and 
coprocessor for complex amplitudes. 

XVIII. TESTING OF DIGITAL QUANTUM 
COPROCESSORS 

Testing of probabilistic circuits such as a digital 
quantum coprocessor is a very complex, long and 
multilevel process. 

Testing involves performing a large number of 
experiments and evaluating the probability of each of the 
results. The probability of each of the research results 
evaluated by their actual number should be close to the 
estimated probability of this result. 

The test sequence may be as follows: 
testing a single qubit with a median position of the unit 

vector (at an angle π/4, after its reset and Hadamard's 
transformation. The probability of measuring this state as 

1  and as 0  should be approximately the same (50 %) 

(Fig. 23); 
testing a single qubit when placing a unit vector at an 

angle π/6. The probability of determining this as 1  and as 

0  will be 75 % and 25 % respectively; 

testing a single qubit when placing a unit vector at an 

angle π/3. The probability of determining this as 1  and as 

0  will be 25 % and 75 % respectively; 
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testing of a multi-bit digital quantum coprocessor with 
a median position of unit vectors in each qubit (at an angle 
π/4, after their reset and execution of Hadamard's 
transformation).  

For a four-qubit coprocessor the probability of 
determining each of the 16 possible states from 0000  to 

1111  will be equal to 1/16 (6.25 %) (Fig. 22). Fig. 22 
shows the relative deviation of the probabilities of 16 states 
(delta_state0, …, delta1_state15 – respectively for the states 
from 0000  to 1111 ) from the expected value 6.25 % 
after each successive experiment. The experiment number 
is postponed on the horizontal axis (extreme right point – 
experiment 218). As can be seen, the maximum relative 
deviation is near 2 % from the nominal value 6.25 % 
(Absolute deviation is less than 0.02*6.25 % = 0.125 % ) 
The probability to read any coprocessor state is 
(6.25±0.125 ) % ). These results are obtained using a 32-bit 
pseudo-random code generator and qubits with 16-bit angle 
codes. 

Other tests are also possible. 

XIX. IMPLEMENTATION OF THE DIGITAL 
COPROCESSOR ON FPGA 

Some of the described digital coprocessors have been 
implemented on the FPGA Spartan 6 (Xilinx). 

The 16-bit digital qubit (Fig. 16) with the measurement 
unit (Fig. 21) when implemented in the FPGA xc6slx150 
occupies 223 of 92152 LUT (less than 1 % of resources). 
The clock frequency of the digital qubit exceeds 200 MHz. 
XC6SLX150 theoretically allows to build in one FPGA a 
digital quantum coprocessor with more than 400 digital 
qubits and 2% accuracy. To construct such a multi-bit 
digital quantum coprocessor, it is advisable to create an 
appropriate qubit IP-core generator. Parameters of the IP-
core generator should be: 

number of digital qubits; 
angles code bit number; 
pseudorandom codes generator bit number ; 
start vectors of generators of pseudorandom codes; 
measurement unit type ; 
topology of the switching matrix; 
other options. 

 
 
 
 

 

Fig. 20. Measurement of the state  
of the digital qubit 

 
 

AarcsinD =

 

Fig. 21. An alternative way to measure  
the state of a digital qubit 
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Fig. 22. The relative accuracyin %  for 16-bit quantum coprocessor with 4 qubits 
 
 

 

Fig. 23. Digital qubit simulation 
 
 

AarcsinD =

 

Fig. 24. Multiqubit digital quantum coprocessor with one comparator 
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xarcsiny =

 

Fig. 25. Multiqubit digital quantum coprocessor 

 
Fig. 26. Reading results from a quantum coprocessor Fig. 24 

 

XX.  CONCLUSION 

The principles of constructing digital quantum 
coprocessors based on digital qubits are presented. 

Models of the digital quantum coprocessor for its 
subsequent realization on the FPGA are created. The model 
is checked. The deviations of the results of the model from 
the results of the ideal quantum computer are near 2 %. It is 
estimated that it is theoretically possible to build on one 
FPGA a digital quantum coprocessor with more than 400 
digital qubits. 
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