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An efficient particle filtering algorithm for demodulation of M-PSK signals at the back-
ground of non-Gaussian noise is proposed. The state-space model of the observation signal
is formulated including the dynamics of channel parameters’ updating. The resulting es-
timation of informative symbols and channel parameters is done in two parallel contours.
The simulations for QPSK signals have shown that for a sufficiently high number of parti-
cles the proposed method outperforms classical demodulation approach based on Gardner
and Costas loops.
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1. Introduction

The problem of demodulation is of great interest in digital communications. The particle filtering re-
cently found many applications in many communication tasks (see, e.g. review in [1]): blind equaliza-
tion, blind detection over frequency non-selective dispersive channels, multiuser detection, estimation
and detection of space-time codes in fading channels and others. Application of particle filtering to
demodulation task has also received much attention (see, e.g. [2]). The key idea of particle filters is
to use a stochastic grid approximation for the conditional probability distribution of the symbols with
particles (values of the grid) evolving randomly in time. A comprehensive survey of the state-of-the-art
particle filtering can be found in [3].

In this paper, the particle filtering algorithm is developed to solve the problem of demodulation
for M-PSK signals (though the method can be applied to any kind of QAM signals). The results show
that for a sufficiently high amount of particles the algorithm outperforms the classical demodulation
method based on Gardner and Costas loops [4, 5]. The structure of the paper is as follows. After the
preliminary statements, we discuss particle filtering framework and how the demodulation task can be
reduced to it. Then we present the demodulation algorithm and show experimental results.

2. Preliminaries

The model of received signal z(t) has a form:

z(t) = a ej(2πft+ϕ)
∞
∑

k=−∞

s(k) g(t − kT − τ) + v(t), (1)

where s(k) are transmitted symbols from alphabet S (e.g. M-PSK symbols), g(t) is pulse shaping
(raised-cosine) filter, T is a symbol period, v(t) is the observation noise with variance σ2; a, f , ϕ, τ
are channel’s amplitude, carrier frequency, phase shift, and time delay respectively.
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Since demodulation is usually performed at multiple symbol rate, we are replacing model (1) by
digital representation with a sampling period Ts = T/m:

z(p) = a ej(2πfpTs+ϕ)
∞
∑

k=−∞

s(k) g(pTs − kT − τ) + v(p), (2)

where notations z(p) and v(p) are hereinafter used instead of z(pTs) and v(pTs) for the simplicity of
notations.

Note that by taking p = mn,mn+1, . . . ,mn+m− 1, equation (2) can be rewritten in vector form

z(n) = a ej(2πfnTs+ϕ)
A(τ) s(n) + v(n), (3)

where s(n) = [s(n− l) s(n− l+ 1) . . . s(n) . . . s(n+ l − 1) s(n+ l)], matrix A(τ) of size m× (2l + 1)
represents the composition of following linear operations: raised-cosine filtering of vector s(n), shift
of resulting (2lm × 1) vector on value τ and, finally, selection of (central) coordinates lm + 1, lm +
2, . . . , lm+m− 1. Accordingly,

z(n) = [z(ln + 1), z(ln + 2), . . . , z(ln +m− 1)]

is the observations vector.
The goal is to obtain maximum a posteriori (MAP) estimates of transmitted symbols s(n). The

next section describes the particle filtering approach to the MAP estimation.

3. Particle filtering framework

Application of particle filtering requires representation of initial system is state space:

{

x(n) = fn(x(n − 1),d(n))
z(n) = hn(x(n),v(n)),

where n is a discrete time step, x(n) is some state vector, d(n) and v(n) are the control vector and
measurement noise vector respectively, fn and hn are some (generally, nonlinear) vector functions.

When the posterior probability of state vector is Gaussian, the task is standardly solved by such
tools as Kalman filtering. However, in the case of non-linearity and non-Gaussian assumption these
approaches are not efficient (see review [3]).

The key idea of particle filtering is to represent the required posterior density function by a set
of random samples with associated weights and to compute estimates based on these samples and
weights. As the number of samples becomes very large, this characterization becomes an equivalent
representation to the usual functional description of the posterior power density function, and the
resulting estimate approaches the optimal Bayesian estimate.

So, suppose that we have n observations: z1:n = [z(1), z(2), . . . , z(n)]. Our goal is to maximize
posterior probability p(x(n)/z1:n).

The key idea (the principle of importance sampling) is to approximate posterior density at discrete
moment k as

p(x(n)/z1:n) =

Ns
∑

i=1

wi
n δ

(

x(n)− x
i(n)

)

, (4)

where x
i(n) (i = 1, . . . , Ns) is a set of support points (particles) with associated weights wi

n. The
weights are calculated as

wi
n =

p(x(i)(n)/z1:n)

q(x(i)(n)/z1:n)
,
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where q(x) is an importance density, from which it is easier to draw samples as compared with
p(x). It can be shown that as Ns → ∞, the approximation (4) approaches the true posterior den-
sity p(x(n)/z1:n) [3].

In [3] it was shown that weights can be calculated by recursive relation:

wi
n = wi

n−1

p
(

z(n)/x(i)(n)
)

p
(

x
(i)(n)/x(i)(n− 1)

)

q
(

x(i)(n)/x(i)(n− 1), z(n)
) . (5)

So, the realization of the algorithm depends on the choice of density q(x). Although there many
possible choices [3], it is often convenient to choose the importance density as

q
(

x
(i)(n)/x(i)(n− 1), z(n)

)

= p
(

x(n)/x(i)(n− 1)
)

. (6)

Substitution of (6) into (5) then yields

wi
n = wi

n−1p
(

z(n)/x(i)(n)
)

. (7)

Finally, the estimate at time step n is

x̂
(i)(n) =

1

Ns

Ns
∑

i=1

wi
nx

(i)(n). (8)

It is known that the difference of the values of the importance weights becomes more and more
distinct as the time increases. After a few steps, only a few particles have larger importance weights,
and the weights of the other particles are almost zero. This phenomenon is called particle degeneracy

or weight impoverishment. So, some resample methods [3] had been developed. The basic idea is that
the particles with larger normalized importance weights will be multiplied, and the particles with lower
normalized importance weights will be removed. In practice, a suggested estimation for degeneracy is
denoted as

Neff =
1

∑Ns

i=1(w
i
n)

2

where wi
n are the normalized importance weights at time step n. When the value of Neff is below

a predefined threshold (taken as Ns/2), the re-sampling process is performed. Suitable strategies for
particles’ resampling are described in [3].

4. Application of particle filtering to demodulation task

To apply the proposed particle methodology, we need to transform our model (2) into the state space
form. Let us introduce the state vector:

x(n) = {s(n) θ(n)},

where

s(n) = {s(n− l)s(n− l + 1) . . . s(n) . . . s(n+ l − 1)s(n + l)},

θ(n) = {an, ϕn, τn, fn, σn}.

Then the state equation can be expressed as

{

s(n) = Fs s(n− 1) + ds(n),
θ(n) = Fθ θ(n− 1) + dθ(n),

(9)
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where ds is a control vector, the coordinates of which take values from the symbols’ alphabet S, and
Fs is the corresponding transition matrix:

Fs =













0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0













.

The second equation in system (9) is required for the update of channel parameters’ estimates. As
will be shown in experimental section, without such an update, the values of parameters’ estimates
become “frozen” after a few time steps. We show that this problem can be eliminated by introducing
the update of parameters’ values due to second equation of system (9). We found that the transition
matrix Fθ can be taken as the unity matrix while the variances of components of vector dθ can be
adjusted individually so that the continuous tracking of channel parameters values becomes possible.
It means that the second equation of system (9) can be represented as follows:























an = an−1 + βad
a
n

ϕn = ϕn−1 + βϕd
ϕ
n

τn = τn−1 + βτd
τ
n

fn = fn−1 + βfd
f
n

σn = σn−1 + βσd
σ
n,

where dan, d
ϕ
n , dτn, d

f
n, dσn are the independent random values, each uniformly distributed over the interval

[−1, 1]. The parameters βa, βϕ, βτ , βf , βσ are selected to provide an adequate tracking of corresponding
parameters’ values and to keep high quality (in terms of signal-to-noise ratio) of demodulation of signal
s(n). The selection of their specific values and the example of corresponding tracking of parameter are
given in the experimental section.

Note that this update of parameters was not used in other known to us works such as [6], where
the second equation in system (9) was given simply as θ(n) = θ(n − 1). In the experimental section
the efficiency of this innovation is shown.

Further, the observation equation is obtained due to (3)

z(n) = ane
j(2πfnnTs+ϕn)A(τn) s(n) + v(n). (10)

Based on equations (9), (10), we can run the following particle algorithm for the demodulation
task.

1. Initialization. For i = 1, . . . , Ns draw a set of particles x
i
0 = {si0, θi0} according to a priori informa-

tion and assign weight wi
0 = 1/Ns for each particle.

2. Draw the particles x
i
n = {sin, θi

n} at time n based on particles from previous state x
i
n−1 =

{sin−1, θi
n−1} in accordance with (9).

3. Update the weights by formula (7) and normalize them.
4. Calculate the estimate of transmitted symbols and channel parameters by (8).
5. If Neff < 0.5Ns, perform particles resampling.

Due to the nature of the system (9), the estimation of informative symbols and channel parameters is
done in two parallel contours.

5. Experimental results

In order to assess the performance of the proposed method, we applied it to the case of QPSK signals
demodulation at the presence of non-Gaussian background noise. The resulting demodulation method
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was compared with classical demodulator based on Gardner and Costas loops [4, 5]. Preliminary the
empirical constants of Gardner & Costas algorithm were optimized to achieve the optimal performance.

To compare the two methods, we tried 500 packets of 512 bits (256 QPSK symbols) for different
signal-to-noise ratios (SNR). Following the works [2,6], we modeled non-Gaussian noise as the weighted
sum of two Gaussian probability densities:

p(v) = µN(0, o2) + (1− µ)N(0, kσ2),

where the values µ = 0.2, k = 10 are taken.
Different numbers of particles were tried: Ns = 100, 1000, 10000. We also used m = 2 as an

interpolation index and fs = 1/Ts = 46800Hz as the sampling frequency. During numerical modulation
the values responsible for update of parameters βa, βϕ, βτ , βf , βσ were chosen as follows: βa = 0.1,

βϕ = 0.03, βτ = 0.04, βf = 9 × 10−5, βσ = 0.02. The results for the frequency errors f = 0 and
f = 0.001fs are presented in Figs. 1 and 2 respectively.
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Fig. 1. Comparison of BER provided by classical demodulator [4, 5] with
modifications of proposed method for f = 0.

From the Figs. 1, 2 it can be seen for Ns = 10000 the proposed algorithm outperforms the existing
method in terms of BER. At the same time, classical demodulator works better than particle approach
for 100 and 1000 particles. It shows the importance of choosing the proper amount of particles for the
correct demodulation.
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Fig. 2. Comparison of BER provided by classical demodulator [4, 5] with
modifications of proposed method for f = 0.001fs.
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Note that without the introduction of parameters’ update by vector dθ in (9), the continuous update
of channel parameters does not take place. A typical example is shown in Fig. 3. The upper plot shows
the tracking of cyclic frequency in the absence of matrix Fθ, where one can observe the “freezing” of
parameter’s update. At the same time, the bottom plot corresponds to the case of update of channel
parameters and here one can observe the convergence to the true cyclic frequency value.
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Fig. 3. Tracking of frequency parameter without (a) and with (b) the update of channels’ parameters.

6. Conclusions

In this paper, we have proposed the particle filtering algorithm for demodulation of signals at the
background of non-Gaussian noise. The proposed state model of observation signal includes dynamics
of channel parameters’ updating and this innovation has been shown to be effective. The simulations
for QPSK signals at different noise levels have shown that BER decreases with the growth of num-
ber of particles. Besides, for the sufficiently high number of particles (10000), the proposed method
outperforms classical demodulation approach based on Gardner and Costas loops.
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Ефективний метод демодуляцiї M-PSK-сигналiв на основi
багаточасткової фiльтрацiї

СеменовВ., КругликО.

Науково-дослiдний вiддiл алгоритмiв, ТОВ “Дельта СПЕ”,
проспект Перемоги, 123, Київ, 03179, Україна

Запропоновано ефективний алгоритм демодуляцiї M-PSK-сигналiв у присутностi
негаусiвського шуму на основi багаточасткової фiльтрацiї. Побудовано модель спос-
тережуваного сигналу, що враховує динамiку змiни параметрiв каналу зв’язку. У
результатi цього, оцiнювання iнформативних символiв та параметрiв каналу здiйс-
нюється двома незалежними контурами. Моделювання на прикладi QPSK-сигналу
продемонструвало, що, за умови використання достатньої кiлькостi часток, запро-
понований метод ефективнiший порiвняно iз класичним пiдходом до демодуляцiї з
використанням петель Гарднера i Костаса.

Ключовi слова: слiпа багаточасткова фiльтрацiя, QPSK (квадратурна фазова
манiпуляцiя), петля Гарднера, петля Костаса.
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