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As an applied discipline, process mining emerged about two decades ago, and its 
methods have been increasingly used in practice for recent few years. What differentiates 
process mining from the conventional data mining is considering process nature of the 
analyzed data. Rapid development of the process mining software market niche has risen 
relevance of such task as scalability of process mining methods. Adaptation of the process 
discovery method, called Fuzzy Miner, to distributed software systems with web interface has 
been proposed by the authors. To address the scalability requirements, the calculation 
procedures are implemented on different part of the system: the most computer resource 
consuming algorithms are executed on the server side whilst less resource consuming 
calculations are placed on the client side. In turns, the server-side components belong either to 
the data layer or service layer. The data layer is accountable for storing event data in XES 
format and measuring process metrics. Building a process graph and communication with the 
client web application is the responsibility of the service layer. The purpose of the client-side 
web application is to render a process graph generated in the server-side. The calculation logic 
is covered with unit and integration tests so that its correctness is checked automatically. In 
order to reduce total cost of ownership of the system, it is implemented with free software. 
From the performed calculations and comparison of the outcomes with the results received by 
means of the existing ProM 6.8 plugins (Fuzzy Miner and Alpha++ Miner), it can be concluded 
that the proposed adaptation of the Fuzzy Miner method ensures representation of the 
behavior seen in an event log (like the ProM 6.8 plugins successfully do). In turns, from the 
software architecture standpoint, the proposed solution demonstrates better scalability 
characteristics, i.e., ability to increase capacity in order to handle bigger amount of event data, 
in comparison with the mentioned above ProM plugins. 
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Як прикладна дисципліна, процес-майнинг виник два десятиліття тому, і упро-
довж останніх кількох років його методи отримують все ширше застосування на 
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практиці. Ознакою, яка відрізняє процес-майнинг від класичного дата-майнигу, є 
фокусування на процесній природі оброблюваних даних. Активний розвиток ніші ринку 
програмного забезпечення процес-майнингу загострив актуальність задач, пов’язаних із 
підвищенням масштабованості його методів. Автори пропонують подальший розвиток 
методу Fuzzy Miner, що розширює його застосування до розподілених програмних 
системах з web-інтерфейсом. Для забезпечення вимог масштабованості розрахункові 
процедури реалізовано у різних частинах системи: найбільш ресурсоємні алгоритми 
виконуються на стороні сервера, тоді як менш ресурсоємні – на стороні web-клієнта. 
Своєю чергою, серверні компоненти належать до одного із логічних рівнів: даних або 
сервісів. Рівень даних відповідає за збереження даних у XES-форматі та збирання 
процесних метрик. Побудова графу процесу та взаємодія з клієнтською частиною 
забезпечується рівнем сервісів. Призначенням клієнтської web-програми є відбраження 
графу процесу, який будує сервер. Автоматична перевірка коректності реалізації 
розрахункової логіки забезпечується модульними та інтеграційними тестами. Рішення, 
реалізоване авторами, ґрунтується на відкритих програмних продуктах, що дає змогу 
знизити сумарну вартість програмної системи. На основі порівняння отриманих значень 
із результатами, одержаними за допомогою ProM 6.8 (було застосовано плагіни: Fuzzy 
Miner and Alpha++ Miner), зроблено висновок, що запропонована адаптація методу 
Fuzzy Miner забезпечує відображення поведінки, яка присутня в event-даних (що також 
успішно виконують відповідні ProM-плагіни). Своєю чергою, з погляду системної 
архітектури запропоноване рішення демонструє кращі характеристики масштабо-
ваності, тобто здатності нарощувати обчислювальні потужності з метою опрацювання 
більших обсягів event-даних порівняно із згаданими вище ProM-плагінами.  
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Introduction 
The purpose of IT system of an organization is to automate operations which are done in order achieve 

the organization’s goals. If such operations are repeated many times and even become standardized, they are 
usually called business processes. In current paper, the “business process” term is understood in the same 
meaning as in (Burattin, 2015). So, the main task of an IT system is to serve business needs of an organization 
by automating various kind of business process. In some cases, such business processes are well structured and 
predefined by means of special technologies, for example, business process management systems. However, in 
most cases the processes do not have predefined models; therefore, the sequence of activities is described as 
textual instructions or even shared among the participants verbally. One of the first task, which appears during 
analysis of those processes, is to visualize their flow chart. In the process mining field (van der Aalst et al, 
2012), this task was named process discovery. 

During the last two decades, it was developed various process discovery methods. One of them is the 
Fuzzy Miner (Günther & van der Aalst, 2007). What differentiates Fuzzy Miner from the other methods is the 
ability to deal with unstructured processes with many events and transitions providing the possibility to simplify 
their representation for the end users employing the so-called road-map concept. One of the earliest versions of 
Fuzzy Miner was implemented as a ProM plugin (“Fuzzy Miner”, 2009). Since ProM (Verbeek, Buijs, van 
Dongen, & van der Aalst, 2010) is a desktop tool mostly used by scientific researchers, a major drawback of 
that Fuzzy Miner implementation is its limited availability for the end users who do not have academic 
background in process mining. Another disadvantage of the existing implementation is its insufficient 
scalability, i.e., practical impossibility to deal with increasing amount of event data. 

Current paper is devoted to further development of the Fuzzy Miner. The adaptation of the 
method proposed by the authors addresses the mentioned above limitations of the existing 
implementations. The applied approach allows to improve scalability of the software system since 
significant part of the calculations can be done on the server side (which is not only much more 
powerful than the end users’ machines but also allows to increase capacity by applying various 
scalability techniques (van Steen & Tanenbaum, 2017)). Additionally, it was introduced some 
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improvements of the process flow graph visualization, for example, it was added the start and end 
events (which are not displayed by the Fuzzy Miner ProM plugin). 

The rest of the paper is divided into the following sections: problem statement; brief overview of the 
related works; description of the proposed method adaptation; software implementation of the method; 
calculations with comparison the results; and concluding remarks. 

Problem Statement 
The task is to design and implement an adaptation of the Fuzzy Miner to a distributed software 

system with web interface. Under the process discovery task, it is understood the general process discovery 
problem stated in (van der Aalst, 2016), i.e., finding a method that maps event log to a process flow graph 
so that the graph represents behavior seen in the event log. An important requirement, that differentiates 
the proposed adaptation of Fuzzy Miner from its predecessors, is scalability, i.e., ability to increase 
capacity in order to handle bigger amount of event data. It should be noted that the term “distributed 
software system” is used in the meaning provided in (van Steen & Tanenbaum, 2017), i.e., it is a software 
system which components are deployed on different network nodes and communicates with one another by 
sending messages. In case of a distribute system with web interface, its components belong to either 
server-side or client-side components.  

Related Works 
Fuzzy Miner was chosen as a basic process discovery technique for the solution represented in 

current paper. The main concepts of Fuzzy Miner can be found in (Günther & van der Aalst, 2007). One of 
the earliest software implementations of Fuzzy Miner was a ProM plugin (“Fuzzy Miner”, 2009). Then, 
Fuzzy Miner was successfully adopted by commercial products like Disco (Günther & Rozinat, 2012). 
Comprehensive overviews of existing process mining algorithms (van der Aalst, 2016; Turner, Tiwari, 
Olaiya, & Xu, 2012) and also a pragmatic comparison of process discovery techniques (Rozinat, 2010) 
shows that Fuzzy Miner is one of the methods that match requirements of processing real-life event logs. 
Relevance of the task to design and implement a process discovery method for a distributed software 
system is proved in the recent process mining software overviews (van der Aalst, 2016; Batyuk & 
Voityshyn, 2018a). 

Process Discovery Method 
The key point of adapting the Fuzzy Miner to a distributed software system with web interface is to 

decide which steps are performed on the server side, and which of them are executed on the client side. 
The implemented process discovery method includes the following three steps (Fig. 1): (1) measuring 
process metrics; (2) building the process flow graph; (3) visualization of the graph. 

 
Fig. 1. Steps of the process discovery method 

On step 1, the process metrics (Günther & van der Aalst, 2007; “Fuzzy Miner”, 2009) are measured 
from the event data set. The measurement procedure is done according to set of configuration parameters 
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like the described in (“Fuzzy Miner”, 2009). Then, the collected metrics are used to build the process flow 
graph on step 2. It should be noted that parameters necessary to build the graph are passed from the client 
side (which allows to configure the graph according the end user’s needs). On the final step, the process 
flow graph is visualized on the client web page. 

Software Implementation of the Method 
From the architecture perspective, the implemented software system consists of the three layers: 

(1) data, (2) services, and (3) presentation. The components from the first two layers work on the server 
side, the ones from the third layer belong to the client side. The components and connectors model (Bass, 
Clements, & Kazman, 2012) of the software system is depicted in Fig. 2. 

Event data is received from the external sources in XES format (IEEE Std 1849-2016, 2016) and 
then persisted in the event data storage. In the simplest case the event data storage component can be a text 
file (or a collection of text files) with XES-formatted data. In case of necessity to store big amount of event 
data, a more advanced solution, like scalable non-relational database (e.g. Apache Cassandra), can be 
implemented. From the stored event data, process metrics are calculated by a job implemented according to 
the batch processing pattern. The process metrics job uses configuration parameters like the ones from 
(“Fuzzy Miner”, 2009). The measured process metrics are stored in a non-relational storage: the simplest 
approach can employ JSON-formatted text files and more advanced implementations can be based on a 
NoSQL database, for example, MongoDB. It should be emphasized that one of the scalability options for 
the data layer is to execute multiple process metrics jobs simultaneously.  

 

 
Fig. 2. Components and connectors model of the software implementation 

Service layer includes a scalable RESTful service with the main responsibility to build a process 
flow graph using the process metrics collected on the data layer. In comparison with the data layer, the 
service layer requires less computational resources since it does not need to process event data items and 
uses as the input process metrics measured on the data layer. In turns, the main responsibility of the 
presentation layer is to visualize the process flow graph.  

The technologies used by the authors to implement the described above software system are listed in 
Table 1. All the chosen technologies are open source (except MongoDB) and free to use for non-
commercial purposes. 
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Table 1 
Technologies used for the software implementation 

Component Technology Version Official web site 
Web Client Angular 7 https://angular.io 
Graph Visualizer d3js 5.9.0 https://d3js.org 

Java / Open JDK 12 http://openjdk.java.net Process Flow Graph Service, 
Graph Builder Spring Boot 2.1.3 http://spring.io 
Event Data Storage Apache Cassandra 3.11.4 http://cassandra.apache.org 

Java / Open JDK 12 https://mongodb.com Process Metrics Job OpenXES - http://www.xes-standard.org/openxes/start 
Process Metrics Storage MongoDB Community Server 4.0.8 https://www.mongodb.com 

 
It should be noted that regardless the introduced scalability enhancements, the solution designed for 

the data layer can be further improved by adding streaming processing for the newly received event data in 
order to avoid repeating batch processing of the entire data set by the process metrics job. 

Calculations and Comparing the Results 
With the purpose to test the implemented process discovery method, the Road traffic fine 

management process public data set was used (de Leoni & Mannhardt, 2015). Characteristics of the chosen 
data set are represented in Table 2. 

Table 2 
Characteristics of the Road traffic fine management process data set 

Metric Value 
Number of processes 1 
Number of process instances 150370 
Number of events 561470 
Number of event classes (the start and end events are not included) 11 
Start date 01 Jan 2000 
End date 18 Jun 2013 

 
The test was performed with the configuration listed below. On the data layer the following metrics 

were collected: (1) frequency significance (unary), (2) routing significance, (3) frequency significance 
(binary), (4) distance significance, (5) proximity correlation, (6) endpoint correlation, (7) originator 
correlation, (8) data type correlation, (9) data value correlation. For each metric, the Weight attribute was 
set up with “1.0” value, and the Invert attribute had “false” value; the nth-root attenuation factor with power 
2.7 was chosen. Process graph parameters passed from the client side to the server side with a request to 
build a process graph are listed in Table 3. The more details related to the applied configuration can be 
found in (Günther & van der Aalst, 2007; “Fuzzy Miner”, 2009).  

Table 3 
Process graph parameters 

# Filter Parameter Value 
1 Node filter Significance cut-off 0.416 
2 Edge filter Best edges / Fuzzy edges Fuzzy edges 
3  Significance / Correlation ratio 0.75 
4  Edges cut-off 0.20 
5  Ignore self-loops Yes 
6  Interpret absolute No 
7 Concurrency filter Filter concurrency Yes 
8  Preserve 0.60 
9  Balance 0.70 

 
Process graph built by the software implemented by the authors with the specified above 

configuration is depicted in Fig. 3. Short explanation to the used notation: (1) the process start event is 
represented with a completely painted circle; (2) the process end event is displayed as a painted circle with 
a white area insight; (3) the numbers in the left top corner are unique identifiers of the activities. 
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Fig. 3. Process graph visualized using the proposed software implementation 

To compare result of the performed test (Fig. 3) with existing process discovery methods, process 
flow graph was built for the same data set using the Fuzzy Miner (“Fuzzy Miner”, 2009) and Alpha++ 
Miner (Wen, van der Aalst, Wang, & Sun, 2007) ProM 6.8 plugins. The received results are represented in 
Fig. 4 and Fig. 5 respectively. 

 
Fig. 4. Process graph built using the Fuzzy Miner (ProM 6.8) 
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Fig. 5. Process graph built using the Alpha++ Miner (ProM 6.8) 

From visualization standpoint, the advantage of the process graph from Fig. 3, in comparison with 
the one generated by means of Fuzzy Miner (Fig. 4), is the ability to display the start and end events. It 
should be emphasized that from Fig. 4 it is not clear where the process starts and ends. Comparing the 
graphs from Fig. 3 and Fig. 5, it can be concluded that the results received using the Alpha++ Miner is 
more difficult to read (especially for the end users without academic background in process mining). On 
one hand, the difficulty is caused by the Petri-net-based notation, which is completely correct from 
theoretical standpoint but is not easy to understand for the end users. And, on the other hand, the graph 
from Fig. 5 contains all the transition found in the event log, whilst the proposed implementation (like 
Fuzzy Miner) displays only the most significant ones hiding those which are not so important according to 
the collected process metrics. Also, it worth noting that it would be valuable for the graph from Fig. 3 to 
highlight importance for the displayed transitions, like the Fuzzy Miner does. 

Concluding Remarks 
The method proposed in current paper is further development of the Fuzzy Miner with the purpose 

to adapt it to distributed software systems with web interface. The enhancements introduced by the authors 
allowed to improve scalability of the solution from the software architecture standpoint, in comparison 
with the Fuzzy Miner ProM plugin.  

From the business application point of view, the method can be an extension to a BI (business 
intelligence) solution used within an organization’s IT system. What differentiate such extension from a 
conventional BI platform is the ability to visualize data, taking into account its process nature. Another 
example of possible application of the described method can be the batch data processor for the real-time 
business process monitoring platform (RTBMP) represented in (Batyuk & Voityshyn, 2018b). 

The software implementation is based on open source software products (an exception is MongoDB) 
which allow to reduce total cost of ownership of the system. The designed architecture and chosen 
technologies address the scalability requirements by separating calculations between different components 
so that the most expensive calculations (collecting process metrics and building a process graph) are done 
on the server side. Relevant server-side components can be clustered depending on amount of processed 
event data and number of the end users.  

It should be noted that the proposed solution has some limitations related to the taken approach for 
handling event data: (1) necessity to scan the entire data set during each execution of the process metrics 
job; (2) inability to react to recently received event data immediately. In case of applying the method for 
implementing the batch data processor of RTBPM (Batyuk & Voityshyn, 2018b) or incorporating the 
proposed method to the energy efficiency management system (Teslyuk, Tsmots, Teslyuk, Medykovskyy, 
& Opotyak, 2017), it is worth to overcome the 1st of the known disadvantages allowing to reduce necessary 
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computational resources and load on the event data storage. In current implementation it is assumed that all 
the process instances in the event log have finished. However, one of the future improvements can be the 
possibility to handle incomplete process instances (i.e. instances which are being executed at the moment 
when the process metrics job runs). Forecasting of process events (including the end event) based on the 
methods from (Mulesa, Geche, Batyuk, Buchok, 2018) is foreseen as a core of such improvement.  
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