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Abstract. In this paper three examples of processing uncertainties of a indirect multi-variable measurement system are
considered. It was proposed to extend the vector method of estimating measurement uncertainties, given in Supplement 2 to GUM,
on the gatistical description of the accuracy of whole ranges of indirect multivariable measurement system. Formula for the
covariance matrix of relative uncertainties of the vector measurand is given. The covariance matrixes of uncertainties of few DC
electrical measurement circuits are presented, i.e.: for indirect measurement of three resistances with using them in three variants
of balanced Wheatstone bridge or without disconnection this circuit but with apply unconventional current supplies; the
measurement of three internal resistances of the star circuit from its terminas and estimation of uncertainty of powers of two
currents if two other currents are measured and their uncertainties are known. Formulas for absolute and rel ative uncertainties and
their corrdation coefficients are given. The genera conclusion is that in the description accuracy of multivariable measurement
systems the relative uncertainties are sometimes preferable than the absolute ones, and uncertainties of their main measurement
functions have been al'so considered.

Key words. nenesnicreUncertainty, Electrical circuit, Multiplicative measurement equations.

Anoramisi. BucBiTiieHo 0COOJIMBOCTI  ONpaIfOBaHHS pe3yJabTaTiB BUMIPIOBAaHHS 3a  JIOIIOMOTOI0  HEMPSIMOi
6araT0napaMeTpOBo'1' BI/IMipIOBaJ'IBHO-f CUCTCMHU. PO3I‘II9[HY1'O TPpU BUITIAAKA BUBUYCHHSA HETICBHOCTEH BI/IMipIOBaHHﬂ. 3aHp0HOHOBaHO
MONIMPUTH BEKTOPHUH METOJN OIIHIOBAHHS HENCBHOCTEH BUMIpIOBaHHS, NojaHuii y gomatky 2 g0 GUM, Ha cratucTuuHe
OITMCAHHs MTapaMeTPiB TOYHOCTI HempsiMoi OararormapaMeTpoBoi BUMiproBasibHOI cucteMu. [lomano ¢opmynu i KoBapiaHTHOT
ManI/II_Ii BiHHOCHI/IX HETICBHOCTEH BEKTOPHOI'O MEXKEpaHaa. ManI/IHﬂ HETIEBHOCTEH JUIsL BUIIAAKY HeKiHbKOX CIICKTPUYHUX CUCTEM
BUMIPIOBaHHs Ha IOCTIHHOMY CTpyMi Mijyisirac aHamizy. [Hakile Kakydd, aHaji3yloThb HENpsiMi BUMIPIOBAHHS €IEKTPUYHOTO
OIopy 3a JOIOMOro0 MocTa BiHCTOHA, mpUYOMY BUMIpIOBAaHHSI BHYTPIIIHIX OINOPIB 3ipKOBOI KOH(]Iryparii 3 OLiHIOBaHHSIM
HETIeBHOCTI CTPyMY HalpyI'¥l )KUBJICHHS MiUISIraoTh po3risiny. HaBeneHi Gpopmynn it abCoMOTHOT Ta BiJTHOCHOT HETIEBHOCTEH, a
TaKoXK 1X KOGQIIE€HTH KOpEJIsIii. OIMCaHHS MapaMeTpiB TOYHOCTI OararormapaMerpoBol
BUMIPIOBAJIBHOI CHCTEMH BiJTHOCHMMHM HETIEBHOCTSMH 1HOAI Kpallle MOPIBHSHO i3 MOMIOHUM OIMCAHHSIM Ha OCHOBI a0CONIOTHHX
HeHeBHOCTCﬁ, 1o ¥ TIOBUHHO BpaxoByBaTHUCh Hiﬂ qac posrisiay.

KuouoBi ciioBa: , enekrpudHe Kojio, 6ararornapaMeTpoBi BUMIPIOBaJIbHI PiBHIHHS.

OCHOBHUI BHCHOBOK TaKHH.

obtained on output after processing is a functiona
F (X, Y) =0. Usualy it can be formulated as the
following multivariable function

I ntroduction

In indirect methods of measurements, results the
tested quantities (observables) and their accuracy is
determined from direct measurements of the set of
jointed other quantities, named the multivariate or vector
measurand. In  genera case of multivariable

Y=F (X). )

The multivariable vector dependence (1) can be

measurements, the relation between values X of
guantities measured in input and data of Y quantities

linear or non-linear. The general flow chart of multi-
variable measurement system is shown in Fig. 1.
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Fig. 1. Sgnal processing in multi-variable indirect measurement system

In Fig. 1 and in the text below the next symbols
are used: X, Y — vectors of values of input and output
variables, Xx=[Xy, Xo,..Xal, ¥=[Y1, Yo-.. Ym] — vectors of
input x; and output y; Signal's; a, ¥. Uy, Usy, Uy, Usy— VECLOrs
of estimators of values of input x and output y signas
and their absolute and rel ative standard uncertainties; Uy,
Uy, Usx, Usy — covariance matrixes; F(X), Ug, Use, Ur, Use
— function of processing signasx toy, their absolute and
relative uncertainties and its covariance matrixes, E —
processing unit of y to obtain vectors of ¥, uy, U, and
covariance matrixes Uy, Usy .

The method of estimation uncertainties in indirect
multivariable measurements are given in GUM
Supplement 2 [1]. A collection of n individua quantities
X; of theinput vector measurand X are measured directly,
and from their signals x the output vector ¥ of m
estimators ¥; (named observables [2-3]) and covariance
matrixes Uy, Uy of absolute standard uncertainties u,=
ox W= o, ae caculated. The vector ¥ depends on
whether the functional F(X) islinear (m< n) or nonlinear

(m < sum of linear and nonlinear equations). Therdation
between output and input covariance matrixesis

Uy = SULST 2)

where:

Ox1 Prin Px1%en

Ux = n . . .
Prni TenTx1 On
A vy
dxy Pxy
£=1 ... o |,
3¥m ¥m
E dxy

Oy1 = Pyim Oy Oy

Uy = (2a,b, 0)

Pyim TymTy1 ﬂfrn

Covariance matrixes Uy, Uy are symmetric, i.e.
correlation coefficients pyi; = puji, and pyi; = gy i

S is the sendtivity matrix obtained after
linearization of function F for small changes of X
elements.

All, or some results of components of the
measurand ¥ can be used further separately or jointly. In
the latter case it is necessary to take aso in
considerations the correlation coefficients between the
uncertainties of its components y;, which are in non-
diagonal el ements of the covariance matrix Uy.

For calculations made of line, i.e. after collection
all data, the uncertainties of function F can be obtained
negligible. Recommendation for estimation uncertainties
of this caseisin the GUM Supplement 2. Therealization
of indirect measurements of m — components of the
multivariate measurand ¥ can be made aso on line by
automatic insrumental measurement systems. In this
case the uncertainties of F should be aso considered.

The metrological description of the multivariable
instrumental measurement system needs the accuracy for
the whole values of measurement ranges of input and
output signas. The accuracy of each range is up to now
described by the maximal value (worth case) of limited
absolute error |4, |WEI.The absolute error of any output

signa v;of ¥ may be presented in the similar two

component form as for digitad voltmeter, i.e
A, =4, + 4, ad the limited absolute error is



BumiprosanbHa mexHika ma memporoais. Tom 79, eun. 4, 2018 p. 67

dy | =y v les )l fori=t,..m (9
where: 4, - absolute error of initid value y;, of the
range, z5; = A(y; — ¥io)/¥ - the
difference (v; — ¥, of output signal or reading.

If |4, | « |4,y |, then therelative limited
error (worth case) of the component ¥; is

relaive eror of

g syl = les] (39)
The probability of existence the maximal limited
error in each range is very low. Then the randomized
description asin GUM [1] by uncertainties type B can be
more valuable. It may be made in the dmilar two
component form as for limited errors in the equation (3).
Then it should contain the expanded absol ute uncertainty
Uo of the initial value ¥, of each range and expanded
relative uncertainty U, of its increase (y; — v for all
values of the range. Both these uncertainties should be
given for defined P probability of the confidence leve,
e.g. for P=0.95 is Ug= 0.95u and U, = 0.95u, (u, U, -
standard uncertainties marked as in GUM). In the most
cases these components of uncertainty are non-
corrdlated, and very often relative uncertainty U, is
congtant for the whole range or its function or maximal
its value can be used. Moreover, the type B standard
uncertainty is significantly smaller then maximal limited
error because it is estimated as the sguare root of
possible values of components, and not as their sum. The
standard uncertainty of the single output valuey;is

+ Oy — g Puly, (4)

'L[J_-L. = '\llu;l'n

If ug < Oy — 3o )%ui,,. thentheaccuracy of y;
is described only by the single value of relative
uncertainty i, = u,, = §&,., unchanged in amost
whole measuring range, or as Gy, = Lpy may:

Up to date there are no internationally accepted
regulations how to describe statistically by the uncer-
tainties the accuracy of different kind of instrumental
systems for indirect multivariable measurements. For the
multiplicative type of measurement equations we found
that is possible to use given below the new vector
formula (5) between covariance matrixes U;x and Uy of
relative standard uncertainties Uy = &4, Uyi = &, . Their

correlation coefficients arethe same asin (2).

Usy = §; Usy 53 ®)
where:
Gy we Peinlx O
Uax = . . - ke
Pent Oenbuy o im
¥y ¥y
¥1dx ¥1dxn
SI: = Y " N ’
Xy 8¥m Xy 8¥m

Fm 83y ¥m @ 2y

5;1 o Ppam Oy Oy
Ug=| o i (520

D} im 5}' m 5}' 1 e ﬂ_'l.fi"'?’.

All that should be clearer on analysis of few
examples of indirect multivariate measurements with the
multiplicative and additive type of functiona F given
below, i.e. indirect measurements of three am
resistances of the Wheatstone bridge and measurement
of star circuit internal resistances from its terminals. The
description of the uncertainty of active power
measurements will be also discussed. Some genera
conclusions are given in the end.

1. Case of multiplicative measurement
equations

The unknown values Ry, Rs, R, of three resistors
can be determined without use the high accuracy digita
ohmmeter. Two cases of indirect measurements are
possible. Thefirst, when these resistors and the regulated
multi-decade resistor R; are connected asthe Wheatstone
bridge circuit but three times in three different ordersin
itsloop, i.e. Ry, Rs, Ry (Fig 2a), or R;, Ry R; and Rs, Ry,
R;. Three bridge’ balances Ucp = 0 give three settings
Ra, Re, Rg of Ry. The settings Re, Rz can be obtained
aso without disconnection this bridge, by
unconventional supply by current sources Ji=Js
connected parallelly to opposite arms 1, 3 and balancing
outputs AB or DC on diagonals (Fig 2b).

In both circuits the same settings Ry, R, Rg on multi

decade resistor R;satisfied circuit balances, i.e.:

RR,=R 2 Ry =R
R, R, R,

From above rdations the unknown resistances as
elements of the output vector Y can be calculated

Rxl = RZ (63, b! C)

Ry=\Ra Ryy, Ry=\[Ryz Ry,

R:l:*.,-"Hn Ry (73, o} C)

As solutions (26) are of the multiplicative type the

equation (3) for direct calculating the reative

uncertainties can be used. The measurement sensitivity
function %; for relative uncertaintiesis

Ryy OB Ayy Rp Haz 077

Ry dR; Ry ORz Ay dR; _

S5 = Ay 3Ry Bz Ryz Az Rpz|
Ryy 3Ry Ryz 3Ry Rys DR,
Ry 9Rp Rg BRyz Ry BRpz-
2 12 07 f1o1 oo

—[ 1/2 1f2]=%[n 11 (8)

172 0 172 11 0 1d
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Fig. 2. The structures of DC bridges for measurement three resistances R2, R3, R4: a) the first of armresistances of three variants
of the balanced Wheatstone bridge; b) two different the bridge loop circuit supplies: classic oneasin a) fromsingle source J (or
U) and in balance UDC = 0 is Rx1R3 = R2R4; unconventional double current supply J1=J3 in paralld to oppositearnms 1 and 3
(or J3= 0 and J1 switched between these arms) and then eq. of outputs DC and AB bal ances are used for measurement, i.e. if
UAB =0, RIR4 =R2R3 or if UD C= O R1IR2 = R3R4

For edtimation uncertainty of measured
resistances, we assumed firstly that input variables Ry,
Re, R are not correlated. and using formula (3) relative
uncertainties, i.e. Usy = S5 Usy 53 is:

0

1[1 1 n} e 0 0o 1]
wy =20 11 0 [ U;l1u=
1 01 0 0 5;_‘1_'11 o1 1
Gi.t0h,  Oi. .
=i e, GR.teh, &k, | O
Bey Oy ORpatORy

So, the standard relative uncertainties of output
guantities are defined:

——
1 1 . - 1 o N
= = | L = - == | L L
5"‘2 I+ Sﬁn +£Ex:’ 6 3 I Eﬁx: +£Ex3’
1 - -
Og; = E'\II S2r 05 (10a,b,c)
and correlations coefficients:
i.2
12
—_ & i —_
Frifs ~ 3 |g2 o I ] =
2y "Rt TR 70 "Ry T TRz
_ i
| s 3 7 :>0
]. Fx| Ry
e el IS I |
| R W
i
" _ 4 My _
B N R N -
24 T ) 24 "My T gy

L
T e I o2 :>0 (11a, b, c)
14 E_F'.L.:. Iy 4+ E_F'.r.l:.
W WV RpLs oo VR
1.z
_ P _
Prme =i m = e .2
P N L L
_ 1
- = d
[, e |, (fag| 0
EPE R T I g P

|
A Mgzl o

above correlations coefficients are

"-E'_':.'t‘3 /
All
positive.

If Sﬁn = If.‘l'tﬁsr: Sﬁxz

=4

[

Ba, = 0, = 6a, =761 Paym, = Prom, = Praz, = 3
then the coverage region is dlipsoid of parameter

w=1-2-2_243.2.2.2 =250

In this case the dlipsoidal coverage region for
relative uncertainties of Y with probability 0.95
determines the dlipsoid with half axis a =2,84, b =1,44,
¢ =146. In formulas it is used that the coverage
factor/extension/coefficient for 95% of coverage region
in 3D (three-dimensona) Gauss distribution is equal
k,=2,8. This dlipsoid is contiguous in six points to the

cube with edges d=22,8= 6 = 3,065 . The relations

between capacity of dlipsoid and cube is 4z abc/ (3d )
=37 %.
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2.1. Example of the additive type of multi-
variate measurement equations

In many practical stuations the star circuit of resistances
connection is applied and there is no possibility of
disconnection them from the common point 0 and even
this point is not available, or sar structure is the
equivalent circuit only. So, three values of star
resistances must be determined indirectly from
measurements of three input resistances between
terminals A, B, C (Fig 3). If changes of star resistances
must be remote monitored from a distance, then the
special measurement circuit E is used for these indirect
measurements. Let us as the first step assume that the
values of resistances of star are determined precisey
without any disturbances and modifications by A/D
converters and arithmetical modules located in E.

B
R X21%1 N
2 ‘ 1 E | ¥
Rap Rag 1 —— Y3
L ”
I L
Ry R;
A
_/ - PAC"' B C
Fig. 3. The diagram of the star circuits with module of
performance measurements

The main measurement equations are:

Rag = Ri+ Ry, Rec= Ryt R,
Rac=Ri+ Rs (12)
or in the matrix form:
Rz i1 0",
[Rﬁc:| =0 1 'L] [*g:] (124)
Rac 1 0 1llA,

To obtain solutions, the both sides of eq.(6a) are
multiplicated by the inverse to above matrix and the
main formula (1) has here the matrix form

Y=F-X = (13)
Xy flag ¥y R,
Wherey X = |%z| = | Rz || ¥ = 32| = |H;|.
3 e ¥a 3
. 1 -1 1
F=z|1 1 -1 (133, b, ¢)
“l-1 1 1
The star circuit resistances are
R, — Bas _*'ﬂ_,_ Rac.
R = ﬂﬂa_l_r‘ar Rac,

Ry=—fEpfee 2e (149, 0)

Then corrections are implemented for known
systematic errors. Unknown systematic errors are
randomized and estimated as components of the type B
uncertainty ug. Next the results of absolute standard
uncertainties oag, ogc, oac ae find as a square of
quadratic values of uncertainties u, and ug (type A and
B), and relative uncertainties dag, dsc, dac Sshould be
calcul ated.

To find the absolute uncertainties and correlation
coefficients of star resistances as output quantities, the
vector method given in Supplement 2 to GUM is used
[1]. Covariance matrices are related by formula (2), i.e.
Uy =S Uy -S'. In which: Uy, Uy — covariance matrixes
of output vector Y and input vector X, S - the Jacobian
matrix sendtivity coefficients of absolute uncertainties.
For the resistances of stair circuit

dR,/8R,; 8R,/8Rs. BR, 3R,
§=F=|dR,/0R,; OR,/0Rs. R, ,.-’BRAC] =
ORy/8R.; OR./0Rs. ORy/0R,.
J1 -1 1]
==l1 1 -1 (15)
.1 11

@ correlated variablesin the input
Let us consider the generad case when absolute
uncertainties of input quantities oag, osc, oac ae
correlated. Then in the covariance matrix Uy of input
guantities in such case the non-zero elements in non-
diagonal positions are appearing. They are defined with
correlation coefficients pag, pec, pac

Oag PABCABOBC PECCABGAC

Uy = |pepoanore ol pdcoecosc | (16)

PACCBCOAC r:r,.f.;
If the rdlative uncertainties of measured
resistances on stair circuit terminals arethe same, i.e.:
dap = dac =dac = d, then absolute uncertainties of
input quantities are; o4z = & * Rz, oy =6+ Ry and

oz = & - Rz Then output absolute uncertainties are:

PBCOAB GAC

o
Oy = ;_\:Rﬁa + Rze + Ric + 2(psc Raz Rac — Pas Ras Rsc —Pac Rae Rac)

(173, b, ¢

Ty = E.\:RA:.E PRIV RI | 2(pas R Rac oz Rap Rac Pac Roc Bac)

T
Oy = :_-\,Ilﬂ-’:ﬁ + i+ B + 2(pac Bop Rac — P5c By Rac — Pus Rap Rac)

The output relative uncertainties:

I
8L +B%+ v +2(sc ¥ — paz B—puc BY)
8. =

w 1-f+7r

I
0. 1+6+ V" + 200z B — Osc V=t BY)
1+8 ¥

(183, b, ¢

8J1+B* + ¥ +2(pac B ~ pac ¥ —puz B)

F+ry—1L
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BC Hac

whee g = E—and}’ ===

AF AF
The correlations coefficients of output quantities
are defined as follows
62 Riz —R3c — Ric +2pac Ry Rac

Pyiyz = 7 5,0, !
_ 15_2 Ric —Rzc —Raz + 2pa5 Roc Ry
Pyiyzs = 1 .0,
g FRc—Ric—Ris+t2Pac A gRac
Pyzyz = : e (193, b, C)

IfR,. =R_. =Ry = R, theuncertaintiesare

&R f
g =5 3t 20pac — paz —Pac )

OR |
iy

1‘,'3 +2(pus —psc —pac )

[ ]
Oypz = %.\IIE + 2{"3}15 — Par —Pac } (208, b, c)

@ non-correlated variablesin theinput
For non-correlated variables

Paz = Pee = P =0, and from (20) the absolute
uncertainties are

[
Oyy =09, = Oy = E-\.Ilﬂﬁzﬂa + aﬁ!ﬂf + ﬂﬁ!ac (21)
And from (13) correlation coefficients

_ 045 — Oac — Oac

_ —0,5 — 03¢ + Oic
SRR

- —0iz + 95 — gi;
Py 045 + 05 + Tic (22a, b, ©)

If 0ag =08c=0ac= o then

-

Opp = Oy = Oz = 0
s Priyz T Pyiyz T Pyzyz T T3
It can be show that determinant of matrix U, by

the sign of parameter w
W=1—ppip2— Pyiypa— Pyagat

1
7

+2: Priyz Pyiyz Pyaye > 0(23)
is aways positive.
Defining » =228 = g, » = EEHE e
Tag Tam
express correl ation coefficients by
1-x 1+v r—-1
Pz =10 P ST Ame =, (24ab0)
50, the parameter w = 45" mustbe 2 = v, what
[1+x)3

isaways fulfilled.

That iswhy the characteristic equation of inverse matrix
has three positive roots.

The border of cover region for values of results
with given probability P < 0,95 is dlipsoid, closed in
solid cubic, and contiguous in six points the wall of
cubic with edge digance

Koy Ol + 020 + 0l (25)
k,=2,8 — cover factor/ extension coefficients.

Summary of solutions of some cases/ P < 0,95

@ if oz = 05 = 04 = T

Pag = Psc = Pac = P>

7 Ooue — Ty =
IPin—1,
D Pyyr = Pyyr =Pyayr = o X
Pyiyz Pyaya Pyrayz < 0FOr o < V5

@ ifp, =0 gy =La[ﬂ,

"

1
Pyriyz = Pyiyz = Pyzyz = —E; half axes:
1,40'“,!, 2_.8 T 2_.8 Tin

g if gy,

% min :
== G, ==
z ou z

r ﬂ-I:i"! ’

Priyz = Pyiyz = Pyzya™ O radius LA oy,
g if P = —1: max anut:%ﬂm’

Pyiyz = Pyiyz = Pyzyz = _; yw<0.

2.2. Influence of uncertainties ug of matrix
F in stair circuit measur ements

In the ingrumental system for measurements the
dtair circuit resistances processing of output values and
their uncertainties is made in digital unit E. The main
matrix equation Y =F -X was given in (13) and (133, b,
¢). Solution of vector Y elementsisin (14). Let us now
consider uncertainties of amplification/attenuation of
signals in measurement channels. The redization of
signals processing has linear disturbances in channels
changing levels of signalse.g.:

kyxy
Xg = k:r:]

(26)

koxg
where k4. k4, kg isamplifying coefficients.

The analog/digital processing input signas has
uncertainty ug. Therefore, the functional matrix F is
must be modified, and a new matrix is defined as
follows:

o1+ 6] k1 +A) kO +4)

Fo=% na18) 018) g8 @7)
k450 k(8 k(14650

where: &,.8;, 85 - coefficients dedicated to the com-

ponents of output quantities.
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The vector function of output quantities is additionally
perturbed by uncertainties associated with zero set errors

J';f: '1'—" L—31’:] and results the output components
1+84 1+83 1+83
now are;
kyoy — kg + kgxg Ayp
=01 +6 ( 22T Tat )
yp = +6,) > +1+51
g, =101

¥i

- kyxg + kgag — gy Agp
y, =1 +E::]( 1%q : a . o J
2 1+4; (283, b, ©)
A TE TR ol T o Ay
R +1+D5J

Using formulas which are derived for absolute
uncertainties of star circuit and modifying it, the absolute
uncertainties after modification with zero set errors are
more complicated as.

. . . 4
+0,) |kiof, +kjoh, +kiof + 2(keyfeg Payzs Oxy Oz — 1%z Pryay Ox, Oxy — Kzkz Pryx, Oxy oy, ) + 07 (i]
J :

1+¢,

Oys = a
2 2 2 vz g2 (Ao
+ 82 |k} oi, T kiog H o + z{klk: Py, Oy Oxy — KKy Po Oy, 0y, — aky Py Oy, ng} t+o” (1 ¥ 5"]
Oy = a
| 7 a 7 a 7 a - "I:I'!D
+085) [k} oi, +kiog, + kyog + z{k: K oy Oy Oy — sk Py v O Oy — Roylig Py 0 O, ng} to” (1 iy ]
" (293, b, ©)

2.3. Power indirect measurements

Now the considerations of the case of directly
measurements, where two of values of currents I and I,
(I; = Iy)and non-correlated values of its uncertainties
conducted from measurement are done.
Assuming the linear dependence of estimated current
I(k) as a function of both measured currents in the
form:

@py: 073

Ik) =k + (1- k) I,
where: 0<k< 1.

The outside range of above defined values of k
leads on the linear dependence too, however the limits of
the interval of k for extrapolation of values of current in
the range I, = Ik} = I, must be explicit evaluated

eg. ——= k= —=

=1z Iy=iz

(30)

Active power P(k) in the case of flow of current

I(k) through resistance Risasfollow as:
Pl) =, 4+ 01 —KJLVR=

=K1+ 0 -7 + 20 -0 LLR (3D

The goal of this part is estimation of power
uncertainties of 4. 5z both of current | (ky), I (k2) and
its correlation coefficient.

The covariance matrix of non-correlated input
guantities eg. measured currents Ijand I,  has
following form:

Uy = [agi ﬂi}:] (32)

The matrix of linearized functional of both active
powers P (k) i P (k5] emitted on theresistor Rasthe
output quantities isthe following:

5o [2.‘{,_[!1.'5._+ (1 — & dry] 200 -k JILO—RD+ Js:,_!,_]]
Tl ik + 0L - ] 201 — B - ) + kel ]
2e, [k, + (1 = k)15) 2Ue [Iiky + (1 = k;)15] ] (33a,b)
201 — kI — k) + kL] 200 —de QL — k) + ko]
The covariance matrix of output quantities is
described by formulae:

|

Uy = [ Tp1 P ﬂ::Lﬂ::]:_S. Uy 7 (34)
POy 072 Orz
After simply transformations the variance of both
uncertainties of active powersis given:
ofy = 4[Lk + (1 — kJL (ke Pof + 0 = k)P0)
ofy =4[k + 11 - k:jjz]:{k::ﬂfzj.+ 1 -k )el) (35)

and its correlation coefficient:
ol + 0L — K30 — k0%

Sy

I
lp 22 _ v P
J k. vy {1_ .';,1:\] ;s N (36)

Above formulae is identical as corrdation
coefficient for intensity currents of | (%, and | (&3).

ool + 0 — ky)%}

Conclusion

Few examples of determining the uncertaintiesin
case of multi-parameter linear and nonlinear formulas
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have been presented, for example indirect
measurements of resisance by Wheatstone bridge, a sar
circuit and module of difference of magnetic field induction
vector. Covariance matrix of relative uncertainties is aso
applied. We proposad of using the covariance matrix for
relative uncertainties and corresponding measured function
dedicated for reative uncertainties as well asrdative errors
were gpplied in the classical approach.

It is shown that in the case when two or more
parameters /for example element of electronic circuity
are measured together, the uncertainties of above
parameters are correlated. So, if the above correlated
elements will be used without disconnection in the next
circuits of device then in the determination of
uncertainties of such new device we should consider the
corresponding correlations coefficients obtained from
first measurements.

Information about uncertainty calculations of
multivariable AC measurementsisin [3]. Supplement 2
of GUM [1] does not cover sSituations existing in
instrumental systems, when redlization of functiona
F(x) is not accurate. Such inaccuracy can be due to
approximation of transfer functions and limited their
frequency ranges, using in signal processing an A/D
converters, analogue multipliers, and other functional

elements, necessary in indirect measurements. Therefore
F(x) is also saddled with own uncertainties ug.! Even in
the most precise measurements the rounding of results
also becomes essential, including one resulting from the
precision of digital circuits[2-3].

In the last days authors have developed the vector
method for the description of the accuracy of
multivariate measurements systems with considering
uncertainties ug uge of the functiona F parameters. This
method is wider then recommendations given in GUM
Supplement 2 [1], which do not consider inaccuracy of
F. Details and new formulas will be provided in the next
authors’ work.
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Such problems of measurement technology are included in the measurement science, discipline wider then metrology. The
concept and term of this discipline were proposed by prof. L. Finkelstein from the City University of London in 1970-s years

during his IMEKO activity [4].



