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The purpose of research. The main goal of the presented research consists in substantiation of inertial,
stiffness and force (excitation) parameters of mechanical oscillatory system of three-mass vibratory conveyer with
directed oscillations of the working element in order to provide the highly efficient (high-performance) resonant
operation mode. Methodology. The technique of the research is based on fundamental concepts of engineering
mechanics and theory of mechanical vibrations. In order to deduce the differential equations of motion of the
mechanical oscillatory system of vibratory conveyer the Lagrange equations of the second order were used. The
computation modelling of the system’s motion caused by periodic excitation forces was carried out using MathCAD
software with a help of Runge-Kutta method. Results. The existent structures of vibratory conveyers, as well as the
fields and peculiarities of their implementation, are considered. The design of the three-mass vibratory conveyer with
electromagnetic drive, directed oscillations of the working element, and resonant operation mode is proposed. The
structural diagram of the conveyer’s mechanical oscillatory system is developed and its dynamics is investigated.
Scientific novelty. The mathematical model of motion of the mechanical oscillatory system of the proposed conveyer
is formed. The numerical modelling of motion of the oscillating masses of the vibratory conveyer was carried out for
different operation modes. The influence of the excitation parameters (the frequency and amplitude of the excitation
force) on the characteristics of oscillations of the conveyer’s working element was investigated. Practical value. The
results of the carried out investigations can be used while designing and developing various vibratory equipment for
conveying, separating and treating of different loose, bulky and piece-wise products.

Keywords: vibratory conveyer, mechanical oscillatory system, vibration exciter, resonant operation mode,
inertial parameters, stiffness parameters, excitation parameters, frequency, amplitude.

Introduction. Nowadays, the world’s leading corporations manufacture electromagnetic-driven
vibratory machines, usually based on the two-mass scheme. There is almost no serial (commercial)
industrial production of large-scale vibratory equipment with three-mass mechanical oscillatory systems
not only with electromagnetic, but also with unbalanced vibration exciters. From time to time, such
schemes find application only in relatively small and low-power structures of vibratory conveyors,
hoppers, feeders, dispensers, weighers, separators, mixers, batchers etc.

The problems of investigating motion dynamics and substantiating technical and operational
parameters of vibratory conveyers considered as mechanical oscillatory systems able to operate in different
(pre-resonant, near-resonant, after-resonant) modes and with different loadings of the working element are
currently urgent. In particular, in the present paper, there will be substantiated the possibilities of practical
implementation, as well as structural and excitation parameters of the three-mass vibratory conveyer with
directed oscillations of the working element.

Analysis of modern information sources on the subject of research. The subject of mechanical
vibrations is widely considered all over the world [1-3]. One of the most interesting and useful topics
related with mechanical vibrations that is lively discussed by scientists and designers consists in
application of theoretical knowledge in the processes of calculating, designing, manufacturing and
operating of various vibratory equipment [4-9]. Among all the fields of implementation of vibratory
equipment, one of the most investigated is vibratory conveying one [5—7]. There are a wide range of
vibratory conveyers being manufactured by hundreds of companies all over the world [4—7]. Nevertheless,
the problems of substantiation of optimal inertial, stiffness and excitation parameters of vibratory
conveyers are of the greatest interest among the scientists working on this subject [6-9]. Especially, there
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are no exact and widely used techniques of calculating the parameters of multi-mass (three-mass, four-
mass etc.) vibratory systems able to convey different types of products (loose, bulky, piece-wise etc.). The
investigations presented in this paper are based on the considerable research and experimental
achievements of the school of vibration technologies of Lviv Polytechnic National University [5-9]. Some
results of the investigations have been already considered at different conferences, in particular [9]. In the
paper, there will be presented the whole material related with design development, parameters calculation,
and operation modelling of the three-mass vibratory conveyer with directed oscillations of the working
element.

The purpose of research. The purpose of this paper consists in developing the design of three-mass
vibratory conveyer with directed oscillations of the working element; substantiating inertial and stiffness
parameters of its mechanical oscillatory system in order to ensure the highly-efficient (high-performance)
resonant operation mode; investigating the influence of loading value on the conveyer’s dynamics.

Design and operation peculiarities of the vibratory conveyer. The general design of the vibratory
conveyer is presented in Fig. 1. It consists of the active mass (working element, tray) 1, along which the
loads of different structure (loose, bulky, piece-wise etc.) can be conveyed. The working element is placed
on the intermediate mass (frame, body) 2 with a help of spring elements (sets of flat springs) 4. The frame
2 is placed on the immovable base (foundation) using soft textolite spring elements (vibration isolators) 8
and supports 9. The reactive (exciting) mass 6 with the armatures of the disturbing electromagnets is
attached to the intermediate mass 2 with a help of the textolite spring elements 5. The coils 7 of the
electromagnetic vibration exciters are fixed on the intermediate mass 2 and are powered by the electric
network according to the two-cycle scheme.

The operation principle of the considered design of vibratory conveyer consists in following. When
supplying the sinusoidal current to the coils of electromagnets 7, the periodical (alternating) excitation
force arises between the armatures 6 and coils 7. The magnitude of this force is proportional to the
magnitude of the supplied voltage, and the frequency of this force is equal to the frequency of the electric
network. The reactive mass 6 oscillates due to the action of the disturbing (alternating) force and excites
the oscillations of the intermediate mass 2 through the spring elements 5. The vibratory motion of the
working element 1 is caused by the intermediate mass 2 with a help of flat springs 4. In order to provide
the conveying of products along the tray 1, it is necessary to make the working element oscillate along the
straight line at certain vibration angle (throwing angle). In addition, depending on the conveying type
(detached or non-detached), there should be provided a certain acceleration of the working element.

One of the greatest problems arising during the designing and calculating of vibratory conveyers
with directed oscillations of the working elements consists in the necessity of providing the location of all
mass centres of the whole oscillatory system on one straight line [5—7]. At the same time, in order to
minimize the parasitic (spurious, undesired) oscillations, it is necessary to make the line of action of the
excitation force of the electromagnetic drive coincide with the line that attach all mass centres of the
mechanical oscillatory system [5—7]. As can be seen in Fig. 2, the stated principle has been taken into
account while designing the investigated vibratory conveyer.

One more important task arising during designing and calculating of the vibratory conveyers
consists in providing the constant (stable) frequency of oscillations along the whole working element (tray)
[5-7]. When the previously mentioned condition (coincidence of the line of action of the excitation force
with the line attaching the mass centres) is satisfied, it is necessary to ensure the satisfactory rigidity
(stiffness) of the working element. This task stipulates the frequency analysis of the working element
considered as a body with distributed mass and providing its first natural frequency (eigenfrequency) 2—4
times larger than the excitation (forced) frequency of the electromagnetic drive [5—7]. The computer solid-
state modelling of the investigated vibratory conveyer in the applied software SolidWorks allowed to
determine the first natural frequency (eigenfrequency) of the working element (tray) using the Finite-
Element Method. The obtained result v =104.12 Hz is almost twice larger than the forced frequency

v =50 Hz . The additional increasing of the rigidity (stiffness) of the working element can be provided by
increasing the width and the number of ribs, but this considerably enlarges the mass of the conveyer.
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Fig. 1. Design diagram of the three-mass vibratory conveyer with directed oscillations of the working element

Puc. 1. 3acanbnuii 6uensio mpumacoeo2o 8ibpompancnopmepa 3 HANPSAMICHUMU KOTUBAHHIMU POOOU020 OP2aHY

Calculation diagram of the mechanical oscillatory system of the vibratory conveyer. In this part
of the paper, there will be initiated the prerequisites for further deducing the mathematical model of the
conveyer’s mechanical oscillatory system and simulating its motion. In particular, there will be
substantiated the calculation diagram of the oscillatory system and its inertial and stiffness parameters,
which will be used while deriving the differential equations of the system’s motion.
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Fig. 2. Principal diagram of the vibratory conveyer design
ensuring minimization of parasitic oscillations
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Fig. 3. Results of computer analysis of the natural frequencies

of the vibratory conveyer’s working element in SolidWorks software

Puc. 3. Pesynomamu komn’ 10mepHo2o po3paxyHKy 61ACHUX YACTOm
Ppobouoeo opeany sibpomparcnopmepa y npoepamuomy npooykmi SolidWorks

On the basis of the design diagrams of the vibratory conveyer (Figs. 1 and 2), let us construct its
plane calculation (kinematic) diagram (Fig. 4). Let us adopt the following notations: m, — active mass (the

mass of the working element 1); m, — intermediate mass (the mass of the vibratory conveyer’s frame 2);

m,, — reactive mass (the mass of the disturbing body 3); ¢, W, ¢, Ky, ¢, W — coefficients of

stiffness and damping of the spring elements 4, 5, 6, respectively; p(t) — periodically alternating

(sinusoidal) excitation force applied between the bodies 1 and 3, and directed along the line attaching the
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mass centres of all bodies of the mechanical oscillatory system; x;, x,, x3 — generalized coordinates that
definitely determine the position of each oscillating mass (active 1, intermediate 2, reactive 3, respectively)
during their motion along the line of action of the excitation force.

The working bodies of the system (disturbing mass m,,, frame m,,, tray m,) can move along the

line attaching their mass centres and coinciding with the line of action of the excitation force. These
masses are considered as perfectly rigid bodies. In order to describe the motion of each mass, there are
used the corresponding generalized coordinates x;, x,, x3. While developing the mathematical model of

the mechanical oscillatory system and while carrying out further investigations, let us neglect the
geometrical sizes and shapes of the working bodies, and let us consider them as particles (mass points).
Also let us adopt that the bodies are attached by the elastic-tough elements with coefficients of stiffness ¢,

¢y, ¢y, and coefficients of damping (viscous friction) py, Wy, p;,. While describing the potential forces,

let us consider that the deformations of the spring elements perform according to the Hook’s law.

In order to describe the excitation force, let us adopt the harmonic (sinusoidal) law, which describes
the traction force of the electromagnetic vibration exciter with sufficient accuracy [5—7]. For practical
implementation of the harmonic oscillations, it is necessary to power the coils of the electromagnets
according to the two-cycle scheme. It provides the use of one half-cycle (half-period) of the current for
powering the coil of one electromagnet, while the other half-cycle (half-period) is used for powering the
coil of the second electromagnet [5—7].

1 )X}

Fig. 4. Calculation diagram of the mechanical oscillatory
system of the vibratory conveyer

Puc. 4. Po3paxynkoea cxema mexaniunoi KoaueaibHoi
cucmemu 6ibpomparcnopmepa

The active mass 1, intermediate mass 2, and reactive mass 3 with corresponding inertial parameters
my, my,, m,, perform the straight-line oscillations described by generalized coordinates x;, x;, x3,

respectively (Fig. 4). The active mass 1 (working element, tray) moves due to the kinematic disturbance
caused by the intermediate mass 2 that is attached to the active mass 1 by the spring elements 4. The

excitation of the forced vibrations takes place due to two sinusoidal forces p(t) =Psinwt? and
p(t) =—Psinwt acting between the intermediate and reactive masses (P is the amplitude value of the

excitation force; @ is the frequency of forced vibrations; ¢ is time). The active and the intermediate
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masses, as well as the intermediate and reactive masses are pairwise (mutually) attached by spring
elements 4 and 5, respectively. The coefficients of stiffness of corresponding spring elements are ¢; and
¢y . The mechanical oscillatory system of the vibratory conveyer is placed on the immovable base
(foundation) with a help of the spring elements (vibration isolators) 6 with stiffness c;,. The vibration
isolators are attached to the intermediate mass and to the supports placed on the foundation.

The selection of rational (optimal) inertial and stiffness parameters of the oscillatory system of the
vibratory conveyer, as well as the parameters of excitation (frequency and amplitude of the excitation
force), one can provide the optimal conveying of products (i.e. optimal parameters of motion of the
working element, along which the products are conveyed). This problem requires the differential equations
of motion of the mechanical oscillatory system of the vibratory conveyer with further substantiation of its
optimal operation modes.

Forming the mathematical model of the mechanical oscillatory system of the vibratory
conveyer. In order to derive the differential equations of motion of the mechanical oscillatory system of
vibratory conveyer, let use the Lagrange equations of the second order. Let us consider the unstable
straight-line motion of the mechanical oscillatory system along the line of action of the excitation force
(Fig. 4). The generalized coordinates describe the displacements of the mass centres of the working
element (active mass) x;, frame (intermediate mass) x,, and disturbing body (reactive mass) x3. The

Lagrange equations of the second order for the considered mechanical oscillatory system of the vibratory
conveyer are of the following form:

d(oT or oIl

o e BB

dt 6x1 6x1 6x1

d( oT oT oIl

- 5 - == +Qx 5 (1)
dt 6)(72 6)(72 6)(72 2
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- 5 - == +Qx )

dt 6)(73 6)(73 6)(73 3

where T, Il are kinetic and potential energies of the mechanical oscillatory system of the vibratory
conveyer; (,; are the generalized forces acting upon the bodies of the system and corresponding to the

adopted generalized coordinates; x; are the generalized speeds of the bodies of the system, which

correspond to the generalized coordinates x; .

Taking into account the fact that all the bodies of the system oscillate along a straight line with
speeds X;, X, X3, the total kinetic energy of the mechanical oscillatory system can be calculated by the
following formula:

.2 2 m x2
rad "2 P73 )
2 2 2
Let us determine the potential energy I1 of the mechanical oscillatory system using the sum of
mechanical works of the restoring forces of the spring elements:

1 2 1 2 1
szcl(xl_)@) +5c22(x2—x3) +Ecl-3x%. 3)

While deriving the differential equations of motion of the oscillatory system of the vibratory
conveyer, let us neglect the coefficients of viscous friction in spring elements. This assumption is proven
by numerous investigations in the field of vibratory conveying, which state that viscous friction of the
metal coil-type and flat springs does not significantly influence the displacement of the resonance peaks in
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the frequency field of the oscillatory system [5—7]. This displacement is in the range of 3% [5-7]. That is
why we assume p; =0, py =0, p;; =0 in further calculations and computer simulation.

The excitation force p(t) is modelled as the periodical function changing according to the

sinusoidal law. In this case, the intermediate and the reactive masses are acted upon by the forces:

O, =—P-sin(w-1); 4)

Oy, =P-sin(w-1), (5)

where P, @ are the amplitude and the frequency of the excitation force, respectively; ¢ is time.
Let us determine the corresponding partial derivatives of the expressions (2) of the system’s kinetic
energy and of the expressions (3) of the system’s potential energy:

ﬂ—m X135 i@_T =m_Xi; 2—0' _6H_C (x —-X ) _6T =m,_X~;
0%, 4l arlox | @l oy 7 ax V127 gy T2
1 1 1 1 2
d| oT oT oIl
A |7 Xr; ——=0; ——=c(xy —x1)+Cr[xy —x3)+Ci X, 6
dt(axzj "2 Bk, o, (0 =3 )+ ep (3 =93+ (6)
a—T—m X1 i _6T =m,Xq; _6T =0; _6H =c (x -X )
0%y P dat\oiy ) PV oxy 0 axy 2V3 720

Taking into account the dependencies (4), (5) for determining the generalized forces and the
expressions (6) for corresponding derivatives of kinematic and potential energies, let us write the
differential equations (1) of motion of the mechanical oscillatory system of the vibratory conveyer in the
following form:

ma)'él +¢1 (xl —x2) =0;
my 3 +¢| (x2 - X ) +cy (x2 - X3 ) +¢p Xy =—P- sin(a) . t); 7
mp¥3 +c) (x3 —x2)= P-sin(w-1).

In accordance with the general rules (methods) of solving the systems of linear nonhomogeneous

differential equations with constant coefficients, the analytical expressions for describing the motion of the
oscillating masses along three independent degrees of freedom can be presented in the following form [6,

7 x5 =X, e, xy =X, -, x3=X;-€"”", where X;, X,, X; are the amplitude values of the
linear displacements of the oscillating masses taking place during the system’s forced vibrations, which

correspond to the generalized coordinates x;, x,, x3. Substituting these expressions into (7) and
simplifying the obtained equations, one can obtain the dependencies for determining the amplitudes X7,

X, , X3.The process of solving the system (7) can be written in the following matrix form:
x=C'l.p, (8)

where X is the column matrix of the unknowns; C~! is the matrix of coefficients of the unknowns

(stiffness matrix); P is the column matrix of the excitation forces.
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Let us write the equation (8) for the considered oscillatory system of the vibratory conveyer:

- +—1
’
c,—m o —C 0
_ S - _P|= 9
Cl (Cl+(22+Cl.3 m, o ) €y x| —P |= X2 . )
0 —C e —m o? " X3
| 2 2 p |
Let us adopt the following notations:
0 2. _ .
kp=aq=—m@™s kp=ky =g
—0- _ _ 2.
k13—0, k22—cl+c:2+cl.3 m o (10)
2

k23=k32=—(22; k31=0; k33=02—mp(0.

Let us present the solution of the matrix equation (9) in the form of expressions for determining the
amplitudes of oscillations of the active mass X, intermediate mass X,, and reactive mass X, in the

steady-state operation mode:
‘P'k12(k23+k33) .
Kioko K33 =Ky hgakss Ky hosksy
_ Pk (ks s . (an
Kioko kg3 =Ky hpokss + Ky hosksy
_P'(kl 130 =K1k +k22k11)

X. =
3 = )
kl 2k21k33 kl 1k22k33 * kl 1k23k32

Defining inertial and stiffness parameters of the conveyer’s oscillatory system. On the basis of
the results of solid-state modelling of the investigated vibratory conveyer in the SolidWorks software, let
us define the input data for further calculations: the mass of the loaded working eclement (tray)
m, =56.742 kg ; the mass of the conveyer’s frame (intermediate mass) m,, =36.055 kg .

In order to provide the highly efficient (high-performance) resonant operation mode of the vibratory
conveyer, it is necessary to ensure the in-phase motion of the reactive and intermediate masses with the
simultaneous implementation of the effect of “zero-stiffness” [6, 7]. In this case, for determining the value
of the reactive mass, the following formula can be used [6]:

2
_ M (1 —Z ) (mq +my) _36.055-(1- 0.97%)-(56.742 + 36.055)

Mp 2 2
z7 - (my +my)—m, 0.97~ - (56.742 + 36.055) — 36.055

where z is the coefficient of resonance correction (the ration between the forced and natural frequencies of
the oscillatory system). According to the recommendations [5—7], it was adopted z=10.97 .
Therefore, on the basis of the defined value of the reactive mass m, =3.858 kg, the corresponding

=3.858 kg, (12)

thickness of the additional plates attached to the armatures of the electromagnets was determined. The
plates were implemented in the design model of the vibratory conveyer.
In order to determine the necessary stiffness of the spring element between the active and the intermediate
masses (i.e. between the tray and the frame), let us define the corresponding reduced mass m,, in
accordance with the recommendations given in [5]:
MMy 56.742-36.055
 my, +m,  56.742 +36.055

=22.048 kg. (13)
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Taking into account the total number of spring elements n =8, let us recalculate the reduced mass

. m,,  22.048
per one spring element m —£ =

=2.756 kg .

361 =

Using the defined value of the reduced mass, let us determine the minimal necessary stiffness ¢; of
the spring unit (set):

oY 2750\’
o =my, | —| =22.048- =2.313 -10° N/m, (14)
z 0.97
and the minimal necessary stiffness c;; of the single spring:

2 6
€11 = Msg) (gj =%=%=2 891-105 N/m. (15)

The minimal length of the working zone of the spring element equals [5, 6]:
2.313-10% - (2.1-10'1)?
0.08-8-0.8-(330-10°%)3

C] 'E'2
h-n-k-[cr]3

where 6, is the maximal related displacement of the ends of the spring elements, which can be determined as

=36,k

KkoH * 3

=0.077 m, (16)

X

=3-0.00164-1-i/

0, =X;+ X, ==1.64 mm taking into account the expressions (11) (in the presented below results of

modelling (simulation), there will be determined the values X; =0.6 mm, X, =1.04 mm); k., =1 is the

KOH

coefficient taking into account the concentration of stresses; [cr] is the tolerable (admissible) normal stress

for the material of the spring (for spring steel [o']=330- 10° Pa); £=2.1-10'! Pa is the shearing (rigidity)

modulus; 7 =8 is the number of the working zones of the spring system and equals to the number of springs
used in the set (unit); k£ = 0.8 is the coefficient of fixity (constraint) of the spring element [5, 6].
The necessary thickness of the spring element can be determined by the following formula [5, 6]:

b:\/ o :#2.313-106-0.077143 000215 17
E-h-n-k \21.10'".0.08-8-0.8

In the proposed design of the vibratory conveyer (Figs. 1, 2), there are used four coil cylindrical
springs as vibration isolators. With their help, the frame of the vibratory conveyer is placed on the
supporting surface (base, foundation). The total mass of all the parts of the conveyer, which are supported
by vibration isolators, is equal to M =120.77 kg . Taking into account the fact that the natural frequency of

the single-mass oscillatory system supported by vibration isolators with stiffness ¢;, should be much
smaller than the forced frequency in order to minimize the influence of dynamic loads on the foundation
(base), let us adopt the value of resonance correction equal to z=35.

Let us determine the minimal necessary natural frequency of the conveyer’s vibration isolators [6]:

=2=314'16=62.8 rad (vg i =10 Hz), (18)
s

Qe 3
z

where 0 =314.16 rad is circular frequency of forced vibrations, which corresponds to the frequency of
s

50 Hz of the electric network.
In order to determine the necessary stiffness of one coil cylindrical spring of the vibration isolator,

let us adopt the diameter of the spring wire d, =6 mm, the middle diameter of the coil D =30 mm and
the number of coils i, = 6. In this case, the stiffness of the vibration isolators’ springs is following [5, 6]:
G-d 7-10'%.0.006*
- _ 1710 30006 77000 . (19)
8-D° -i, 8-0.037 -6 m

Ciz =
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Using the obtained value of stiffness of one vibration isolator, let us determine the natural frequency
of the single-mass oscillatory system and compare it with the results obtained in (18):
_cis g 77000-6 rad 3 rad
6Epop- N\ \/ o077 OMBT F en =028 0)
Therefore, the elastic system between the active and intermediate masses is designed as a set of eight flat

springs (Fig. 5, @), and the vibration isolators are formed by six coil cylindrical springs (Fig. 5, b).

Q

56

a 6

Fig. 5. The spring elements used in mechanical oscillatory system of the vibratory conveyer:
a — flat spring between the active mass (tray) and intermediate mass (frame),
b — coil cylindrical spring between the frame and the supporting surface (foundation, base)

Puc. 5. Ilpyoicni enemenmu, sKi 6UKOPUCMOBYIOMbCS 8 MEXAHIYHIT KOJUBHIL cucmemi 6ibpompancnopmepa.
a — NIOCKA NPYACUHA MINC AKIMUBHOIO MACOI0 (TOMKOM,) | BPOMIICHOIO MACOI0 (KOPNYCOM),
b — euma YuniHOpUUHA RPYIHCUHA MINC KOPIYCOM [ ONOPHOIO NOBEPXHEIO ((DYyHOAMEHMOM, OCHOBOI))

One of the fundamental peculiarities of analysis, calculation and designing of oscillatory systems of
vibratory conveyers, in which it is implemented the energy-efficient (high-performance) resonant operation
mode based on the “zero-stiffness” phenomenon, consists in conventional neglecting the parameter of
stiffness of the spring system between the intermediate and reactive masses assuming that ¢, << ¢; and

¢y >0 [6,7].

Constructing amplitude-frequency characteristics of the mechanical oscillatory system of the
vibratory conveyer. In the material presented above, there have already been substantiated the basic
inertial and stiffness parameters of the oscillatory system of the vibratory conveyer: m, =56.742 kg,

m,, =36.055 kg, m, =3.858 kg, ¢ =2.313 100 N/m, ¢;; =77000 N/m, ¢, =0. In order to construct

the corresponding amplitude-frequency characteristics using the derived dependencies (10) and (11), it is
necessary to prescribe the parameters of the system’s excitation.

In the drive of the vibratory conveyer, there are used four unified electromagnetic vibration exciters
with the nominal tractive force F;=120N. Thus, in further analysis, there will be considered the
amplitude value of the total excitation force P =480 N.

Substituting the presented above parameters of the mechanical oscillatory system of the vibratory
conveyer into the equations (10) and (11), and adopting the resonant correction z=0.97, there were
obtained the amplitude-frequency characteristics (Fig. 6) and time dependencies of displacements of the
oscillating masses (Fig. 7) in the steady-state operation mode of the vibratory conveyer.
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Fig. 6. Amplitude-frequency characteristics of the three-mass oscillatory system of the vibratory conveyer:
1 — active mass, 2 — intermediate mass, 3 — reactive mass
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1 — akmuenoi macu, 2 — npomiscnoi macu,; 3 — peakmusHoi macu
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Fig. 7. Time dependencies of displacements of the oscillating masses in the steady-state operation mode
of the vibratory conveyer constructed on the basis of formulas (10) and (11) in MathCAD software:
1 — active mass; 2 — intermediate mass, 3 — reactive mass

Puc. 7. Yacosi 3anescnocmi nepemiugenv KOIUBATbHUX MAC 8 YCMALEHOMY PedlcuMi pobomu siopompancnopmepa,
nobyooesani na ocnosi popmyn (10) i (11) 6 npoepamromy npodyxmi MathCAD:
1 — akmuena maca; 2 — npomisicna maca, 3 — peakmusHa maca
Analysing the obtained amplitude-frequency characteristics and time dependencies of displacements
of the oscillating masses, one can state that at the forced frequency of 50 Hz (314 rad/s) the nominal
amplitude of oscillations of the working bodies of the vibratory conveyer operating in steady-state mode
reach 0.003 m (3 mm). Herewith, the reactive mass and the intermediate one oscillate at the same phase,
whereas the active mass oscillates at the opposite phase. This fact proves the implementation of the “zero
stiffness” phenomenon and the highly efficient (high-performance) operation mode [6, 7].

Numerical (computational) solving the differential equations of the system’s motion in
MathCAD software. The input parameters for further analysis of motion of the oscillatory system of the
vibratory conveyer are following:

— inertial parameters of the investigated oscillatory system: my, =56.742 kg, m, =36.055 kg

(obtained on the basis of solid-state designing of the conveyer), m, =3.858 kg (determined by the

expression (12));
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— stiffness parameters of the oscillatory system and vibration isolators: ¢; =2.313 -10® N/m (deter-
mined by formula (14)), ¢;; =77000 N/m (determined by expression (19)), ¢, =0 (is substantiated by

the “zero stiffness” phenomenon [6, 7]);
— excitation parameters: P=480N, =314 rad/s (50 Hz) (defined by the parameters of the

electromagnetic vibration exciter and by the scheme of powering the electromagnets);
— initial conditions: the initial lengths and deviations of all spring elements are equal to the ones in

static (steady) state; the initial positions and speeds of all oscillating masses equal zero (X (0)= 0m,
x2(0)=0 m, x3 (0)=0 m, X (0)=0 m, x2(0)=0 m, X3 (0)=0 m).

The results of simulation of the system’s motion during the time periods of 0.5 s and 1.6 s are
presented in Fig. 8, a, b, respectively.

Based on the results of the carried out simulation of motion of the oscillating masses of the
mechanical system of the vibratory conveyer (Fig. 8), one can state that the maximal amplitude of
oscillations of the reactive mass equals X3 =0.003 m and corresponds to the results of theoretical
investigations (Fig. 7).

Analysing the obtained graphical dependencies of the amplitudes of oscillating masses of the
vibratory conveyer in the range of frequencies close to resonant one (Fig. 8), one can observe almost equal
amplitudes of oscillations of the intermediate mass (conveyer’s frame) and the reactive mass
(electromagnets’ armatures). This proves their in-phase motion and implementation of the “zero stiffness”
phenomenon [6, 7]. The amplitude of oscillations of the active mass (tray) is at the opposite phase with
respect to the ones of the other two bodies, whereas the magnitude of the amplitudes of all bodies are
almost equal (Fig. 8). This is proven by the results of modelling the motion of the oscillating masses using
the analytical dependencies (10) and (11) (Figs. 6 and 7), as well as by the results of numerical solving of
the system (7) of differential equations of motion of the oscillating masses in MathCAD software (Fig. 8).
The system needs almost after 1 s to provide the in-phase motion of the intermediate and reactive masses at
the opposite phase to the motion of the active mass (Fig. 8, b).

Analysing the influence of excitation parameters on the system’s motion. In this section of the
paper, there will be carried out the analysis of motion of the oscillating masses under the conditions of
different amplitudes of the excitation force and different forced frequencies. This analysis will allow to
substantiate the adequacy of the proposed mathematical model for describing the dynamics of the
mechanical oscillatory system of the vibratory conveyer.

In particular, the change of the amplitude of the excitation force should cause the proportional
change of the amplitudes of displacements of the oscillating masses. The sufficient change of the excitation
frequency “pushes” the system out of the resonant operation mode, and should cause corresponding
reduction of the amplitudes of oscillations of the intermediate and active masses.

In order to carry out further simulation, let us consider the following cases of operation of the vibratory
conveyer (see Table below).

Table
The investigated cases of operation of the vibratory conveyer
a) P=240 N, o =314 rad/s (50 Hz) 6) P=720 N, =314 rad/s (~50 Hz)
B) P=480 N, =157 rad/s (25 Hz) r) P=480 N, =628 rad/s (~100 Hz)

The results of simulation of motion of the mechanical oscillatory system of the vibratory conveyer
under the conditions listed above are presented in Fig. 9. Analysing the obtained graphical dependencies,
one can state that the reduction of the amplitude value of the excitation force by 2 (from 480 N to 240 N)
causes the proportional decrease of the amplitude of oscillations of the working masses almost by 2 (from
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3 mm to 1.5 mm) (Fig. 9 a). The increase of the excitation force by 1.5 (from 480 N to 720 N) causes the

proportional increase of the amplitudes of all the masses of the system almost by 1.5 also (from 3 mm to
4.5 mm) (Fig. 9, b).
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Fig. 8. Time dependencies of displacements of the oscillating masses constructed on the basis of the results of
numerical solving of the system of differential equations (7) in MathCAD software:
1 — active mass; 2 — intermediate mass; 3 — reactive mass

Puc. 8. Yacogi 3anesicnocmi nepeminyens KOTUBATbHUX MAC, RO6YO0BAHI 3a Pe3VIbMaAmMAaMu YUCEIbHO20
D036’ s3y6anns. cucmemu ougepenyianvhux piensns (7) y npospamnomy npooykmi MathCAD:
1 — akmuena maca; 2 — npomisicna maca; 3 — peakmueHa Maca

The change of frequency of the excitation force by 2 (case ¢ — from 50 Hz to 25 Hz; case d — from
50 Hz to 100 Hz) causes significant reduction of the amplitudes of oscillations of the intermediate and
active masses (Fig. 9, ¢, d). This fact is absolutely normal (natural) phenomenon, because there takes place
the system’s “pushing” out of the resonant operation mode.
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Fig. 9. Time dependencies of displacements of the oscillating masses under different excitation parameters
constructed on the basis of the results of numerical solving of the system of differential equations (7)
in MathCAD software: 1 — active mass, 2 — intermediate mass; 3 — reactive mass

Puc. 9. Hacosi 3anesxcnocmi nepemingernvb KOIUBANbHUX MAC 30 PI3HUX napamempie 30ypenns, no0y0oeani
3a pe3yIbMAMaMU YUCETbHO20 PO36’ A3VEAHHS CUCIeMU OupepeHyianbhux pieHsHs (7) Y npoSpaMHoMy BpOOyKmi
MathCAD: 1 — akmusna maca; 2 — npomisicha maca, 3 — peakmusha maca



98 Asmomamu3sauiss 8UpobHUYUX rpoyecie y MawuHobydysaHHi ma rpunadobydyeaHHi. Bun. 53. 2019

0.004 x1(t), m x2(t), m x3(t), m
0.002H L L
“ ||hl..|._ |H| ‘ Il .||‘||‘||h.|| ll ‘ ‘| il ||||||‘|| I ||‘||‘ ) || ||
i m m \ iy i |"H"|""""‘\” DT
—0.002
- 00045 0.32 0.64 0.96 128 t, s
d

Fig. 9. (llpooosacenns). Time dependencies of displacements of the oscillating masses under different excitation
parameters constructed on the basis of the results of numerical solving of the system of differential equations (7)
in MathCAD software: 1 — active mass; 2 — intermediate mass, 3 — reactive mass
Puc. 9. (Continuation). Yacoei 3anexchocmi nepemiyeHvb KOTUSAIbHUX MAC 3d PIHUX napamempis 30ypeHHsl,
no6y006aHi 3a pesyIbmamami HUCEIbHO20 PO36° A3YEANHS cucmemu Oupeperyiatohux pietans (7) 6 RPOSPAMHOMY
npooykmi MathCAD: 1 — akmusna maca; 2 — npomisicna maca, 3 — peakmuena maca

Conclusions. In the paper, the structural and operational peculiarities of the three-mass vibratory
conveyer with directed oscillations of the working bodies were considered. The fields of its possible
implementation were overviewed. The structure of the conveyer’s mechanical oscillatory system was
analysed, and on the basis of the Lagrange equations of the second order, the mathematical model
describing the system’s motion under the action of sinusoidal excitation force applied between the
intermediate and reactive masses was derived. Using the general methods of solving the systems of linear
nonhomogeneous differential equations with constant coefficients, the expressions for determining the
amplitudes of oscillations of all the mases in the steady-state operation mode were deduced.

The technique (algorithm) of determining inertial and stiffness parameters of mechanical oscillatory
system of vibratory conveyer with directed oscillations of the working bodies was presented. In accordance
with the given masses of the working element (tray) and frame of the conveyer, there were calculated the
stiffness of the corresponding spring elements and vibration isolators, as well as the value of the reactive
(disturbing) mass. Also, there were chosen the parameters of excitation.

Based on the derived expressions for amplitudes of oscillations of the working masses and taking
into account the determined inertial, stiffness and excitation parameters of the oscillatory system of the
vibratory conveyer, there were constructed the amplitude-frequency characteristics and the time
dependencies of displacements of the oscillating masses in the steady-state operation mode.

Using the derived mathematical model of the three-mass mechanical oscillatory system of the
vibratory conveyer and the determined inertial, stiffness and excitation parameters, there was simulated the
motion of the oscillating masses. Based on the results of the simulation, there was drawn the conclusion
about the agreement of the results of the theoretical investigations with the ones obtained after carrying out
virtual experiment. The in-phase motion of the intermediate and reactive masses was substantiated. This
allowed to draw a conclusion about implementation of the “zero stiffness” phenomenon in order to provide
the highly efficient resonant operation mode of the vibratory conveyer.

In order to analyse the adequacy of the proposed mathematical model of the mechanical oscillatory
system of the vibratory conveyer, there was investigated the influence of the amplitude and frequency of
the excitation force on the motion characteristics of the oscillating masses. In particular, the cases of
changing the forced frequency (decreasing and increasing by 2) and changing the amplitude (decreasing by
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2 and increasing by 1.5) were considered. There was substantiated that the change of the amplitude of the
excitation force causes the proportional change of the amplitudes of the working masses, whereas the
change of the forced frequency causes significant reduction of the amplitudes of oscillations of the
intermediate and active mass.
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OGBIPYHTYBAHHSA TAPAMETPIB TA MOJIEJJIOBAHHA POGOTH TPUMACHOI'O
BIBPOTPAHCIIOPTEPA 3 HAITPAMJIEHUMU KOJIMBAHHAMHA POBOY0OTI'O OPT'AHY

© Kopenoii B. M., Kauyp O. FO., Hosiyokuii FO. A., Maszypuk B. A., Cepeda B. A., 2019

[IpoananizoBaHO KOHCTPYKTHBHI 1 (YHKI[IOHaJBHI OCOOJHMBOCTI TpPUMAacoBOro BiOpoTpaHcmopTepa 3
HaNpPsIMICHUMH KOJIMBAaHHSAMH Ta PO3TIITHYTO MOXIIUBI c(hepr HOro BUKOPUCTAHHSI.

[IpoanainizoBaHO OCHOBHI HaBaHTa)KEHHS Ha €JIEMEHTH MEXaHIYHOI KOJIMBAIBHOI CHCTEMHU BiIOpOTpaHCIopTepa
Ta Ha OCHOBI Au¢epeHuiansHuX piBHsIHG Jlarpamka Il pomy po3pobieHo ii MaTeMaTHYHY MOAENb, SIKa OIMHCYE PYX
CHCTEMH 3a TPHUKIIAJIAaHHS CHHYCOIJallbHOI 30YpIOIOUOi CHIIM MK NPOMIXKHOIO Ta PEaKTHBHOIO MacaMH CHCTEMH.
BukopucToBylour 3araibHi METOJM PO3B’S3YBaHHsS CHUCTEM JIHIHHMX HEOTHOPITHHUX AU(EpEeHIIaTbHAX PiBHSIHD 31
cTajJuMU KoedillieHTaMH, OTPUMAHO BUPa3H IS 3HAXOPKEHHSI aMIUTITY/l KOJMBaHb YCIX Mac CHCTEMHU B YCTaJICHUX
peXHMax poOOTH.

HaBeneHo anroputM po3paxyHKy iHEpIiHHO-)KOPCTKICHHX MapaMeTpiB MeXaHiYHOI KOJMBHOI CHCTEMH
BiOpoTpaHCIiopTepa 3 HANpPSMIICHUMH KOJUBAHHAMH. BinmoBiHO 10 3amaHux Mac poOOYOro OpraHy i pamu
TpaHCIIOPTEpa BH3HAYEHO MKOPCTKOCTI BIAIIOBIJHUX NPYXHUX €IEMEHTIB 1 BIOpOI30JIATOpPIB, BETMYMHY PEaKTUBHOI
(30yproBasnbHOT) MacH Ta MiZi0OpaHO XapaKTEPUCTUKH €IEKTPOMArHiTHOTO BiOpo30ymKyBaya.

Ha ocHOBI BUBEJEHUX 3aJI©KHOCTEH aMILTITYl KOJUBaHb POOOYMX Mac B YCTaJICHHX pEeXHMax poOOTH Ta 3
ypaxyBaHHSM pPO3paxOBaHUX IHEPUIHHMX, YKOPCTKICHUX 1 CHJIOBUX MapaMeTpiB KOJIMBHOI CHCTEMHU BiOpoTpaHc-
noprepa NOOyJOBAaHO BIANOBIAHI AMILIITYJHO-4YaCTOTHI XapaKTEPUCTUKM Ta YacoBl 3aJISKHOCTI MNepEeMillleHb
KOIMBAJIBHUX Mac. BCTaHOBIEHO, IO HOMIHAJbHA AaMIUIITYAa KOJHBaHb pPOOOYMX TiUT BiOpOTpaHCIOpTEpa B
YCTAJICHOMY PeXHUMi POOOTH J0csTae 3 MM.
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3a po3paxoBaHUMH MapaMeTpaMH KOJIMBHOI CUCTEMH Ta apameTpamu 30ypeHHs 3a JIOOMOT00 o0y 10BaHOT
MaTeMaTU4HOI MOJIeNli TPUMAacHOi KOJMBHOI CHUCTEMH BiOpoTpaHcmoprepa Oyio 3MoJenboBaHo ii pyx. 3a
pe3ynbTaTaM¥ iMITallifHOrO MOJENIOBaHHS 3pOOJICHO BHCHOBKU IPO 30DKHICTH PE3y/IbTaTiB aHANITUYHHX JOCIHi-
JOKEHb Ta BIPTYaJIbHOTO eKcriepuMeHTy. OOIpyHTOBaHO HasBHICTh CHH(A3HOrO pyxy NPOMIXKHOI 1 PEaKTHBHOI Mac,
3YMOBJICHOTO peaji3amicio epeKkry “HyJIbOBOi JKOPCTKOCTI» 3 METOI 3a0e3leueHHs BHCOKOe(EeKTUBHOro pe3o-
HAHCHOT'O PSKUMY POOOTH.

3 MEeTolw OI[iHIOBaHHS aJIeKBATHOCTI 3aIllpOIIOHOBAHOI MAaTeMaTHYHOI MOJENI MEXaHIYHOI CHCTeMHU
BiOpoTpaHcIiopTepa MPOaHai30BaHO BIUIMB YacTOTH Ta aMILTITYyAH 30ypIOBaJbHOrO 3YCWILISI HA XapaKTEPHUCTHKH
PYXY KOJIIMBHHX Mac. 30KpeMa, [TpoaHali30BaHO BUIAIKH 301JIbIICHHS 1 3MEHIIEHHS 30ypIOBAILHOI YaCTOTH Y/BiYl Ta
30inblIeHHsT aMILtiTyau B 1,5 pasy i 11 3MeHmieHHs BaBiui. OOrpyHTOBaHO, IO 3MiHAa aMILTITyAH 30YpIOBAILHOTO
3YCHJUISA 3yMOBJIIOE MPOMOPIIHHY 3MiHY aMIDTITYIH BiIXWICHb pOOOYMX MacC BiJl iX MOJOKEHb PIBHOBArH, TOII SK
3MiHa YaCTOTH 30YpEHHS 3yMOBJIIOE CYTTEBE 3MEHIICHHS aMIUTITY/IN KOJIMBAaHb POMIXKHOI Ta aKTHBHOI Mac, OCKIJIbKU
Mae Micie “3CyB» CUCTEMH Bijl PE30HAHCHOTO PEKUMY POOOTH.

Knwowuosi cnosa: BiOpoTpaHcriopTep, MeXaHiuHa KOJMBHA CHCTEMa, BiOpo30ymKyBau, pe30HAHCHUN PEXHM
poboTu, iHepIiiiHI TapaMeTpH, KOPCTKICHI ITapaMeTpH, NapaMeTpH 30yIKEHHs, YacToTa, aMILTITy/Ia.
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