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We consider the Cauchy problem for the first-order linear systems of ordinary differential
equations with unknown right-hand sides and initial conditions that are supposed to be
subjected to some quadratic restrictions. From indirect noisy observations of their solu-
tions on a finite system of points and intervals, we obtain the linear guaranteed mean
square estimates of linear functionals on unknown data of the above-mentioned problems.
It is established that if the correlation functions of observational errors are not known and
belong to special sets, such estimates are expressed via solutions to some boundary value
problems for linear systems of impulsive ordinary differential equations.
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1. Introduction

Estimation theory for systems with lumped and distributed parameters under uncertainty conditions
was developed intensively during the last 30 years when essential results for ordinary and partial
differential equations have been obtained. That was motivated by the fact that the realistic setting
of boundary value problems describing physical processes often contains perturbations of unknown
(or partially unknown) nature. In such cases, the minimax estimation method proved to be useful,
making it possible to obtain optimal estimates both for the unknown solutions (or right-hand sides
of equations appearing in the boundary value problems) and for linear functionals from them, that
is, estimates looked for in the class of linear estimates with respect to observations!, for which the
maximal mean square error taken over all the realizations of perturbations from the certain given sets
takes its minimal value. Such estimates are called the guaranteed or minimax estimates.

Minimax estimation is studied in a big number of works; one may refer e.g. to [1-10] and the
bibliography therein.

Let us formulate a general approach to the problem. If a state of a system is described by a linear
ordinary differential equation

dx(t)
dt

= Az(t) + Bui(t), z(to) = w0, (1)

and a function y(t) is observed in a time interval [to,T], where y(t) = Hx(t) + vao(t), x(t) € R™,
v € R™ y € R™, and A, B, H are known matrices, the minimax estimation problem consists in
the most accurate determination of a function z(¢) at the “worst” realization of unknown quantities

'Here we understand observations of unknown solutions as the functions that are linear transformations of same
solutions distorted by additive random noises.
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180 Nakonechnyi O. G., Podlipenko Yu. K.

(xo,v1(+),v2(+)) taken from a certain set. N.N.Krasovskii was the first who stated this problem in [5].
Under different constraints imposed on function vs(t) and for known function v;(¢) he proposed var-
ious methods of estimating inner products (a,z(T)) in the class of operations linear with respect to
observations that minimize the maximal error. Later these estimates were called minimax a priori
estimates (see [3,5]).

Fundamental results concerning estimation under uncertainties were obtained by A. B. Kurzhanskii
(see [3,4]).

The duality principle elaborated in [2,3,5] proved its efficiency for the determination of minimax
estimates [2|. According to this principle, finding minimax a priori estimates can be reduced to a
certain problem of optimal control of the system adjoint to (1); this approach enabled one to obtain,
under certain restrictions, recurrent equations, namely, the minimax Kalman-Bucy filter (see [2]).

The present paper is devoted to the problems of guaranteed estimation for systems described by
the Cauchy problem for first-order linear systems of ordinary differential differential equations with
inexact data. From indirect noisy observations of unknown solutions on finite systems of points and
intervals, under quadratic restrictions on unknown right-hand sides of equations and initial conditions,
we find the guaranteed (minimax) estimates both for these right-hand sides and initial conditions
and for linear functionals from them. It is proved that guaranteed estimates and estimation errors are
expressed explicitly via the solutions of special boundary value problems for systems of linear impulsive
ordinary differential equations, for which the unique solvability is established.

To do this, we reduce the guaranteed estimation problem to a certain optimal control problems.
Solving this optimal control problems, we obtain the above mentioned boundary value problems that
generate the minimax estimates.

2. Problem statement

Let vector-function x(t) € R™ be a solution of the following Cauchy problem

dfzit) = A()z(t) + B f(t), te (to, T), .
x(to) = Cuo, (3)

where A(t) = [a;;(t)] is an n x n matrix and B(t) = [b;;()] is an n x r matrix, whose entries a;;(t) and
b;j(t) are continuous functions on the closed interval [ty, T, C' = [¢;;] is an n X k real matrix, f(t) € R”
is a vector-function belonging to the space (L2(to,T))", and zo € R¥.

Here a solution z(t) is interpreted as a continuous solution of the integral equation

t
x(t) = z(to) +/t (A(s)z(s) + B(s)f(s))ds
0
or, equivalently, x(t) satisfies (3), is absolutely continuous on [to,T] with its derivative z'(t) satis-
fying (2) on [to,T] almost everywhere (except on a set of Lebesgue measure 0), and belonging to
(L2(t0, T))".
Let t1,...,tn (to < t; < -+ <ty < T) be a system of points on the closed interval [tg,T]. Set
iNy1=T.
The problem is to determine a guaranteed mean square estimate of the value of the functional from
F = (x0, f) of the form

T
I(F) = / (F(8),1o(1)).. dt + (o, ), (1)

0

from observations
yZ:Hlﬂj‘(tl)—l-fZ, ’L:l,,N, (5)
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yi(t) = Hj(t)z(t) + &(t), teQy, j=1,...,M, (6)

in the class of estimates

F) = Z(yuuz)m + Z/Q (y (1), uj(t)),dt + ¢

that are linear with respect to observations (5) and (6). Here (-, ), is the inner product in R™, x(t) is
the state of a system described by the Cauchy problem (2), (3), lo € (L%(to,T))", a € R*, H; are m x n
matrices, H;(t) are | X n matrices with the entries that are continuous functions on Q;, u; € R™, u;(t)
are vector-functions belonging to (Lz(Qj))l, and ¢ € R. We suppose that F' := (zg, f) € G1, where

Gy = {F = (&0, f) € R x (L2(to, T))" : (Qo(do — 23), %0 — 2J),,

+ [ (@00 - 50).50 - 5o)_a<al, @

0

5:: (517"'761\7761(’)7”’7§M(')) €G27 52 = ( 7"'76771) and 6]() - ((]()7“‘7§l ()) are
observation errors in (5) and (6), respectively, that are realizations of random vectors & = &;(w) € R™
and random vector-functions &;(t) = &j(w,t) € R! and G2 denotes the set of random elements £ =

&1y Ens €1 (), Ear(), whose components & = (87, &) and &(-) = (€7(),...,EP ()T

are uncorrelated?, have zero means, E§; = 0, and Efj() = 0, with finite second moments IE|£Z|2 and
E||&;(-)]1? (L2(0,) and unknown correlation matrices R; = E&E] = [7‘]( k) |71 with entries 7‘ = E¢; i) § 2
and unknown Correlation matrices R;(t,s) = Egj(t)g’;f(s) satisfying the conditions

N ~

Z Tr [D,R,] < &9, (8)

i=1

and

M ~
> [ iR < ©)
=179

correspondingly, where D; = [d(i)] and D;(t) are symmetric positive definite m x m and [ x [ matrices,

respectively (Tr D := ZZ 1 di; denotes the trace of the matrix D = {dZ]}” 1) Here in (7), 2§ € Rk,
fo € (L?(0,T))" is a prescribed vector, Qg and Q1(t) are symmetric positive definite matrix and the
entries of matices D;(t) and Q1(t) are assumed to be continuous on ; and [to, T, respectively.

Set w := (up,...,un,ur(-), ..., up(-)) € RV (L2(Q))! x - - - x (L?(Q))! =: H. Norm in space
H is defined by

N M 1/2
[ulla = {Z el |+ Hug'(')H?Lz(Qj))l} :
i=1 j=1

Definition 1. The guaranteed mean square estimate of expression (4) is the estimate

—

N M
F) =" (yiii)m + Z/ (y;(8), 4;(t)) dt + ¢,
i=1 j=1"7%

2That is, it is assumed that E(é,v)m(fj(-),v(-))(Lz(Qj))z =0Vv e R™,v(-) € (L*(Q),i=1,...N,j=1,... M.
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in which vectors u;, and a number ¢ are determined from the condition

inf o(u,c) =o(a,c),

ueH, ceR
where .,
o(u,c) = sup E‘l(ﬁ’) — l(ﬁ’)‘ )
ﬁ'EGl,gGGz

—_— N

. M
UF) = 3w+ Y [ @00 dt+c
i=1 =179

and Z(t) is the solution to the problem (2), (3) at f(t) = f(t), xo = 9. The quantity
o= {o(a,e)}?
is called the error of the guaranteed mean square estimation of [(F).
Thus, a guaranteed mean square estimate is an estimate minimizing the maximal mean square
estimation error calculated for the worst-case implementation of perturbations.
3. Main results

For any fixed u := (u1,...,un,u1(-),...,up(-)) € H introduce vector-function z(¢;u) as a unique
solution to the problem?

dz(t;u) M
G = AT 0e0 = 3 OO0, tE D), i (1)
Az(t;u)‘t:ti = 2(t; + 0;u) — 2(tj;u) = Hiug;, i=1,...,N, z(T;u)=0, (12)

1ifte, . L. . . .
where yq(t) = { 0 ;f . ; Q’ is the characteristic function of the set 2, AT is the matrix transpose

of A.

Lemma 1. Finding the guaranteed mean square estimate of functional I(F') is equivalent to the
problem of optimal control of the system (11)—(12) with the cost function

I(u) = €1 ((Qo—l (a+ CTz(tO;u)) o+ CTZ(to;u))k

0

T
+/t (Q1(®) (lo(t) + BT (#)2(t;u)) ,lo(t) + BT(t)z(t;u))rdt>
ueH

N M
+ &2 Z(D;lui,ui)m—i—ng/Q <Dj—1(t)uj(t),uj(t)>l dt — inf . (13)
i=1 =174

Proof. For each i =1,...,N + 1, denote by z;(¢;u) the restriction of function z(¢;u) to a subinterval
(ti—1,t;) of the interval (t9,T) and extend it from this subinterval to the ends ¢;_; and ¢; by continuity.

3Here and in what follows we assume that if a function is piecewise continuous then it is continuous from the left.
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Then

M

dz;(t;u .
z((it )_|_ zztu ZXQJ () tio1 <t <t ZZl,---,N—l—l,

ZN+1(tNy1su) = O, ziv1(tisu) = zi(ti; u) +HZ-TuZ-, i1=1,...,N.

Let Z be a solution to the problem (2) and (3) at f(t) = f(t), o = . From relations (4) for z = &
and (10) and the integration by parts formula, we obtain

M

— T
1(E) ~ U(F) = / <f<t>,zo<t>>rdt+<:zo,a>k— > i =3 /Q ] D)t — ¢
~ N+1 dZ ) N
= [ o)t + Gosa D+ / W) ATt dt— (@0, B ),
to " i=1
N
- Z fzauz m Z/ 6] U] ldt—c
=1
T _ N+1
— [ (0. bo0)nde + o k+z( (tier).altemri)) — (@), 2t ),
to i=1
N—+1
+Z / — At )j’:(t),zi(t;u)>ndt
N M
- Z(j}(ti)v'zi—kl(ti;u) — 2i(ti;u))n — Z EiyUi)m Z/ (t))dt — ¢
i=1 j=17%
T
= [ (@b}t + (@, a)e + (300, 21 (10 0),
= (Z(t1), 21 (t1su +Z< zi(ti- 1;U))n—(i(tz%zi(tz’;u))n) + (@(N), 2N +1(EN))n

N+1

t; . N
/ (1), za(t50)) dt = (@ (t), 21 (b5 0) — 2t 0)
ti—1 " i=1

N M
_Zguuzm Z/ () dt — c.
i=1 j=17%

J

Taking into account that

N

P

(Z(tie1), zi(tic; ), + (Z(tn), ev41(tn)), = (Z(ti), zig1(t; ), + (2(tN), 2n41(tN)),,

=2 4

Il
—_

I
WE

(Z(t:), zis1 (ti; “))n7
1

<.
I

from latter equalities, we have

T
U(F) — I(F) = / (F).10(8)), dt + (Fo, a)e + (2(to), (Fo: w))n

to
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N
(t), zi(t; u)) dt — Z GRS Z/ §] ,j(t dt —c
" i=1
T ~
= [ (F@)ho0),dt + (@0,a)i + (Co. (00 ),
t

o [ (i) =) dt= 3 G z [ G —e

The latter relationship yields

+
.\H
‘E
oy
=
~m

— T ~
E[l(F) —U(F)] = (Zo,a + C’Tz(to;u))k + / (f(t),lo(t) + BT (t)2(t; u))rdt —c. (15)

to

Taking into consideration the known relationship
Dy = Eln|* — [En|”

that couples the variance Dn = E|n — En|? of random variable n with its expectation Ez, in which
n is determined by right-hand side of (14) and noncorrelatedness of & = (él), el ~£,§))T and fj() =
(éj)(-), e ,EZ(J)(-))T, from the equalities (14) and (15) we find

—

~ = T
BINF) ~ (PP = |(Eo,a-+ CTsttos))e + [

to

N _ M ~ 9
[ G+ Y [ GO0
i=1 j=1"%

— ‘(920 —x0,a+ CTz(to;u)), + /tT (f(t) — folt),lo(t) + BT(t)z(t;u))rdt
T 2
|

(fo(t), lo(t) + BT (t)2(t; u))rdt —c

:

Youm

F@®),10(t) + BT (t)2(t; u)> dt — ¢

T

+ (xg, a+ C'Tz(to;u))k + /

+E\é<&,ui>m12 *Eé i (0. g

Thus,

inf o(u,c) =inf  sup E[(F)— I(F)P?

ceR ceR FEGl £€G2
T ~
— Cigg&;ggl{(j;o —xg,a+ CTz(to;u)), +/t0 (f(t) — fo(t),10(t) + BT (t)2(¢; u))rdt
T
+ (23, a + CT2(tg;u)), +/ (folt),1o(t) + BT(®)2(t;w)) dt — c]2
to T
M ~ 2
+585<2<E‘Z &y ui m‘ —l—E‘jz::l/Qj(ﬁj(t),uj(t))ldt‘ )
Set

T ~
yi= (30— af,a+ CT2(to;w) , + / (F®) = fo®).1o(t) + BT ®)=(t:)) at

T
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T
d=c— (13, a+C =(to;u)), — / (fo(t), lo(t) + BT (t)2(t: u))rdt.

to

Then for all F = (Zo, f ) € G1, the generalized Cauchy—Bunyakovsky inequality and (7) imply

v < [(Q5" (a+ CT2(ti ), a + CT2(tos ),

T
+ [ @O0 + B0t 0) (o) + B @)s(es0), ]
’ /

< [(@ota0 = 430~ a8), + [ (@070 - foe). S0~ ftt)) ] <},

to

where
L= [(Q5"(a+CT(to;w)) a + CT=(to; w)

T
+/t QT (®) (o) + BT (t)z(t;w)), lo(t) + BT (t)2(t; u))rdt} vz

0
The direct substitution shows that the last inequality becomes the equality at F= (Zo, f ) € Gy, where

1/2 1/2
fo=a§+ 2=Qp" (a+CTltoiw)) , F) = folt) £ Z=Q1" (1) (lo(®) + BT (1)z(t:w) -

Taking into account
inf sup |y—d|?=¢e L2

deR 1/2
lyl<ey/’L

we find

T ~

inf sup [(a+ CT=(to; w), o — af), + / (to(®) + BT (0)=(t;w), f(8) — folt)) dt
T

+ (a+ CTz(to;u),2p), + / (lo(t) + BT (t)2(t; u), fo(t)> dt — c] o e1L?

to T

— &1 (Q5 M a+ C (ko w), a + CT=(tos ) ,

T
+51/t Q1) (lo(t) + BT (8)2(t;w)) L lo(t) + BT (8)=(t;w)), dt, (17)

0

where the infimum over c is attained at
T
c=(a+CTa(to;u), 2g), + / (lo(t) + BT (t)2(t;u), fo(t)) dt. (18)
to T

Calculate the last term on the right-hand side of (16). Applying the generalized Cauchy—Bunyakovsky
inequality, we have

N N N N N
E Z(&,ui)m <E [Z(Di_luhui)m . Z(Di&,&)m] = Z(Di_lui7ui)m’E Z(Di&,&)m] - (19)
i1 i1 i1 i1 i1
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Transform the last factor on the right-hand side of (19) as follows:

N N m m

E | (Di&i,&) m] ZE(ZZ@’@ s“)

i=1 i=1 7=1 k=1
N m m N m m
=D DD ANEEIEY =33 S il = ZTrDR
=1 j=1 k=1 i=1 j=1 k=1

Analogously,

M R ) M - N
E‘;Aj(gj(t),uj(t))z dt( <;/ﬂj(Dj (t)u;(t), u;(t)); dt - E {Z/

j=17%

and o N
dt} = ;/QJ Tr [D;(t)R;(t,1)] dt

Taking into account (8) and (9), we deduce from (19) that

E

N
Z uz,& m +E‘Z/ fj ,uj(t dt‘

M
< EQZ (D; sy w) —|—<€32/Q‘ (D].—l(t)uj(t),uj(t)>l dt
=1 j=1 J

It is not difficult to check that the equality sign is attained at the element

5(0) ( 7"'76]\[7 1 ()775](\2)())602
with 12
-1,
§21(0): €' mD; u; - i=1... N,
[Zi\il (D;lui,ui)m}
1/2
D u;i(t
0 = D (1)) j=1,...,M,

[ j= 1fQ ( “J(t)auj(t))ldt]l/w

where 77 and 72 are uncorrelated random variables such that En; = 0 and E|n;|? =1, i = 1,2. Hence,

:;é(E‘; &iyu; m‘ +E‘Z/ (&), u;(t dt‘ )
M
e, Z;(D;lui,ui)m ra) i (7 Ow0.050) a1 (20

The statement of the lemma follows now from (16), (17), (18), and (20). The proof is complete. ~ m

Using this lemma, we obtain the following result.
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—
j—

Theorem 2. The guaranteed mean square estimate [(F') of expression [(F) has the form

— N

M
GETR IS / (g (8), 4 (E)dt + & = (),
i=1 j=1"%

where
T
¢ = (20,a+ CT4(to;w)), + / (fo(t), lo(t) + BT(t)é(t)) dt,
to r
F=(i,f) with &g=a0+e1Qy (t)CTh(t0), f(t) = folt) +21Q7" ()BT (t)p(t),

and the vector-functions p(t), 2(t), and p(t) are determined from the solutions of the problems

~ M
S s - > xS ODOHR0, 1€ 0T tFh (D
AZ(t)|,_, = 2(ti +0) = 2(ti) = &3 'HI DiHip(t;), i=1,...,N, 2(T)=0, (22)
d];—f) = At)p(t) + a1 BA)QT () (BT2(t) + (), te€ (to,T), t#t, (23)
Ap(t)|,_,, = p(ti +0) =p(ti) =0, i=1,...,N, p(to) =e10Qy" (CT2(to) + a) (24)

and
dp(t) T\ 1 = T N
= = AT B(E) —e3 > xo, OH] (D (6)[H;(t)i(t) — y;(t)], t€ (to,T), t#ti, (25)
j=1

Ap(t)|,_, = B(ti +0) = p(t:;) = ex 'H'D;[H;i(t;) —yi], i=1,...,N, p(T)=0, (26)

= A()2(t) + 11 (D)D) + BA) fo(t), t € (to,T), t#ti, (27)
AR(t)],_, = &(t:i+0) —#(t;) =0, i=1,...,N, &(t)=e1Qop(to) + Cx{. (28)

respectively. Here, Qo = CQy'C™, Q1(t) = B(t)Q; ' (t)BT(t). Problems (21)(24) and (25)(28) are
uniquely solvable. Equations (25) — (28) are fulfilled with probability 1.
The guaranteed mean square estimation error is determined by the formula

o= [(P)"?, (29)

where

P=(e1Qy" (a+ CT2(to)) ,e1Q7 (1) (lo(t) + BT (1)2(1))) -

Proof. From the results contained in [11, Chapter 1], it follows the estimates

1z(to; wllln < erllulla,  N2Csw)llL2o,mym < callulla,

where c;, ¢y € R. Taking into account these inequalities, one can easily verify that I(u) is a continuous
strictly convex functional on H. By [12, Corollary 1.8.3|, I(u) is a weak lower semicontinuous strictly
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convex functional on H. Since
N M
I(u) 2522(D;1ui,ui)m+632/ (D ()ui (1), uj ()t > cllull}; Yue H, ceR,
i=1 j=17%

by [13, Theorems 13.2 and 13.4] there exists one and only one element 4 € H such that I(4) = in}fq I(u).
ue

Hence, for any fixed v € H and 7 € R the function s(7) := I(4 + 7v) reaches its minimum at a unique

point 7 = 0, so that

1d
§El(u+ﬂ))‘ +—0=0. (30)

Since z(t; 4+ Tv) = z(t;4) + 72(t;v), we obtain from (13) and (30) that

0=¢ Z /t.ti (Ql—l(t) (BT(t)Zi(t;ﬁ) + lo(t)) ,BT(t)Zi(t; U))r dt

+e1(Qp" (C 21 (to; @) + a) ,CT 21 (to;0))

M
+s2z (D;lﬂi,vi)m+€32/g (Dj_l(t)ﬂj(t),vj(t))ldt. (31)
i=1 j=17%

Let p(t) be a solution of the problem

dp(t)
dt

Ap(t)‘t:ti = p(tl + 0) _p(tl) = 07 1= 17 s 7N7 p(t()) = 5106261 (CT’Z(t07’[L> + a) .

For each ¢ = 1,..., N + 1, let p;(t) be the restriction of function p(t) to a subinterval (¢;_1,t;) of the
interval (¢g,T") that is extended from this subinterval to its ends ¢;_1 and ¢; by continuity. Then

— AOp() + 21 BOQT (1) (B 2(6:0) +1o() ,  t€ (to,T), ¢ #1,

dpéit) — A(t)pi(t) = e1B)QT (t) (BT zi(t;0) +1o(t)), ti1 <t<t;, i=1,...,N+1,

pi(to) =e1CQy " (CT a1 (to;d) + @), pisa(t) = pilts), i=1,...,N.

Taking into account zyy1(tn4+1;v) = zn41(T;v) =0, (23), and (24), we have

N+1
€1 Z/t QT () (BT (t)zi(t;a) + lo(t)), BT (t)zi(t; v)) _dt+e1 (Qp (CT z1(to; @) + a), CT 21 (to; v))
N+1 '
X (20— awi), (t) e+ (a0 21 (i),
i=1 Yti-1 n
—(pN41(tN), 2ng1 (Es 0 +Z< pi(ti), zi(ti;v)), — (pi(ti—l)azi(ti—1§’l)))n) + (p1(to), 1 (to; v))
N+1 e
+ ; /ti1 (‘% - AT(t)Zi(t;U),pi(t;v)>ndt
N N+1
Z ), zi(ti;v)), — Z (pi(tiz1), zi(ti—1;v Z/ (1)), dt
=1 =2

( 1(t1), z1(t1; )) (pz(tl) 22(t1;v))n+"'+( i(ti), zi (s )) (pz+1( i) Zz—l—l(tuv))
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+oo 4 (e (), an(tviv), — (Pv1(tn), zn4a (Evs v) Z/ t)v;(t)), dt
= (p1(tr), 21(t1;0) = 22(t1;0)), + -+ (pits), zi(tis0)),, — 2iv1 (L3 0))n
N M
oo (on (), v (i), — e (s o) = = D (pilt), Hif i) —Z/Q (p(t), H] (t)v; (1)), dt.
i=1 j= J
(32)

From (31) and (32), we find
ﬂi 262_1D2‘H2‘pi(t2‘), 1= 1,...,N, ’[Lj(t) 2851Dj(t)Hj(t)p(t), j = 1,...,M. (33)

Setting

u=1= <€2_1D1H1p(t1), . ,a;lDiHip(ti), . ,E;lDNHNp(tN),
e5 ' Dy()Hi(t)p(t), . .. &5 Di(t)H;(t)p(t), ... 7€§1DM(t)HM(t)p(t)>

n (11), (12), and (18), and denoting 2(t) = z(¢;4), we see that 2(t) and p(t) satisfy system (21)—(24);
the unique solvability of this system follows from the fact that the functional I(u) has one minimum
point 4.

Let us prove that o = [I[(P)]/2. Substituting expression (33) to (13), we obtain

N+1 g,
o2 =0(0,¢) =& Z / (QT'(®) (o) + BT (#)2:(t)) . lo(t) + BT (1)2:(t)) . dt
i=1 “ti-1
+e1(Qy" (a+CT2(t)) ,a+ CT4(t0)),
N
+ey " Y (Hipi(ti), DiHipi(t:) +z—:312 / D;(t)H;(t)p(t)),dt. (34)
i=1
However,
N+1
£1 Z / QT (t) + BT (1)2:(t)),lo(t) + BT (#)2:(t)), dt+e1 (Qp ' (a + CT2(t0)), a + CT2(ty)),,
N+1 T
55 / (29 Ay, 2(0)) e+ / (Q7(1) (lo(t) + B (1)2(0)) o (#)) , dt
N+1
+a(to) 2100, + 21 (@5 + Celto)) ), = 1(P) + 3 ((att). 2:(t:0), = (Piltim), Zi(tima))n)
N+1 t dZ
/t 0 AT@)2 (0 00)) di+ (). 2 (00),
A N
= —5312/ )D;(t)H;(t)p(t)), dt —e3" Y (pits), HY DiHipi(t:)),, . (35)
i=1

Then (29) follows from (34) and (35).
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The representation

—

I(F) = I(F). (36)
can be proved in much the same way as the representation

—_
——

N M
UF) = Z(yiaﬁi)m + Z/ (y;(t),0;(t)), dt + ¢
i=1 =178

This completes the proof. ]

—
——

Remark 1. In the representation I(F) = I(F) of the guaranteed mean square estimate of [(F),
where F' = (&g, f) and F = (xq, ), the vector 29 = 2§ + £1Qy ' (t)CTp(ty) and the vector—function
f(t) = folt) + £1Q7 ()BT (t)p(t) do not depend on a specific form of functional I. Therefore, &y and

f(t) can be taken as good estimates of unknown zy and f(t), respectively.

Remark 2. When observations are pointwise (i.e., H;(t) = 0 and §;(t) =0, j = 1,...,M in (6)),
the systems of ODEs (21)—(24) and (25)—(28) are equivalent to some systems of linear algebraic equa-
tions [14].

4. Conclusion

We elaborate a minimax approach to the problem of estimation of unknown data for systems governed
by the Cauchy problem for first-order linear systems of ordinary differential equations from noisy
observations of their solutions. Here we use a new class of observations distributed on a finite system
of points and intervals.

It has been established that the guaranteed mean square estimates are expressed via solutions of
some linear systems of impulsive ordinary differential equations.

The obtained systems of ordinary differential equations that generate the guaranteed mean square
estimates of linear functionals can be applied to the processing of information for estimation of mean
values of stochastic vector processes from their observations distorted by noises, whose correlation
functions are unknown.
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FapaHTOBaHe BI,EI,HOBJ'IEHHSI HeBI,D,OMI/IX ,u,ame 3a Hel'lpilMI/IMI/I
3allymMmjieHnMmun CI'IOCTEpE)KEHHFlMI/l X po38B $I3KIB Ha CKiHYeHHIn
CUCTEeMI TOYOK | IHTepBaJ'IIB

Hakoneunwuii O. I'., ITognmunenko 1O. K.

Kuiscokut nayionarvnut ynisepcumem iment Tapaca Illesuenka,
sya. Boaodumupcovka, 64/13, Kuis, 01601, Ykpaina

Posrasguyro 3amaay Ko jjist siHifiHUX cucteM 3BUYalHUX JudEpeHITaIbHAX PIBHIHD
[IEPINIOT0 TOPSIAKY 3 HEBLIOMUME IIPABUMU YaCTAHAMH i TOYATKOBUME YMOBaMU 33 IIPH-
Iy IIeHHs, 10 BOHU I IOPsIIKOBAHI IESIKUM KBaIPATUIHUM OOMEXKEHHSIM. 3a HEeIIPSIMUAMUA
3alllyMJIEHUMHA CIOCTEPEKEHHSIMU 1X PO3B’#3KIB HA CKIHYEHHIN crcTemi TOYOK Ta iHTEp-
BaJIiB OTPUMAHO JIHINHI TapaHTOBaHI CepeIHHLOKBAIPATUYIHI OIMIHKU JHHIHHUX (DyHKIO-
HaJIiB Bij HEBiIOMHUX JAaHUX IUX 3aJ]a4d. BCTaHOBJIEHO, IO SKIMO HEBiJIOMI KOPEJIIiiHi
GbyHKIIT TOXUOOK y CIIOCTEPEXKEHHAX HAJIEXKATD JESKUM CIeliaJbHIM MHOYXKHUHAM, TO Ta-
Ki OI[IHKU BHUPAXKAIOThCHA Yepe3 PO3B’si3KU JeIKNX KPAHOBUX 3aJa9 s JIHINHUX CHCTEM
IMITyJTbCHUX 3BUYANHUX [udepPeHIiaIbHX PIBHIHb.

Knto4oBi cnoBa: zapanmosana cepednboksadpamusha ouiHKka, 3GWYMAEHT cnocmepe-
oHCeHHA, NIRRT GYHKUIORAAU 610 He8IdoMUT JGHUL.
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