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A non-Markov kinetic equation with fractional derivatives for a nonequilibrium one-
particle distribution function is obtained. The resulting equation contains the generalized
diffusion and friction coefficients in the space of coordinates and momentums of particles.
This equation can be used, in particular, for mathematical modeling of kinetic processes
of particle transport in porous media with fractal structure.
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1. Introduction

Studies of nonequilibrium processes with spatio-temporal nonlocality are relevant in the statistical
physics of soft matter. Mathematical modeling of diffusion (sub-, super-diffusion) electrodiffusion
transfer processes in porous and complex nano-structured (with characteristic fractality) systems re-
quires the use of transfer equations with significant spatial inhomogeneity and temporal memory. In
our works [1-9| a statistical approach to obtain generalized spatio-temporal nonlocal transfer equa-
tions was developed by using the Zubarev nonequilibrium statistical operator method [10-13] and the
Liouville equation with fractional derivatives [14,15]. In particular, the generalized diffusion equations
of Cattaneo [2,4], Cattaneo-Maxwell [5] and electrodiffusion [6-9] with spatio-temporal fractional
derivatives were obtained.

In this paper a generalized kinetic equation with spatio-temporal fractional derivatives for a
nonequilibrium one-particle distribution function of a classical system is obtained on the basis of [4].
It is important to note that the chain of BBGKY kinetic equations with fractional derivatives was
obtained in works [14, 16, 17| and the kinetic equations in the Klimontovich’s approach for systems
with fractal structure, in particular for describing the diffusion processes in the space of coordinates
and momentums, were obtained in works [18,19].

The second section presents a method for obtaining the generalized spatio-temporal nonlocal trans-
port equations by using the Liouville equation with fractional derivatives and the Zubarev nonequi-
librium statistical operator method in the Renyi statistics. On this basis, a new generalized kinetic
equation with fractional derivatives for a nonequilibrium one-particle distribution function is obtained
in the third section.

2. Liouville equation with fractional derivatives for classical system of particles

We use the Liouville equation with fractional derivatives obtained by Tarasov in Refs. [14,15] for a
nonequilibrium particle function p(z;t) of a classical system
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N N
Yit)+ > D7, (pl™s)vs) + 3Dy (a0 F) =0, (1)
j=1 =1

where 2V =z1,..., 2y, x; = {r],pj} are dimensionless generalized coordinates, r; = (7j1,...,7jm),

and generalized momentum Pj = (Pj1,---,Pjm), [20] of jth particle in the phase space with a fractional
differential volume element [15,21] d*V = d%z; ...d%xy. Here, m = % :8, M is the mass of particle,
ro is a characteristic scale in the configuration space, pg is a characteristic momentum, and % is a

characteristic time. d“ is a fractional differential [21] that is defined by

Z Da x)(dxj)*,

where

x (n)z
DE@) =t [ 2)

F'n—« x — z)otl-n

is the Caputo fractional derivative, [22-25] n—1 < a <n, fM(z) = jz—nnf(z) with the properties

D31 =0and D¢ x; =0, (j # 1). v; are the fields of velocity, F; is the force field acting on jth
J J

particle. If F'; does not depend on p;, v; does not depend on 7;, and the Helmholtz conditions are

satisfied,
ov;  Ov % or, OF; 0F

om  Op; T On @_ oor or;

we get
N N
Not) + Zij,‘i‘jp(xN; t) + ZFngjp(xN; t) =0,
j=1 J=1

v; = ngH(T‘,p), F] = _ngH(rvp)v

where H(r,p) is a Hamiltonian of a system with fractional derivatives [20]. We get the Liouville
equation in the form

ap(a:N; t) +iLap(zN;t) =0, (3)

where iL,, is the Liouville operator with the fractional derivatives,

iLop(a 2—:1 [ ~ D¢ H(r,p) ng] (i t). (4)

A solution of the Liouville equation (4) will be found with the Zubarev nonequilibrium statistical
operator method [10,11]. After choosing parameters of the reduced description, taking into account
projections we present the nonequilibrium particle function p (a:N ;t) (as a solution of the Liouville
equation) in the general form

t
p(ng; t) = Prel ($N§ t) - / ea(t,_t)T(t7 t/)(l - Prel(t/))iLaprel(xN; t/)dtlv (5)

—00

where T'(t,t') = exp,. [ ft’ Pro(t")iLy dt} is the evolution operator in time containing the pro-

jection, exp, is ordered exponential, ¢ — +0 after taking the thermodynamic limit, P.¢(t') is the
generalized Kawasaki—-Gunton projection operator depended on a structure of the relevant statistical
operator (distribution function), p,o(zV;#'). By using the Zubarev nonequilibrium statistical oper-
ator method [10-12] and approach, [13] py¢ (2;¢') will be found from the extremum of the Renyi
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entropy at fixed values of observed values <Pn(:n)>fx, taking into account the normalization condition

(1)t .., = 1, where the nonequilibrium average values are found respectively, [14]

(Py(x))t, =T1%(,...,N)T(1,...,N)Pyp(z"V:t). (6)

A

I*(1,..., N) has the following form for a system of N particles

A A A A

*(,...,N)=1*(1),... . I*(N), 1°(j) = I*(r;)I*(p;)

and defines operation of integration

P = [ @), i) - }(L) dr. (7)

A

The operator T'(1,...,N) =1T(1),...,T(N) defines the operation

T(l'j)f(l‘j): f(...,xj—ajj,...);—f(...,:nj—l—:nj,...)'

Accordingly, the average value, which is calculated with the relevant distribution function, is defined
as

(N =11, ,N)T(L,... ,N)(...) praa (=™ 2).

According to Ref. [13], from the extremum of the Renyi entropy functional

Inl*(1,...,N)T(,...,N) (/)2

Lr(p') = 1—¢

NI, N)T(1,...,N) ) (t)

—Z/d,ua(x) Byt o1, NYT(L,... . N) By(2)p (t)

at fixed values of observed values (P, ())!, and the condition of normalization

A

Ia,...,N)TQ,...,N)p(t) =1,

the relevant distribution function takes the form

)= g |1~ 0 (= 2 [ @) Pty Pt - )

where Zg(t) is the partition function of the Renyi distribution, which is determined from the normal-
ization condition and has the form

Zr(t) =1I1%(1,...,N)T(1,...,N)

1
q—1

X [1 - %ﬁ(ﬂ— En:/dua(a:) E,(x;t) 5]5n(a:;t)>] : (9)

The Lagrangian multiplier 7 is determined by the normalization condition

I*(1,...,N)TQ,...,N)p/(t) = 1.
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The parameters F),(x;t) are determined from the self-consistency conditions

(Pa(2))t = (Pa(@))6rer- (10)

It is important to note that the relevant distribution function corresponded to the Gibbs entropy
follows from (8) at ¢ =1 [1].

In the general case of the parameters (Pn(:n)>g of the reduced description of nonequilibrium pro-
cesses according to (5) and (8), we get the nonequilibrium statistical operator in the form

t

o(t) = pra(®) + 3 / dta () / DD, 1) I (2:4) praa () B (23 )t (11)

where
* / Fn(x7t/)
q—1 ) )
Sy / djia() Fo(:) (Pa(a),
Lnai) = (1= P(9) 20~ ()iLa Pafa) (12)

are the generalized flows, P(t) is the Mori projection operator [1|, and the function (¢) has the
following structure

0l0) = 1= T2 [ (o) wst) o)

By using the nonequilibrium statistical operator (11), we get the generalized transport equation
for the parameters (P, (z))!, of the reduced description,

O - t . A t
a(Pn(x»a = (ZLaPn(x»a,rel

t

+)° / dpia (") / e op p (x,'st,t) BEY (a5t dt (13)

—0o0

where
ey (@it ) = 101 NYT(L, o N) (Lo Pa@)T () L (@) pra(a™5 ) (14)

are the generalized transport kernels (the memory functions), which describe dissipative processes in the
system. To demonstrate the structure of the transport equations (13) and the transport kernels (14),
we will consider, for example, electrodiffusion processes. In the next section, we obtain generalized
kinetic equations with fractional derivatives.

3. Generalized kinetic equation for a nonequilibrium one-particle distribution function
with fractional derivatives

To describe the kinetic processes for the systems of classical particles (gases, liquids) in porous media,
one of the main parameters of the reduced description is a nonequilibrium one-particle distribution
function fi(x;t) = (A(x))t,, where A(x) = Z;VZI é(r—r;)0(p—p;) = Z;Vzl d(x —z;) is the microscopic
phase density for number of particles in the system. With such a set of the reduced description
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parameters, the relevant distribution function is as follows:

1
1

prat) = i (1= 25 (1 [ dpatyatssdngn ) )7 (15)

where
1
q—1

Za(t) = (1, NYP(1,...,N) <1 - q%qlﬁ <H - /dua(x)a(a:;t) 5@@:;@)) (16)

is the statistical sum of the relevant distribution function, di(z;t) = @ (x) — (f(z)), are the density
fluctuations and parameter a(z;t) is determined by the condition of self-agreement:

<ﬁ(x)>ta = <ﬁ(x)>ta,rel : (17)

It is important to note that when ¢ = 1 the relevant distribution function (15) in the Renyi statistics
transforms into the Gibbs statistics distribution. The distribution (15) can be represented as:

pratt) = o (1= 25 (1 [ o) @iy ) . (18)

where

1

Zr(t) = I*(1,... NYP(1,... . N) (1 _ q;qlﬁ (H _ /d,ua(:n) o (:L";t)ﬁ(x)>> 9

a(x;t) '
T+ LT [ dpg(a) ala:t) (),

Substituting (18) into (11) we get for the nonequilibrium statistical operator

a*(x;t) =

p(t) = prei(t) + /_ 0Tt / dpa (") In(2' ') pra(t') Ba* (!5 1)) dt, (20)
where ]
In(z;t) = (1 - P(t)) gw‘l(t)z‘Laﬁ(w) (21)

is the generalized flow in which function 1 (t) is equal to

v =1-21p (H - [ dato) a*(x;tm(:s)) |

P(t) is the projection operator with the following structure:

P(t)... = / djia() / dpta(@’) (.. @)Yt (@) a0 (0] A )Rl Sl (8] (),

where §{A} = A — (A)!

a,rel”
By using the nonequilibrium statistical operator (20) one can obtain for the parameter of reduced

description a generalized kinetic equation for the nonequilibrium one-particle distribution function:

t
%(ﬁ(x»g = (iLa ()¢, e + / dpia(a’) / D G (w, a8, 1) Ba (2 t)) dt, (22)
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where

Grn(x, 2’5, 8) =1%1,... ,N)YTQ,...,N)iLogi(z)T(t,t) L (z'; ) pres(z™ ;1) (23)

is the generalized transport kernel describing the kinetic processes in which averaging is performed
according to power—distribution (18). Exposing the action of the Liouville operator iL, on n(z)

iLan(r) = =Dy - p(z) — Dp - F(2), (24)
where
N N
p(x) =) p;o(r—r;)d(p—p;), F(z)=> F;i(r—r;)ip—p;) (25)
j=1 j=1

is the microscopic density of momentum and force in the phase space of coordinates and momentums
of all particles, we get:

Gun(@,25t,t) = D& - Dpp(x,2'st,') - D& + D - Dypp(w,2'st,t') - DY

+ Dy, - Dpp(z,2'5t,t') - DY + Dy - Dpp(x,2';t,t) - Dy,

(26)

where Dy, (x,2;t,t") is the generalized diffusion coefficient and Dpp(z,2';t,t') is the generalized co-
efficient of friction in the space of coordinates and momentums, D,r(x,z’;t,t") describes the spatio-
temporal correlations between p(z) and F'(z). Substituting (24) and (26) into (22) we get a generalized
kinetic equation for a nonequilibrium one-particle distribution function with fractional derivatives

0 . o o
E <n(‘r)>fx = D'r' <p(x)>ta,rel + Dp <F(‘T)>Z,r6l
t
+ /d,ua(a:/)/ =D (fo - Dpp(x,2'5t,t') - Dy + Dyt - Dyp(x,2';t,1') - Dy
+ Dy - Dpp(x,2';t,t") - Dy + Dy - Dpp(z, 2’51, 1) 'Dg,>ﬁa*(3:'; t')dt', (27)

which takes into account memory effects and spatial inhomogeneity.

4. Conclusions

On the basis of approach [1,4] a non-Markov kinetic equation with fractional derivatives for a nonequi-
librium one-particle distribution function is obtained. It is important to note that given equation
contains the generalized diffusion and friction coefficients in the space of coordinates and momentums
of particles and is one of the problems for mathematical modeling in specific applications. One of
important application for given equation is describing kinetic processes of particle transport (in par-
ticular, of ions) in porous media (with fractal structure), when changes in momentum can significantly
change the transport mechanisms.
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V3arasibHeHe KiHeTU4YHe PIBHSIHHSI 3 MPOCTOPOBO-4aCOBOIO
HeNoKaJIbHICTIO

Kocrpob6iit I1. I1.', Mapkosuua B. M.!, Puxa I. A.', Tokapuyx M. B.1?
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OTpuMaHO HEMAPKOBChKE KiHETHYHE PiBHAHHS Y JpOOOBUX IOXIJIHUX JIjIs HEPIBHOBaXKHOI
OJIHOYACTUHKOBOI (PYHKIIIT po311oity YacTuHOK. OTprMaHe pIBHSIHHS MiCTUTh y3araJbHeH1
koedirierTn mudysii i TepTd y TPOCTOPI KOOPAUHAT Ta IMITYJIbCIB YaCTUHOK, 1€ PiBHSIHHS
MOXKe OyTH BUKOPHUCTAaHE, 30KPEMa, JJIsi MATEeMATHIHOIO MOJIE/IOBAHHS KIHETUIHUX IIPO-
[IECiB TIEPEHOCY YACTUHOK Yy MOPUCTUX CEPEeNOBUINAX 3 (PPAKTAIBLHOI CTPYKTYPOIO.

Knto4voBi cnoBa: xinemuuhe piehanHA, NPOCMOPOBO-4ACO8H HEAOKANGHICTG, HEPIGHO-
8aHCHG PYHKYLA PO3Nodiay, cmamucmuka Pemi.
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