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Abstract. Purpose. To determine the two-dimensional thermoelastic state in a circular plate, 
weakened by an edge or internal crack induced by a stationary heat sourse. This paper proposes 
using singular integral equation (SIE) to investigate thermostressed intensity in the vicinity of the 
crack tip, depending on the local heat source placement and identify typical mechanical effects. 
Numerical results for the stress intensity factors (SIFs) can be potentially used to identify (with the 
limit equilibrium equations) critical values of the intensity of the local heat source at which crack 
begin to grow and the local destruction of the body. Methodology. The methods of studying two-
dimensional thermoelastic state body with crack as stress concentrators based on the function of 
complex variable method by which the problem of stationary thermoelasticity are reduced to a SIE 
of the first kind, a numerical solution which was obtained by the method of mechanical quadratures. 
Findings. In this paper graphic dependences of stress intensity factors at the crack tip on the relative 
position of crack and local heat source placement and on the length of crack are obtained. 
Originality. Scientific novelty lies in the fact that the solutions of the new two-dimensional problems 
of thermoelasticity for a circular plate containing a crack under the influence of local heating of heat 
source. Practical value. The practical value is the ability to more fully take into account the real 
situation in the thermoelastic elements of engineering structures with cracks that operate under 
conditions of heat stress in various industries, particularly in mechanical engineering. The results of 
specific values in the crack tip SIF in graphs may be useful in the development of sustainable modes 
of structural elements in terms of preventing the growth of cracks. 

Keywords: crack, temperature stresses, heat source, stress intensity factor, singular integral 
equation. 

Introduction and literature review 
Elements of numerous engineering structures often work in conditions of thermal heating, which 

contribute to the appearance of their temperature stresses. This is typical for constructions in the heat 
energy industry. Their efficiency is largely determined by the level of concentration and intensity of these 
stresses in some areas, for example, in the vicinity of technological inhomogeneities (cracks, inclusion). In 
this case, the destruction of materials is associated with the presence of sharp stress concentrators such as a 
crack. Therefore, the study of the thermoelastic state near the crack is necessary for calculating the strength 
from the position of the mechanics of destruction, which is important for elements of structures of high 
strength and little plastic materials with a circular border, which are under the influence of different types 
of thermal loads. 

A plate with a circular border (disk or plane with an aperture) and arbitrarily oriented thermally 
insulated cracks is investigated in [1]. In the paper [2], the thermal stresses in a circular disk with a 
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rectilinear crack are determined due to the action of the heat source and the set temperature on the border 
of the disk. A similar problem in the case of arcuate cracks is solved in [3, 4]. In [5] a numerical solution of 
the problem of temperature stresses in a circular disk with a radial crack, which is under the action of an 
axisymmetric temperature field, is obtained. A circular disk with diameters cracks on the shores of which 
the temperature is given is considered in [6]. 

The method of singular integral equations solves the problems for determining the temperature 
stresses arising from the action of the heat source, located in a semi-infinite plate with an arbitrarily 
oriented edge crack, in articles [7, 8]. In the framework of plane deformation, the problem of quasi-static 
thermoelasticity for an unbounded hollow circular cylinder in the radial section of which is an internal or 
edge crack is considered in [9]. In [10], crack interaction and inclusion in a circular disk have been 
investigated. Local frictional heating of surface of a half-space containing a curvilinear crack in stationary 
state was investigated in the paper [11], and that with an inclusion and a crack was studied in [12]. 

Circular disk with a central crack due to the action of the heat source 
Consider the circular disc of the radius 0R  containing the central crack. Let an arbitrary point of the  

disk on  the Ox  axis to the right of the crack placed a stationary source of heat power q . We suppose that 
the shores of the crack are not in contact, unloaded, thermally insulated (as well as the lateral surfaces of 
the disk), and on the circular border of the disk the temperature  is set, as well as no load (Fig. 1). Under 
these conditions, there is no heat flux through the crack shores. Then, based on the principle of linearity, 
the complete solution of the thermoelasticity problem for a given domain is obtained by superpositioning 
the following problems: 

Problem A – to determine the thermoelastic state of a homogeneous disk without a crack due to the 
point stationary source of heat power q  and to find components of stress on the line of the crack; 

Problem B – to solve the elastic problem for a homogeneous disc with a crack, assuming that the 
stresses, equal in magnitude and opposite to those found in the previous problem A on the segment of the 
crack location, are applied to the shores of the crack. 

 
Fig. 1. Circular disk with a central crack under the action of a heat source 

Consider solving the above tasks. 
Problem A. The temperature stresses from the heat source placed on the Ox  axis in a homogeneous 

disc without a crack in relative polar coordinates ( ,ρ θ ) with a pole in the center of the disk is written in 
the form [13] 

( )
( )( )

2
0 21

0 0 222 2

4 1
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ρ ρ
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= + − − − −  (1) 
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0ρ , 0θ  are coordinates of the source of heat; 
4

qK k
πλ

= ; λ  is coefficient of thermal conductivity; 

tk Eα=  – for a plane stressed state; tα  is temperature coefficient of linear expansion; θσ , ρθτ  are 

normal and tangent stress components, respectively. 
Problem B. Consider a circular disc of a radius 0R  mapped to a coordinate system xOy  with a start 

in the center of the disk, on the x l<  axis Ox  of which there is a crack. The disk contour is unloaded, on 
the shores of the crack given normal stress components, which are defined earlier in problem A. Then we 
find the distribution of stresses in the disk from the solution of the integral equation, which in the 
dimensionless coordinates has the form [14] 

( ) ( ) ( ) ( ) ( )
1

1
, ' , ' , 1R g S g d Pξ η ξ ξ η ξ ξ π η η

−

 + = < ∫ , (2) 
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; 

/l Rε = ; ( ) ( ) ( )P iη σ η τ η= + ; ( ) ( ),σ η τ η  are  normal and tangential stresses on the shores of the 

crack, defined in (1) and taken with the opposite sign ( ( ) ( ),θ ρθσ η σ τ η τ= − = − ); ( )'g ξ  is derived from 

the jump of displacements on the contour of the crack. 
The solution of equation (2) must satisfy the condition 

( )
1

1
' 0g dξ ξ

−
=∫ , (3) 

which ensures the uniqueness of the displacements bypassing the contour of the crack. The  stress intensity 
factors (SIFs) in the vicinity of the crack tips   are found by the formula [14] 

( )lim ' 2I II
t l

K K g t t lπ
+

± ± ±

→
− = ± − . (4) 

In formula (4), SIFs ,IK ±
IIK ±  are real quantities that characterize the stress-strain state in the 

vicinity of the crack tips. 
The numerical solution of the system of equations (2), (3) is obtained by the method of mechanical 

quadratures [14], when the heat source is at a distance of 0 0.9ρ =  from the center of the crack. Graphs for 

dimensionless  stress intensity factors /I qK K  ( / 0II qK K =  since 0ρθτ = ), where qK K l=  is shown 

in Fig. 2. Dashed lines (right top of the crack  correspond to the /I qK K+  ), dashed punctuation  ( left top 

of the crack correspond to the /I qK K− ) refer to the case when a one source of heat is to right ( 0 0θ = ) of 

the center of the disk. The solid curve refer to the case when two heat sources equidistant from the center 
of the disk ( / /I q I qK K K K− += ) are function. 



Volodymyr Zelenyak, Liubov Kolyasa 

16 

As can be seen from Fig. 2, approximation of the right top of the crack to the heat source leads to a 
decrease in the values of the SIFs to the negative values (there is a contact of the shores of the crack, which 
is not considered in this model), and the removal of the left top leads to a slight increase. 

Circular disk with an edge crack due to the action of the heat source 
Let's start the Cartesian coordinate system xOy  at the edge of the circular disc of the radius 0R , 

pointing the axis Ox  along the diameter (Fig. 3). The disk is weakened by an edge crack in length l , 
which extends from the origin of the coordinates along the axis Ox . 

  
Fig. 2. Dependence of SIF /I qK K  on the length of the crack 

for a fixed position of the source of heat 

Fig. 3. Geometry of a circular disk with an edge 
crack and placed in it by a source of heat 

At the point ( )0 ,0oM x  of the axis Ox  ( 0x l> ) there is a point source of heat of constant power q . 
We suppose that the shores of the crack are not in contact, unloaded, thermally insulated (as well as the 
lateral surfaces of the disk), and the temperature of the disk is set on the circular border, as well as no load. 
Under these conditions, there is no heat flux through the crack shores and the solution to the problem of the 
thermoelastic state of a disk can be obtained as a superposition of two problems: 1) the problem of the 
thermoelastic state of a solid disk without a crack due to the point source of heat; 2) the elastic problem for 
a disk with a crack, to the shores of which are enclosed with the opposite sign of stress, obtained in the first 
problem on the segment of the location of the crack. Since the solution, the first problem is known (see 
formula (1)), then consider the second problem, using the technique developed in [15]. 

Integral equation for elastic problem in dimensionless variables, has the form [14]: 

( ) ( ) ( ) ( ) ( )
1

0
, ' , 'R g S g d Pε η ξ ξ η ξ ξ π η + = ∫ ,    0 1η< < , (5) 

where 
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/l Rε = ;                                 ( ) ( ) ( )P iη σ η τ η= + ; 

( ) ( ),σ η τ η  are normal and tangential stresses on the shores of the crack, defined in (1) and taken with the 

opposite ( ( ) ( ),θ τθσ η σ τ η τ= − = − )); ( )'g ξ  is derived from the jump of displacements on the contour of 
the crack. 

After replacing the variables, transform the equation (5) into a form 
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the form of an interpolation polynomial of Lagrange in the nodes of Chebyshov 

1
2 1cos
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n
ξ π− =  

 
, ( )1,2,....,k n= . 

Instead of condition (3) known for internal cracks, use the relation 
( )1 1 0U − = , (7) 

which indicates that the function corresponding to the top of the crack, which extends to the edge of the 
disk, has a feature smaller than that of. Using the Gauss quadrature formulas for singular and regular 
integrals [14], we obtain from the equation (6) and condition (7) a system of linear algebraic equations for 

the determination of n  unknowns ( )1
kU ξ  
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The stress intensity factors (SIFs) in the vicinity of the crack tip are found by the formula [14] 

( ) ( )1
1

1

1 2 11
2 4

n k k
I II

k

l kK iK U ctg
n n

ξ π+

=

− − = −  
 

∑ . (10) 

The numerical solution of the singular integral equation (6) is obtained by the method of mechanical 
quadratures. Graphs for dimensionless stress intensity factors /I qK K  ( / 0II qK K =  since 0ρθτ = ), 

where qK K l=  is shown in Figs. 4 and 5. 

An analysis of numerical results showed: when the source approaches the line of the crack to its top, 
SIF /I qK K  is initially increased, reaching a certain maximum, and at the very top it decreases (Fig. 4). If 
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the heat source is located to the right of the center of the disk, then with increasing length of the crack the 
SIF /I qK K  increases; if on the left – the SIF decreases (Fig. 5). 

  
Fig. 4. Dependence of SIF /I qK K  on the distance 

between heat source and top of the crack with fixed length 

Fig. 5. Dependence of SIF /I qK K  on growth cracks 

for the fixed location of the heat source 

In the considered model, we suppose that the shores of the crack are not contacted. Then, according 
to the criterion (based on the hypothesis about the initial growth of the crack) from equations of the 
boundary equilibrium [15] it is possible to draw conclusions about the critical values of the power of the 
heat source, in which the growth of the crack begins and the local destruction of the body, according to the 

formula 1C
кр

t

Kq
KE l

λ
α π

= ⋅ , where 1CK  is the material constant, which characterizes the resistance of 

the material to the destruction and is determined experimentally, /I qK K K= . 

Conclusions 
If the heat source is to the left of the centre of the disk, the critical value of the power of the heat 

source increases with the growth of the crack and, conversely, decreases if the heat source is to the right of 
the disk centre (Fig. 5). For a fixed crack length, the approach of the source of heat to the crack initially 
leads to a decrease in the critical value, and near the top of the crack, to increase (Fig. 4). 

The practical value of the obtained results is the possibility of more fully taking into account the real 
thermoelastic state in elements of engineering structures with cracks that operate under thermal stresses. 
The results of specific values of the stress intensity factors at the top of the crack in the form of charts may 
be useful in developing rational modes of operation of elements of structures in terms of preventing the 
growth of cracks. 
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