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Abstract: The mathematical model based on the 

developed theory of the analytical solving the quasi-
stationary tasks of pulse current flowing near to a 
conductive object with flat surface is introduced. The 
applied mathematical model includes an approximate 
solution with the use of asymptotic expansion for 
computing the intensity of a magnetic and electrical field 
in the case of transient electro-magnetic processes. It is 
noted that the calculations by an approximation method 
are limited to a certain time period from the beginning of 
a pulse, but, as usual, just within this time period the 
field changes most rapidly and accesses maximum 
values. The electrical field is considered at the presence 
of the standard current pulses such as exponentially 
decaying pulse, pulse represented by the difference 
between two decaying exponents, exponentially de-
caying oscillating pulse. For them the main peculiarities 
of applying the approximate analytical method of field 
calculations have been analyzed. Integral indicators for 
taking into account limitations by frequency and time, 
depending on the pulse parameters, have been found. 
Time dependencies have been obtained with the use of 
special functions and their representation as series.  

Key words:  quasi-stationary three-dimensional 
pulsed electromagnetic field, analytical and asymptotic 
calculation methods, typical current pulses.  

1. Introduction 
Attention to studying pulse electromagnetic fields of 

devices whose elements demonstrate a strong skin effect 
is conditioned on the one hand by the wide range of the 
use of such devices, and on the other hand – by the 
necessity of taking into account the geometrical and 
electrophysical peculiarities at the modelling of physical 
processes. Installations for creating pulse voltages and 
currents at the electrotechnical and electrophysical 
laboratories [1-3], devices providing the electrodynamic 
influence of a pulse magnetic field on metal objects  
[4–6], systems for applying a pulse electromagnetic field 
and electric current to affecting the mechanical 
properties of metals, in particular, on weld joint [7, 8], 
can be given as the examples of these phenomena. 

The determination of a three-dimensional 
electromagnetic field is a quite difficult problem because 
of a big amount of calculations, even when well-
developed numerical computation techniques are 
applied. The difficulties with obtaining the results 
sufficiently increase while solving the inverse problems 
of a field theory and optimization of the geometry of 
electromagnetic systems. In these cases, analytical or 
numerical analytical approaches, which enable taking 
into account a limited number of the most sufficient 
system characteristics, remain effective. The example of 
applying the analytical accurate and approximate 
methods of computation of an alternating electromag-
netic field is solving the inverse problems of determining 
the spatial geometry of field inductors in the domain 
region of thermal treatment with the use of induction 
heating of mobile metal straps [9–11]. The basis of these 
works is the obtained accurate analytical solution to the 
task of the field of the alternating sinusoidal current 
flowing along a closed circuit near to the electro-
conducting half-space. The solution was obtained 
without limits of the geometry and orientation of the 
circuit, electric and physical properties of the medium 
(electrical conduction γ and relative permeabilityµ ) and 
field frequency ω  [12, 13]. This enables determining all 
characteristics of the electromagnetic field in any point 
of the dielectric and conducting regions. 

For the pulse current, the obtained solution is a 
frequency spectrum of the electromagnetic field created 
by a current with a set frequency spectrum. Time 
dependencies can be obtained by performing the inverse 
Fourier transform. In this case, the solution is 
represented by triple improper integrals, which, despite 
of the analytical form of the expressions, is rather 
difficult. 

Calculations become easier with the expansion of 
the expressions into bounded asymptotic series [14]. 
However, for pulse fields, the calculation is limited by 
some time interval from the beginning of the current 
pulse. Since, in general, the current pulse changes the 
most quickly and reaches the biggest values during the 
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short time interval, the electromagnetic field is 
determined exactly in this the most important stage.  

In the general case, the found solution enables the 
calculations for the arbitrary time dependence of a circuit 
current. At the same time, it seems reasonable that the 
analysis of the features of field distribution is conducted 
for standard form current pulses, which are the most 
frequently realized. Therefore, the aim of the work is to 
obtain the concrete computational expressions and to 
analyze the possibilities of applying current pulses in the 
circuits of arbitrary configuration located near to the 
conducting half-space, where eddy currents are induced. 
Among the standard pulses, the following ones are 
considered: exponentially decaying current pulse, pulse 
with the finite edge increasing speed represented by the 
difference between two exponents, decaying oscillating 
pulse. 

2. Mathematical model  
In [13] in general case in the dielectric half-space the 

following expressions are obtained for the complex 
magnitudes of magnetic eH& and electrical eE& fields of the 

system “current 0I& flowing along the circuit l  of 
arbitrary configuration in the dielectric half-space – 
conducting half-space in which induced eddy currents 
flow” (Fig.1): 
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where ze is a unit vector in the axis z direction. In (1) 
and (2) two first components correspond to the field of a 
set current of the closed circuit l , which flows in a 
dielectric medium, and the field of the same circuit with 
the current reflecting from the flat boundary between the 
media. The sum of these two components fully 
determines the field at the ideal skin effect, for which the 
depth of field penetration is equal to zero 

( 02 0 →γωµµ=δ ). If the condition of the ideal skin 
effect is not fulfilled, the vector field components 

( )ω= i22 HH &&  and ( )ω= i22 EE && do not equal zero. Their 
frequency spectrum is different from the frequency 
spectrum of an output circuit. The values of the 
components of the vector fields in each point of the 
space depend not only on frequency and the 
electrophysical properties of the medium, but also on the 
reciprocal location of outflow points on the circuit and 

an observance point in the space, that is, on the 
coordinate difference hz + along a vertical direction and 
ρ on the plain. A function being the component of 
expressions (1) and (2) looks like the following   
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where ( )⋅0J is the zero-order Bessel function of the first 
kind 

 
Fig. 1. Part of the circuit with current  

and its reflection from the surface. 

Using expressions (1) and (2) for the frequency 
spectrum, the time dependencies of field intensity for 
current pulses can be found by performing the inverse 
Fourier transform:    
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Here functions ( )tVH  and ( )tVE  are 
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Formula (4) and (5) together with (3), (6) and (7) in 
general case provide the analytical expressions in the 
form of quadrature for the calculation of pulse electro-
magnetic fields. At the same time, the solution 
represented by the triple improper integral and, moreo-
ver, the presence of the complex magnitude of the 
current frequency spectrum implies an additional integral 
procedure of the direct Fourier transform. 

The noted circumstances show that the simplifi-
cation of calculations is an important task for the 
efficient use of the given analytical approach. Such a 
simplification can be realized with the use of an 

tdl 

Q 

z 

 µ, γ 

 εe , (µ=1, γ=0) 

r1 

r 
h 

h 

I(t) 

I1(t) 
t1dl 



Analytical Method of Determining the Electromagnetic Field of the Standard Current… 51 

asymptotic expansion [14, 15], which is performed for 
the problem being considered in the case of a strong skin 
effect [16]. 

The expansion of the electromagnetic field into a 
limited asymptotic series for a certain frequency of the 
frequency spectrum is performed by a parameter 

1
2 11

1 <
ωµµγ
µ

=
µδ

=ε
rr

, which is proportional to the 

ratio between the field penetration depth δ  and the 
distance 1r between the observation point and the point 
of the outflow on the mirror reflected circuit. Therefore, 
this parameter shows the relation between the remo-
teness of the field sources and the penetration depth. 

As the value of the parameter 1ε depends on the 
frequency, the size limit of the small parameter is 
connected with the field frequency limit which means 
that the frequency must be bigger than some limit value 

 22
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where mε is the chosen permissible value of the small 
parameter. 

Moreover, each member of the asymptotic series 
is determined with the error increasing with the increase 
in the number of a series member. This fact limits also 
the field frequency for each n-th series member 
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where nε is determined  by the permissible relative 
error n∆ of taking into account the series member. 

For low frequencies, the condition of infinitesimality 
of parameters mε and nε is not fulfilled. Taking into 
account the fact, that the frequency spectrum of the 
current pulse contains the whole frequency spectrum, we 
can state that the condition of infinitesimality is not 
fulfilled for the low frequency part of the spectrum. It 
means that the calculations can be performed on the 
limited time interval instead of the whole time period. 
This time interval can be estimated for the possibility of 
the asymptotic expansion as mft 1< and as nft 1< for 
each series member [13]. 

The expansion of the function ( )ωiGe
& (3) into small 

asymptotic series and performing the inverse Fourier 
transform for each member of the series enables the 
considerable reduction in the amount of calculations. It 
allows the use of line integrals over the length of closed 
contour instead of triple integrals. Proper expressions for 
calculating the intensity of magnetic and electrical fields 
in the dielectric medium were obtained in [14]. Their 

important feature is that the dependences of each 
member of the series on coordinates and time are 
determined separately. Functions ( )tVH  and ( )tVE  in  
(4)–(7) are as follows: 
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where ( )⋅Г  is a gamma function. 
Factors determining the dependence of the 

electromagnetic field on the coordinates of space points 
are 
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where ( )µna  are the coefficients of the power series 
expansion over the small parameter of the inverse value 
of a denominator of an integrand in (3). Factors 
determining the dependence on time are a bit different 
for the intensity of magnetic and electrical fields:  

 ( ) ( )( ) ( )∫ τττ−= −
t

n
n dIttP

0
0

21 , (13) 

 ( ) ( ) ( )∫ τ











τ

ς
ς

= −

τ−=ς

t
n

t
n d

d
dItQ

0

210 . (14) 

The last circumstance, which should be taken into 
account while applying the approximate method of 
calculation with the use of asymptotic expansion, refers 
to the fact that in this method the low-frequency part of 
signal spectrum is not considered.  If the frequency 
spectrum of the current pulse ( )fiI π20

&  is set, the ratio of 
root-mean-square values of the magnitude of the 
frequency spectrum fS , that is, the energy datum of the 
spectrum being considered, can be used for qualitative 
estimation of the extent of considering the spectrum: 
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where minf  either becomes mf  referring to the chosen 
permissible value of the small parameter mε , or takes 

one of the values of minimal frequency nf for the 
members of asymptotic series. 

3. Asymptotic series for the electromagnetic field 
of the standard current pulses 
The obtained solutions to either general problem of 
calculating the electromagnetic field, or approximate 
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solution on the basis of the method of asymptotic 
expansion allow the use of them for arbitrary time 
dependencies of the circuit currents. However, during 
the investigations the mathematical models for 
“standard” current pulses are used. These “standard” 
pulses are considered to be the following: an 
exponentially decaying current pulse; pulse represented 
by the difference between two decaying exponents, 
exponentially decaying oscillating pulse. For such 
current pulses of the circuit, let us analyze the major 
features of the use of approximate analytical approach to 
the calculation of the electromagnetic field.  

Time dependencies of the current can be 
conveniently analyzed with the use of dimensionless 
values of frequency bfff =*  and time bttt =* . The 
basic value of the frequency bf and, correspondingly, 

time bb ft 1= is to be linked with the penetration 
depth. It means that the chosen value of the basic 
frequency should be such, that the penetration depth in 
the conducting medium is equal to the characteristic 
dimension of the electromagnetic system which is the 
distance of the circuit element with current to the 

boundary of media division ( ) 1
0

2 −
γµµπ= hfb .  

3.1. Exponentially decaying current pulse  
The edge interval of the exponentially decaying 

current pulse of the output circuit is equal to zero. In this 
case, the time dependence is determined only by the 
value of a decay coefficientα: 

 ( ) ( ) ( ) )exp()exp(, **** tttItIItI m α−=α−=⋅= , (16) 

where bb tftf =α=α ** , . 
The frequency spectrum of the current pulse (16) is 

known [18]: 
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where ** 2 fπ=ω . 
From (15) it follows that the value of the extent of 

taking into account the signal spectrum, while the 
approximate calculation method is being used for the 
exponentially decaying function, is determined by an 
analytical expression: 
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As it can be seen, the indexes of using the spectrum 
for different minf depend on the decay coefficient. In  
Fig. 2, the dependencies of value fS  on normalized 

quantity *α are shown. 

 

Fig. 2. Index fS  for a pulse  

( ) )exp( **** ttI α−=  at 1=∆n . 

The figure shows that for more speedy exponential 
decay of the current pulse the index of taking into 
account its spectrum increases. A dashed curve 
illustrates a value fS realized when the calculations are 

limited by time mt  and corresponds to the boundary 
value 3,0=εm . At this time moment the series members 
at 3≥n  should be eliminated from the calculations, and 
overall accuracy is determined by the left members.  

As the pulse (16) increases by momentum 
discontinuity to the maximum value, it is impossible to 
calculate the electrical field intensity for it, since the 
presence of a time derivative in (5) causes unlimited big 
values. Although, it does not concern the magnetic field 
intensity. In this case, in (10) time integrals (13) are 
tabulated ones [12], and functions ( )tPn  are represented 
as  
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where ( )21, ββγ  is an incomplete gamma function. 
The product in brackets can be shown as a series, 

and in this case, the following expression can be used 
instead the special functions:  
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3.2. Current pulse represented by the difference 
between two decaying exponents 

The pulses being considered are characterized by the 
final value of the edge duration of the output current 
pulse of the circuit (Fig. 3, а). The law of time changes 
of such a pulse can be described by the following 
dependency: 
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Here maximum value of *I equals one, and so the 

dimensionless quantity *
mI  which depends on the values 

of decay coefficients *
1α and *

2α has been left. It is also 

assumed that *
2

*
1 α<α . 

 

 

Fig. 3. Current pulse ( ) 4 ( 50 ) ( 100 )* * * *I t exp t exp t = − − −   

a – time dependencies; b – amplitude-frequency responses. 

Fig. 4 illustrates the extent of considering the 
frequency spectrum of the pulse (21) depending on the 
decay coefficient *

1α , which in the first place determines 

the whole pulse duration at different values of *
2α  

affecting the pulse edge duration. The calculations have 
not been performed for each series member, as in Fig. 2, 
but for limited whole pulse duration 18,0* =mt , which is 
determined by the chosen value 3,0=εm  . 

Taking into account the final duration of the pulse 
edge, the more the extent of the consideration of its 
spectrum decreases, the longer the pulse edge comparing 
to the duration of the whole pulse is. This feature can be 
explained by the fact that the frequency spectrum of the 
pulse contains more low frequencies than the previous 
pulse. For example, the current pulse ( )* *I t =  

4 ( 50 ) ( 100 )* * * *I t exp t exp t = − − −  , shown in Fig. 3, a, has 

the frequency spectrum with the high frequency range 
being considerably narrower than for each component of 
the whole pulse (Fig. 3, b).  

It should be mentioned that in the case of relatively 
small values of the decay coefficient *

2α , the index fS  
considerably differentiates from one. Therefore, the 
application of the method of asymptotic expansion is 
possible, but only by the time, when current value cannot 
still be considered small. Although, here, it is possible to 
take into account not the whole of the current pulse, but 

only some of its properties, for example, reaching the 
maximum value by its electromagnetic field. 
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Fig. 4. Index of considering the pulse spectrum 
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The pulse (21) is a sum of two exponents, so the 
expressions for the intensity of the magnetic field are 
also determined by the sum of two components, whose 
time depending functions are similar to those noted in 
(19) and (20).   

Since the current pulse (21), as opposed to (16), does 
not change by a step at the initial moment, the 
calculation of the intensity of the electrical field for such 
a pulse does not cause the peculiarity at 0→t . 

For this case the expressions for determining the 
intensity of electromagnetic field are introduced. In expres-
sion (11) functions ( )tQn  (14) can be shown as follows: 
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Instead of special functions intended for the 
analysis, their representation as a power series can be 
useful. For this (22) can be used in a following form: 
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3.3. Decaying oscillating pulse 
Let us consider the standard current pulse (Fig. 5) 

which depending on time changes according to the law: 
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The expression for the frequency spectrum for 
normalized values is: 
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Fig. 5. Decaying oscillating current pulse. 

At the initial moment, the current step is absent. 
Therefore, for such a pulse, the results of calculating the 
intensity of either magnetic, or electrical field will be 
correct. 

For determining the values of integral index 
fS taking into account the limitation of the frequency 

spectrum of the signal, we can chose, as previously, the 
variant with the biggest error at the expansion into the 
asymptotic series, when hr =1 . The values of the small 
parameter are chosen 3.0=mε  and 1=µ . 

The dependencies of the index fS on the decay 

coefficient *α at different values of the ratio of 

oscillation frequency to the decay coefficient αβ are 
shown in Fig. 6. 

 

 
 

Fig. 6. Index of spectrum taken into account in the case  
of decaying oscillating pulse ( 3.0=mε , 1,1 =µ= hr ). 

As the dependencies in Fig. 6 show, the more the 
rate αβ is, the more the index of the extent of using the 
spectrum fS is. For values 1<αβ , the pulse decays 

completely during the oscillation period. At 1>αβ  , the 
value of the index fS  proves to be bigger, than of that 
without current oscillations. It can be explained by the 
fact that in this case the frequency spectrum contains a 
wider high frequency range comparing with the 
exponentially decaying pulse. 

For the pulse shape (24) the analytical representation 
of time integrals is also possible. Here, it is convenient to 
use a complex symbolic form for describing the pulse 
(24) 
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In this case, time dependencies ( )tPn  (13) of the 
function ( )tVH  (10) determining the intensity of the 
magnetic field can be found as an imaginary part of 
appropriate complex expressions ( )nn PP ~Im= : 
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where β−α=η i . 
As in (20), the last expression can be represented as 

a series: 
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At last, let us find time dependencies ( )tQn  (14) for 
the series members of the function ( )tVE (11) determining 
the intensity of the electrical field. Repeating the 
transforms performed for obtaining expression (22) for 
real variables and using the complex value β−α=η i , 
we can find with the use of special functions  
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or as a series 
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Finally, let us note that the calculations of time 
integrals in (13) and (14) are not difficult, regardless of 
possible peculiarities of subintegral functions. Although, 
the advantage of analytical approaches allows the 
thorough analysis of the influence of different factors on 
the results obtained after the distribution of the electro-
magnetic field, as well as promotes the well-grounded 
development of mathematical models for investigating 
the complex pulse electromagnetic systems.    
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4. Conclusions 
1. Analytical solving of the general task of the 

calculations of three-dimensional quasi-stationary elect-
romagnetic field of the pulse current flowing near to the 
conducting object with flat surface needs a great amount 
of calculations, since it uses the inverse Fourier 
transform, and obtained expressions need determination 
of triple improper integrals. Therefore, expedient 
approach under the condition of strong skin effect is the 
application of the developed method of asymptotic 
expansion for pulse processes. In spite of the fact that the 
approximate asymptotic solution is true only in the 
limited time interval from the beginning of the pulse, as 
a rule just during this time interval the field changes the 
most quickly and reaches the maximum values. 

2. The expressions for the intensities of the 
electromagnetic field in the asymptotic approximation 
enable taking into account the influence of geometric 
factors and pulse time dependencies for each series 
member separately, which considerably simplifies the 
calculations. For the analysis of the pulse 
electromagnetic processes, it is advisable to obtain 
results for standard current pulses, which are realized in 
many concrete cases. Appropriate dependencies with the 
use of special functions and their representation as series 
are obtained for the exponentially decaying pulse; for the 
pulse represented by the difference between two 
decaying exponents, exponentially decaying oscillating 
pulse. 
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АНАЛІТИЧНИЙ МЕТОД 
ВИЗНАЧЕННЯ 

ЕЛЕКТРОМАГНІТНОГО ПОЛЯ 
СТАНДАРТНИХ ІМПУЛЬСІВ СТРУМУ, 

ЯКИЙ ПРОХОДИТЬ ПОБЛИЗУ 
ЕЛЕКТРОПРОВІДНОГО ТІЛА 

Юрій Васецький 

Представлено математичну модель, яка основана на 
розвинутій теорії аналітичного рішення тривимірних ква-
зістаціонарних задач імпульсного струму, який проходить 
поблизу електропровідного тіла з плоскою поверхнею. 
Застосовувана математична модель передбачає наближене 
розв’язання з використанням асимптотичного розкладання 
для розрахунку напруженостей магнітного і електричного 
полів у випадку швидкоплинних електромагнітних проце-
сів. Відзначено, що розрахунок наближеним методом 
обмежений певним проміжком часу від початку імпульсу, 
однак, зазвичай саме протягом цього проміжку часу поле 
змінюється найшвидше і   досягає   максимальних значень.  

Розглянуто електромагнітне поле при проходженні стан-
дартних імпульсів струму: експоненціально загасаючий 
імпульс; імпульс, представлений різницею двох згасаючих 
експонент; коливальний експоненціально згасаючий 
імпульс. Для них проаналізовано основні особливості за-
стосування наближеного аналітичного методу розрахунку 
поля. Знайдено інтегральні показники для врахування 
обмежень по частоті і часу залежно від параметрів імпуль-
сів. Залежності від часу отримано з використанням спе-
ціальних функцій та їхнього представлення у вигляді рядів. 
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