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A statement of the coupled thermomechanical problem on forced resonant vibrations and
dissipative heating of hinged viscoelastic elastomeric rectangular plate is given with ac-
count of prestresses applied. The statement is based on the standard Kirchhoff-Love hy-
potheses and concept of complex characteristics that are used to describe the viscoelastic
material response to harmonic loading. Both steady-state and transient thermal response
is investigated. Influence of the prestress is studied in details for both uniaxial and biaxial
preliminary stresses applied. Dissipative heating temperature histories are calculated for
the variety of the prestress and loading parameters. Temperature criterion is adopted to
determine the critical state. The data obtained are used for the plate fatigue life prediction
and the prestress effect on the plate response.
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1. Introduction

Mechanical engineering equipment, aerospace industry and energy generation machinery as well as
transport engine/structure components can be subjected to severe mechanical and thermal cyclic loads.
A prime design objective of these components is to assure the safe life of these components under
such loading environment. Assessment of component life depends on the behavior of materials used.
Polymers are widely used as materials for the structural components mentioned. Under intensive cyclic
loading, the effect of dissipative heating can be particularly profound for the polymers. It is one of the
most dangerous phenomena that occur under cyclic loading of structural members made of polymers
or polymer matrix composites being subjected to intensive high-magnitude vibrations. The dissipative
heating is caused by an appearance of a mechanical hysteresis resulting from the viscoelastic nature
of the most of industrial polymers. Part of the dissipated mechanical energy leads to generation of
thermal energy [1–4], while the rest of the energy transferred to the structure is both partly stored in
the material [5] and dissipated as a result of plastic deformation [6, 7], viscoplastic deformation, and
variations of yield limit caused by isotropic and kinematic hardening [8].

It is generally adopted that dissipative heating is usually attributed to the internal friction of the
material [9], which causes the hysteretic response. Energy dissipated as a heat leads to the increase of
the temperature of the loaded structure. Small temperature advance over one separate cycle can result
in high heating level for prolonged operational period. For polymeric materials, the situation worsens
by the low thermal conductivity of most of the structural polymers, especially thermoplastics [10], that
leads to high temperature localization and exceeding the glass transition temperature of a polymer [9,
10].

The effect of thermomechanical coupling described above should be taken account for when the
adequate models for fatigue life predictions are developed. This implies a necessity for the deep
investigation of dissipative heating, including its physical nature, the consequences, and the relations
with degradation mechanisms in structural elements, as well as the estimation of safe temperature
ranges.
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Additional factor that can significantly influence the fatigue life prediction of the polymeric struc-
tures is the residual stress which can arise as a result of manufacturing processes. For the subsequent
cyclic loading problem, these stresses should be considered as prestresses. The effect of the prestresses,
as well, have to be taken into account to improve the reliability of the fatigue life prediction technique.

To address the issue of fatigue life prediction with account of thermomechanical coupling, the the-
ories based on the relations between the amplitudes of main field variables are usually used to describe
the thermomechanical response of viscoelstic solids under cyclic loading. Application of complex am-
plitudes and complex moduli concept in the case of harmonic loading yields the complete system of
amplitude equations for linearized coupled thermoviscoelasticity in terms of complex amplitudes. This
system is complemented with the complex analogues of the equation of motion along with the sta-
tionary or non-stationary equation of heat transfer. In the former case, the temperature–frequency
characteristics of vibration can be obtained and the critical loading parameters can be specified. To
describe the overcritical heating and, therefore, to build the thermal fatigue S − N curves the latter
equation should be used instead. The detailed reviews of the theories and approaches developed along
with the numerous applications can be found in [12–17].

In this paper, a fatigue model for prediction of a number of cycles to thermal failure is developed,
taking into consideration stationary dissipative heating and structure prestress that can significantly
affect the fatigue life characteristics of the viscous rectangular plate subjected to transverse harmonic
loading. Special attention is paid to the influence of membrane prestress on the amplitude–frequency
and temperature–frequency characteristics as well as on the non-stationary histories of dissipative
heating for cyclically excited plate.

2. Problem statement. Main equations

Let us consider a hingedly supported plate of thickness h with planform dimensions a and b. It is
assumed that the plate is composed of the linear viscoelastic material which material properties are
frequency, amplitude and temperature independent. The rectangular Cartesian coordinates (x, y, z)
with the xy-plane coinciding with the geometric middle plane of the plate and the z-coordinate taken
positive upward is introduced. The plate contour is formed by the edges x = 0, a; y = 0, b. It is also
assumed that prestresses are generated in the plate as a result of manufacturing process. The prestresses
are simulated by the presence of normal membrane forces Nxx, Nyy and, in general case, by shear
membrane force Nxy. The plate is subjected to transverse loading qz = q′0(x, y) cosωt− q′′0(x, y) sinωt
that is distributed over the plate surface according to specific law and is harmonically varying in
time t with amplitude q0(x, y) = (q′0(x, y)

2 + q′′0 (x, y)
2)1/2 and frequency ω which is close to one of the

resonances.
The plate edges are assumed to be thermally insulated while the convective heat transfer to the

ambient of temperature TC is supposed to take place at the face surfaces of the plate.
To simulate the mechanical response of the plate under consideration, the classical Kirchhoff–Love

hypotheses are made use of [18,19]. The integral operators of linear viscoelasticity are used to describe
the viscoelastic properties of the plate material [12–14]. In the particular case of harmonic deformation,
these operators are reduced to multiplication of complex quantities ã∗ b̃ = (a′+ ia′′)(b′+ ib′′) where the
operator and complex quantities are marked with asterisk and wave respectively. It is also assumed
that temperature is constant through the plate thickness.

In general case, the equations of transverse vibration of the plate are obtained in the following
form [18,19]

∂Nxx

∂x
+

∂Nxy

∂y
= J0

∂2u

∂t2
,

∂Nxy

∂x
+

∂Nyy

∂y
= J0

∂2v

∂t2
,
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∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2Myy

∂y2
+N (u, v, w)− kw + q(x, y, t) = J0

∂2w

∂t2
− J2

∂2

∂t2

(

∂2w

∂x2
+

∂2w

∂y2

)

, (1)

where u, v and w are components of the displacement field along Ox, Oy and Oz axis respectively; Nij

and Mij , i, j = x, y are thickness-integrated forces and moments, known as the stress resultants [18,19];

N (u, v, w) =
∂

∂x

(

Nxx
∂w

∂x
+Nxy

∂w

∂y

)

+
∂

∂y

(

Nxy
∂w

∂x
+Nyy

∂w

∂y

)

,

k is the foundation modulus (for the cases where it have to be taken account for), ρ is the material
density.

In system (1), J0 and J2 are the mass moments of inertia J0 =
∫

h

2

−h

2

ρ dz, J2 =
∫

h

2

−h

2

ρz2dz, and the

term with J2 should be preserved if the rotary inertia effects are of particular interest.
As the Kirchhoff–Love hypotheses are considered to be valid so the membrane and bending stresses

are appeared to be uncoupled. It is also assumed the prestresses induced are constant (Nxx = N0
xx =

const, Nyy = N0
yy = const, Nxy = N0

xy = const). Under these assumptions, the in-plane problem for
the plate becomes statically determinate. Thus, the first and second equations from (1) are satisfied
identically.

Classical plate theory formalism for isotropic elastic material yields the 3rd equation from (1) in
the form

−D

(

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)

+N (u, v, w) + q (x, y, t) = J0
∂2w

∂t2

or

D∇4w + ρh
∂2w

∂t2
= N0

xx

∂2w

∂x2
+ 2N0

xy

∂2w

∂x∂y
+N0

yy

∂2w

∂y2
+ q (x, y, t) , (2)

where D = Eh3/12(1 − ν2) is the plate bending stiffness coefficient, E and ν are the material Young’s

modulus and Poisson ratio respectively; ∇4 = ∂4

∂x4 + 2 ∂4

∂x2∂y2 + ∂4

∂y4 .
As a result, in the case of temperature independent material properties and assumption of a tem-

perature constancy through the plate thickness, the mechanical problem is reduced to two uncoupled
problems: (i) plane stress problem, (ii) pure bending problem. The former one defines the prestress
while the latter problem describes the varying harmonically in time pure bending state which is super-
imposed over the prestressed state of the plate.

Boundary conditions for the linear bending of a rectangular plate with edges parallel to the x and
y coordinates for the particular case of hingedly supported have the form

w = 0,
∂2w

∂x2
= 0 at x = 0, a;

w = 0,
∂2w

∂y2
= 0 at y = 0, b.

(3)

Under harmonic loading, investigation of steady-state vibration regime is usually performed with the
use of complex moduli and complex amplitudes concept [12–15]. These yields the equation (7) as
follows

D̃∇4w̃ + ρhω2 ∂
2w̃

∂t2
= N0

xx

∂2w̃

∂x2
+ 2N0

xy

∂2w̃

∂x∂y
+N0

yy

∂2w̃

∂y2
+ q̃ (x, y) , (4)

where D̃ = D′ + iD′′, w̃ (x, y) = w′ (x, y) + iw′′ (x, y) and q̃ (x, y) = q′ (x, y) + iq′′ (x, y) are complex
bending stiffness coefficient, deflection of the plate and load; i =

√
−1. It is worth mentioning here that

expressions for the boundary conditions should have the same form (3) with substitution of complex
variable w̃ instead of real one w.

To obtain the time variation laws for the beam deflection and load, one should apply the formulas

w(x, y, t) = w′(x, y) cosωt− w′′(x, y) sinωt,

q(x, y, t) = q′(x, y) cosωt− q′′(x, y) sinωt.
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Here (·)′ and (·)′′ are the real and imaginary parts of the complex amplitude.
The complex equation (4) is equivalent to system of two real equations with respect to the complex

amplitudes in the form














D′∇4w′ −D′′ ∇4w′′ − ρhω2w′ = N0
xx

∂2w′

∂x2
+ 2N0

xy

∂2w′

∂x∂y
+N0

yy

∂2w′

∂y2
+ q′,

D′∇4w′′ +D′′ ∇4w′ − ρhω2w′′ = N0
xx

∂2w′′

∂x2
+ 2N0

xy

∂2w′′

∂x∂y
+N0

yy

∂2w′′

∂y2
+ q′′,

(5)

with the boundary conditions (3) rewritten in terms of the complex amplitudes as well

w′ = w′′ = 0,
∂2w′

∂x2
=

∂2w′′

∂x2
= 0 at x = 0, a;

w′ = w′′ = 0,
∂2w′

∂y2
=

∂2w′′

∂y2
= 0 at y = 0, b.

(6)

Evolution of the temperature field is described by the heat conduction equation averaged over the plate
thickness and vibration period

ρch
∂θ

∂t
= λh

(

∂2θ

∂x2
+

∂2θ

∂y2

)

− 2αSθ +
〈

W̄D

〉

; (7)

complemented with thermal initial and boundary conditions

θ = 0 at t = 0;

∂θ

∂x
= 0 at x = 0, a;

∂θ

∂y
= 0 at y = 0, b.

(8)

In the equations (7) and (8), θ is the dissipative heating temperature, θ = T − TC ; c, λ and αS are
the specific heat, heat conductivity coefficient and heat transfer coefficient at the face surfaces of the
plate respectively; TC is the ambient temperature;

〈

W̄D

〉

is the dissipative function averaged over the
period of vibrations and over the plate thickness

〈

W̄D

〉

=
ω

2

[(

M ′′
xxε

1
xx

′ −M ′
xxε

1
xx

′′
)

+
(

M ′′
yyε

1
yy

′ −M ′
yyε

1
yy

′′
)

+
(

M ′′
xyγ

1
xy

′ −M ′
xyγ

1
xy

′′
)]

; (9)

where

ε̃1xx = ε1xx
′
+ iε1xx

′′
= −∂2w̃

∂x2
,

ε̃1yy = ε1yy
′
+ iε1yy

′′
= −∂2w̃

∂y2
,

γ̃1xy = γ1xy
′
+ iγ1xy

′′
= −2

∂2w̃

∂x∂y
;

M̃xx = M ′
xx + iM ′′

xx = −D̃

[

∂2w̃

∂x2
+ ν̃

∂2w̃

∂y2

]

;

M̃yy = M ′
yy + iM ′′

yy = −D̃

[

ν̃
∂2w̃

∂x2
+

∂2w̃

∂y2

]

;

M̃xy = M ′
xy + iM ′′

xy = −D̃ (1− ν̃)
∂2w̃

∂x∂y
.

(10)

In the expressions (10), the quantities M̃ij, ε̃1ij and γ̃1xy, i, j = x, y are complex-value analogues of
moments from equations (1) and bending strains (curvatures and twisting); ν̃ is the complex Poisson
ratio, ν̃ = ν ′ − iν ′′. Let us emphasize here that version of the cyclic viscoelasticity with real Poisson
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ratio and complex bulk modulus is chosen for the materials under consideration in this problem. Thus
relations ν ′ = ν, ν ′′ = 0 are assumed to be valid further on.

As a result, a statement of the coupled thermomechanical problem on forced vibrations and dissipa-
tive heating of hinged viscoelastic plate with account of prestresses applied is given by the equations (5)
and (7) with the expression (9) for the dissipative function complemented with correspondent mechan-
ical boundary conditions (6) along with thermal initial and boundary conditions (8).

3. Solution technique

Let us study the case when the prestress state can be a result of presence of the normal preliminary
tractions only: N0

xx = const 6= 0, N0
yy = const 6= 0, N0

xy = 0.
It is worth mentioning here that for cyclically stable materials, mechanical processes stabilize much

faster than the thermal ones [12]. It enables us to consider mechanical part of the problem as the
steady-state process in contrast to the thermal part which is studied in the frame of transient analysis
at the aforementioned assumptions with respect to the material constants. Thus, solution of the steady
state vibration problem for the hingedly supported plate can be written in the form [12,19]

w′(x, y) =

∞
∑

m,n=1

w′
mn sin

mπx

a
sin

nπy

b
,

w′′(x, y) =

∞
∑

m,n=1

w′′
mn sin

mπx

a
sin

nπy

b
,

(11)

where w′
mn and w′′

mn are unknown complex amplitudes of the eigenmode mn corresponding to the
natural frequency ωmn. This frequency is determined by the well-known formula taking account for
the prestresses [12, 19]

ωmn =

{

1

ρh
D0

[

(mπ

a

)2

+
(nπ

b

)2
]2

+
(mπ

a

)2

N0
xx +

(nπ

b

)2

N0
yy

}1/2

, (12)

where D0 is the plate bending stiffness coefficient calculated for elastic response of the plate material.
In the case of viscoelastic material, it should be calculated as D2

0 = D′2 +D′′2.
Vibration of a plate in the vicinity of the resonance frequency ω ≈ ωmn is under consideration in

the present study. It is also assumed that the loading is distributed over the plate surface according
to the law corresponding to this particular mode of vibration to facilitate the resonant vibration

q(x, y, t) = q0mn
′
sin

mπx

a
sin

nπy

b
cosωt− q0mn

′′
sin

mπx

a
sin

nπy

b
sinωt.

If the transverse loading varies according to sine or cosine law over the time then this relation can be
modified in the obvious way.

In this case, the plate response will be formed by the resonating mode mn, and the sums in the
expression (11) can be discarded. Substitution of the resultant into (10) with accounting for N0

xy = 0
yields the system of two linear algebraic equations with respect to w′

mn and w′′
mn of the following form

{

w′
mn

[

D′A− phω2 +B
]

− w′′
mnD

′′A = q′mn,

w′
mnD

′′A+w′′
mn

[

D′A− phω2 +B
]

= q′′mn,
(13)

where A = k4x + 2k2xk
2
y + k4y , B = N0

xxk
2
x +N0

yyk
2
y; kx = mπx/a, ky = nπx/b.

Solution of the equation (13) is determined by the expression
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w′
mn = ∆1 /∆ , w′′

mn = ∆2 /∆ ;

∆1 = q′mn

[

D′
(

k4x + 2k2xk
2
y + k4y

)

− ρhω2 +
(

N0
xxk

2
x +N0

yyk
2
y

)]

+ q′′mnD
′′
(

k4x + 2k2xk
2
y + k4y

)

,

∆2 = q′′mn

[

D′
(

k4x + 2k2xk
2
y + k4y

)

− ρhω2 +
(

N0
xxk

2
x +N0

yyk
2
y

)]

− q′mnD
′′
(

k4x + 2k2xk
2
y + k4y

)

,

∆ =
[

D′
(

k4x + 2k2xk
2
y + k4y

)

− ρhω2 +
(

N0
xxk

2
x +N0

yyk
2
y

)]2
+

[

D′′
(

k4x + 2k2xk
2
y + k4y

)]2
.

(14)

To address the transient heat conductivity equation, one should define the expression for dissipative
function

〈

W̄D

〉

from (7) as a function of the complex amplitudes of deflection. With making use of the
expressions (10), the relations between moment and deflection amplitudes can be derived as follows

M ′
xx = −D′

[

∂2w′
mn

∂x2
+ ν

∂2w′
mn

∂y2

]

+D′′

[

∂2w′′
mn

∂x2
+ ν

∂2w′′
mn

∂y2

]

;

M ′′
xx = −D′′

[

∂2w′
mn

∂x2
+ ν

∂2w′
mn

∂y2

]

−D′

[

∂2w′′
mn

∂x2
+ ν

∂2w′′
mn

∂y2

]

;

M ′
yy = −D′

[

∂2w′
mn

∂y2
+ ν

∂2w′
mn

∂x2

]

+D′′

[

∂2w′′
mn

∂y2
+ ν

∂2w′′
mn

∂x2

]

;

M ′′
xx = −D′′

[

∂2w′
mn

∂y2
+ ν

∂2w′
mn

∂x2

]

−D′

[

∂2w′′
mn

∂y2
+ ν

∂2w′′
mn

∂x2

]

;

M ′
xy = − (1− ν)

(

D′∂
2w′

mn

∂x∂y
−D′′∂

2w′′
mn

∂x∂y

)

;

M ′′
xy = − (1− ν)

(

D′′∂
2w′

mn

∂x∂y
+D′∂

2w′′
mn

∂x∂y

)

.

(15)

Substitution of (15) into (9) with accounting for the first line from (10) yields the expression for the
dissipative function

〈

W̄D

〉

=
ω

2
D′′

{

(

∂2w′
mn

∂x2

)2

+

(

∂2w′′
mn

∂x2

)2

+

(

∂2w′
mn

∂y2

)2

+

(

∂2w′′
mn

∂y2

)2

+

+ 2ν

[

∂2w′
mn

∂x2
∂2w′

mn

∂y2
+

∂2w′′
mn

∂x2
∂2w′′

mn

∂y2

]

+ (1− ν)

[

(

∂2w′
mn

∂x∂y

)2

+

(

∂2w′′
mn

∂x∂y

)2
]}

. (16)

The transient heat conductivity problem formed by the equation (7) complemented by the expression
for the dissipative function (16) along with the thermal initial and boundary conditions (8) can be
solved numerically.

4. Numerical results and analysis

Calculations were performed for both square and quadrilateral plates with the geometric parameters
a = 0.1m, b = 0.1m, h = 0.005m and a = 0.175m, b = 0.1m, h = 0.005m respectively. Polyethylene
was chosen as the plate material. Complex moduli for the material were taken from [20]: E′ =
8.0 · 108 Pa; E′′ = 6.3 · 106 Pa; tan θ = E′′/E′ = 0.0079. Polyethylene Poisson ratio and density are
chosen to be equal to ν = 0.46 and ρ = 953 kg/m3 respectively. Thermal parameters for the problem
were defined as follows: specific heat c = 2300W/kg·◦C, heat conductivity coefficient λ = 0.36W/m·◦C
and heat transfer coefficient at the face surfaces of the plate αS = 4W/m2·◦C.

Harmonic loading of the plate with different preliminary normal membrane forces Nxx and Nyy was
investigated. To describe the ratio between the tractions Nxx and Nyy in the case when both of them
are present, a prestress coefficient Kf = Nxx/Nyy was introduced.

The steady-state vibration problem is first to solve.
A natural frequency for the first eigenmode (m = 1, n = 1) of the square plate for the prestress

coefficient K70
f = 10 under a transverse loading with amplitude q′ = 600Pa (with q′′ = 0) is f11 =
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472.2Hz. Further on, the upper index r in Kr
f indicates a fixed value of the preliminary force Nyy =

rN/m with a variable value of Nxx. So, K70
f =10 corresponds to the preliminary tractions Nxx =

700N/m and Nyy = 70N/m. If the coefficient K70
f = 0 then the case of Nxx = 70N/m and Nyy = 0

is under consideration, simulating presence of the uniaxial prestress state only. Since the investigation
was carried out in the vicinity of the first resonance, the spatial distributions as well as the deflection
and temperature frequency characteristics were initially calculated near the fundamental frequency
f11, where fmn = ωmn/2π is the natural frequency corresponding to the first mode of vibration.

450 500 550

0

0.5

1

1.5

2

f , Hz

w
,
m

×10−3

a

440     460      480      500      520      540

0

20

40

60

80

100
1

f , Hz

θ
,
◦
C

b

Fig. 1. Influence of the prestress level on the amplitude–frequency (a) and temperature–frequency (b) curves
for the center point of the square plate.

The maximum deflection, wmax, is achieved at the center point of the square plate (x = a/2,
y = b/2) and is equal to 1.8 · 10−3 m. The maximum heating temperature, θmax, for the plate is
also occurred at this point. The amplitude-frequency and temperature-frequency characteristics were
calculated for the points of maximum values of the variables mentioned for the corresponding vibration
modes.

In Fig. 1, the amplitude– and temperature–frequency curves of vibration at the point of maximum
deflections and temperature in the vicinity of the first resonance frequency under a transverse loading
with amplitude q′ = 600 Pa for different values of the coefficient K70

f are shown. The dash–dot, solid,
and dashed lines there show the amplitude–frequency (Fig. 1a) and temperature–frequency (Fig. 1b)
characteristics for the values of K70

f = 0, 40, and 100 respectively.
Fig. 1a illustrates the effect of shifting the resonant frequency (to the region of higher frequency

values) with an increase in preliminary tensile membrane traction in the plate, which corresponds to
the well-known theoretical and experimentally confirmed result. A similar effect is observed for the
case of temperature–frequency curves (see Fig. 1b). The shift of the resonance region to the right is
accompanied by an increase in temperature. The maximum value of the dissipative heating temperature
reached under conditions described is θmax = 99.6◦C.

In Fig. 2 the amplitude– and temperature–frequency curves for the square plate vibration in the
vicinity of the first resonance frequency for K70

f = 10 are shown under different values of the transverse
loading. In the figure dash–dot, solid, and dashed lines present the amplitude– and temperature–
frequency characteristics for the values of transverse loading with amplitude q′ = 350, 500, and 600Pa
respectively.

Analysis of the results presented in Fig. 2a shows the behavior of the amplitude–frequency curves
correspond to the typical behavior of the characteristics in the case of a linear viscoelastic material
and is accompanied by an increase in the amplitude of deflection with an increase of the amplitude of
transverse loading. Typical curve illustrating response of the sort mentioned is presented in Fig. 2b.
The sharp increase in temperature at the resonance frequency occurs. This effect can be potentially
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dangerous because the dissipative heating temperature can reach the critical level causing the structure
failure due to melting. For the curves shown, the maximum temperature calculated is equal to θmax =
92.97◦C. Respectively, the loading amplitude leading to the failure due to the thermal scenario can be
called the critical load amplitude.
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Fig. 2. Influence of the loading level on the amplitude–frequency (a) and temperature–frequency (b) charac-
teristics.

For the elastomer chosen as the plate material, the melting point is 120◦С approximately. Therefore,
in this work, the value of 100◦С was chosen as the critical value of the heating temperature θcr at which
a noticeable softening of the material is observed.

Combining the results presented in Fig. 1 and Fig. 2, the influence of the initial stress for the each
particular plate can be clarified and safe functioning regimes can be found for the loading amplitude
applied.

It is worth mentioning here that a structure is usually able to work for some time under the
load that exceeds the critical value. Under the overcritical loading amplitude, the life prediction for
the structural elements demands the transient response of the structure to be studied. So, the non-
stationary problem for the square plate is considered further on in the frame of the two-step procedure.
At the first step, the mechanical part of the problem is solved as the steady-state problem and the
dissipative function is determined with making use of the deflection amplitudes and loss modulus
according to the formula (16). At the second step, the thermal part of the problem is solved in the
frame of transient analysis.
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Fig. 3. Heating temperature evolution for different
loading amplitudes at prestress coefficient K70

f = 100.

Therefore, the second step comprises solution
of the heat conduction equation (7) complemented
with thermal initial and boundary conditions (8).
Let us remind here that the equation (7) is for-
mulated in terms of the heating temperature θ =
T −TC . The ambient temperature is chosen to be
equal to TC = 20◦C.

In Fig. 3, the temperature–time dependence at
the resonant frequency f = 506Hz for the ini-
tial stresses described by the prestress coefficient
K70

f = 100 under different values of the trans-
verse loading amplitude is shown. Here the dash–
dot, solid, dashed, and dotted lines illustrate the
dissipative heating temperature evolution for the
values of transverse loading amplitudes q′ = 400,
550, 600 and 1000Pa respectively.
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To characterize the spatial distribution of the heating, the variation of the temperature along the
line y = b/2 for the square plate at the first (f = 506Hz) and second (f = 1186Hz) resonant frequencies
for the prestress coefficient K70

f = 100 are shown in Fig. 4. The dash–dot, solid, dotted, and dashed
lines present the heating temperature distributions for the values of transverse loading amplitudes
q′ = 400, 500, 550, and 600Pa respectively.
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Fig. 4. Temperature distributions along the line y = b/2 for the first (a) and second (b) eigenmodes.

Fig. 4a illustrates the temperature distribution at the first resonance (eigenmode m = 1, n = 1).
The maximum temperature is reached at x = a/2 and equals θmax = 79.3◦C. The same data for the
second eigenmode (m = 1, n = 2) are plotted in Fig. 4b. The maximum temperature in this case is
reached at the points x = a/4 and x = 3a/4 and equals θmax = 29.8◦C. Analysis of the figure evidently
show that vibration at the first resonance is the most energy-intensive one.
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Fig. 5. S−N curves for the square plate calculated at the rising (a) and falling (b) branches of the temperature–
frequency characteristics.

To estimate the working time interval for the structure under overcritical loading, the results
simulating the temperature evolution which are presented in Fig. 3 can be used. The interval to
thermal failure is determined by the time moment when the maximum heating temperature reaches
the value of critical temperature level θ = 80◦C (the same as T = 100◦C) at any point of the structure.
Obviously, these times correspond to the moments when temperature evolution curves intersect the
line of critical temperature mentioned. If the curve does not intersect the line θ = 80◦C (see dash-dot
line in Fig. 3) then the structure can work infinitely long and can fail due to mechanical scenario only.
To predict the thermal fatigue life, the so called S–N curves (or Wöhler diagrams) are usually used.
In Fig. 5a these diagrams are built for frequency f = 468.3Hz, which is resonant for the prestress
coefficient K70

f = 0 (uniaxial prestress state with Nxx = 70N/m and Nyy = 0). Here dotted, dashed,

solid, and dash–dot lines correspond to K70
f = 0, 10, 30, and 90 respectively. All four curves in Fig. 5a
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are obtained for the frequency f = 468.3Hz (fixed frequency regime) that fall to the raising branch of
the temperature–frequency characteristics. It should be noted here that Wöhler diagrams move to the
region of higher values of loading amplitudes improving the durability of the structure caused by the
shift of amplitude–frequency curve to the higher frequency region as the prestress level increases.
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Fig. 6. Evolution of the radial stress distributions along the disk radius.

The analogous data for the case of falling branch of amplitude–frequency curve are shown in Fig. 5b.
The calculation were performed for the frequency f = 506Hz, which is resonant for the coefficient
K70

f = 100. In the figure, dotted, solid, dashed, and dash–dot lines correspond to K70
f = 10, 70, 90,

and 100 respectively. The type of response shown in Fig. 5 corresponds to the effect of dynamics.
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Fig. 7. Temperature evolution curves (a), and temperature distributions along the line y = b/2 for first (b)
and second (c) resonances for the rectangular plate.
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Both the stationary and non-stationary dissipative heating problem for the rectangular plate was
solved as well.

In Fig. 6a and 6b the amplitude– and temperature–frequency curves for the point of maximum
deflections and temperatures in the vicinity of the first resonance frequency under a transverse loading
with amplitude q′ = 350Pa for different values of the prestress coefficient K500

f are shown. Here the

dash–dot, solid, and dashed lines illustrate the plate resonant response for the values of K500
f = 0,

40, and 100 respectively. The maximum deflection reached is equal to wmax = 2.5 · 10−3 m, while the
highest value of the temperature equals θmax = 80.6◦C.

In Fig. 6c and 6d the amplitude– and temperature–frequency characteristics of the rectangular plate
vibration in the vicinity of the first resonance frequency for K500

f = 10 under different values of the
transverse loading are depicted. Here the dash–dot, solid, and dashed lines show the amplitude– and
temperature–frequency curves for q′ = 100, 250, and 350Pa respectively. The maximum temperature
reached is θmax = 61.5◦C.

In Fig. 7a, the temperature evolution curves at the resonant frequency f = 429.6Hz for the prestress
coefficient K500

f = 100 under different values of the transverse loading are shown. The dash–dot, solid,
dashed, and dotted lines correspond to loading amplitudes q′ = 300, 355, 400 and 500Pa respectively.

The distributions of the temperature in the rectangular plate along the line y = b/2 at the resonant
frequency f = 429.6Hz (first resonance m = 1, n = 1) and f = 1059Hz (second resonance m = 1,
n = 2) for the prestress coefficient K500

f = 100 are shown in the Fig. 7b and 7c. The dash–dot, solid,
dotted, and dashed lines present the temperature variation for the loading amplitudes q′ = 300, 355,
400 and 500Pa respectively. The highest temperature reached was 79.8 and 20.2◦C respectively for
the fist and second eigenmodes.

In the Fig. 8a, the Wöhler diagrams at frequency f = 314.5Hz (the first resonance frequency of the
rectangular plate under the prestress coefficient K500

f = 0) are shown for K500
f = 0, 10, 20, and 30 by

the dotted, dashed, solid, and dash–dot lines respectively. This figure illustrates the thermal fatigue
life prediction for the raising branch of temperature–frequency curve.
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Fig. 8. Wöhler diagrams for the rectangular plate calculated at the rising (a) and falling (b) branches of the
temperature–frequency characteristics.

The same estimation for the falling branch of the amplitude–frequency curve is shown in Fig. 8b.
The data are calculated at the frequency f = 429.6Hz, which is resonance frequency for the prestress
coefficient K500

f = 100. The dotted, dashed, solid, and dash–dot lines correspond to K70
f = 70, 80, 90,

and 100 respectively.
In general, analysis of the results presented in Figs. 6–8 shows qualitative agreement in response

between square and rectangular plate. In both cases, to provide the safe and efficient functioning of the
plate, it is necessary to avoid the vibration regimes that induce the high level of heating and prevent
temperature of exceeding the critical value θcr. With this respect, the accounting of prestresses can be
crucial because these stresses can shift the amplitude–frequency curve either to or out the resonance
region.
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5. Conclusions

This paper presents an investigation of the prestress influence on the thermomechanical response and
fatigue life prediction of viscoelastic plates subjected to transverse harmonic loading. For the the
Kirchhoff–Love hypotheses, the formulation and solution of the stationary and transient problems of
forced resonant vibrations and dissipative heating of a viscoelastic elastomeric plate with preliminary
normal membrane forces in cases of a square and rectangular plate, hinged along the contour are
presented. Both steady-state and transient thermal response is investigated in details. For the most
energy-intensive first mode of bending vibrations, the influence of the preliminary tensile stress state,
as well as the level of the transverse distributed load on the amplitude–frequency characteristics and
temperature evolution was studied. The critical values of prestresses and loading amplitudes are
determined at which the heating temperature reaches the critical value that leads to the material
softening. The thermal fatigue life curves for different levels of tensile both uniaxial and biaxial
preliminary membrane stresses were built and analyzed. It was found that the effect of prestresses can
be crucial because these stresses can shift the amplitude–frequency curve either to or out the resonance
region.
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Вплив попереднiх напружень на термомеханiчну поведiнку i
втомну витривалiсть в’язкопружних пластин

ЖукЯ.О., ОстосО.Х., П’ятецькаО.В.

Київський нацiональний унiверситет iменi Тараса Шевченка,

вул. Володимирська, 64, 01601, Київ, Україна

Розвинуто постановку зв’язаної задачi термомеханiки про вимушенi резонанснi ко-
ливання i дисипативний розiгрiв шарнiрно опертої в’язкопружної еластомерної пря-
мокутної пластини з врахуванням попереднiх напружень. Постановка задачi ґрун-
тується на використаннi гiпотез Кiрхгофа–Лява i концепцiї комплексних модулiв, якi
використанi для описання реакцiї в’язкопружного матерiалу на гармонiчне наван-
таження. Дослiджено як стацiонарну, так i нестацiонарну температурну поведiнку
пластини. Детально вивчено вплив попереднього напруження як вздовж однiєї, так
i вздовж двох осей. Iсторiї змiни температури дисипативного розiгрiву розрахова-
но для рiзних значень попереднього напруження i параметрiв навантаження. Для
визначення критичного навантаження вибрано температурний критерiй. Отриманi
данi використано для дослiдження втомної витривалостi пластини та впливу на неї
попереднього напруження.

Ключовi слова: термомеханiчна зв’язанiсть, в’язкопружна пластина, циклiчне

навантаження, попереднi напруження, дисипативний розiгрiв.
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