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In this paper, the approaches to the study of mathematical models of the theory of linear
elasticity are developed. The general formulation of the 3-dimensional problem based
on the representation of the fundamental solution in the form of V.P.Revenko in terms
of spatial harmonic functions is considered. The formulation in the harmonic potentials
of the 3-dimensional problem of elasticity in a cylindrical coordinate system for bodies
bounded by the canonical surface is done. The boundary-value problems of pure rotation
and circular symmetry in harmonic potentials are formulated. The mentioned approaches
make it possible to obtain analytical solutions to these problems and are the theoretical
basis for calculating the strength parameters of technical systems in a way of analysis of
their mathematical models.

Keywords: elasticity theory, problem of torsion, fundamental solution, harmonic poten-
tials, deformation tensor, stress tensor.
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1. Introduction

One of the main scientific directions of the study of boundary-value problems in deformable solid
mechanics is the spatial problems of the theory of elasticity. For general and applied research, the
relevance of this topic is determined by the fact that almost always the stress-strain state of a solid is
of a 3-dimensional nature.

There are several methods for constructing analytical solutions to the spatial problems of static
elasticity theory, one of which is based on the representation of homogeneous equations of equilibrium
in terms of displacements using harmonic and biharmonic functions. These representations of the
solutions have been considered in the classical works of such scientists as M. Boussinesq, W. Kelvin,
P. Tait, B. G. Galerkin, and described in the monograph by S.P.Timoshenko [1]. The general solu-
tion based on the scalar and vector spatial harmonic functions has been for the first time proposed
by P.F.Papkovich [2] and by G.Neiber [3]. Recent studies of the abovementioned issues have been
published in the scientific papers of V.P.Revenko [4-6], where the general solution of homogeneous
equations of equilibrium in terms of displacements was presented with the help of only three spatial
harmonic functions and the volumetric expansion is expressed in terms of one of the above-mentioned
functions. Relevant results are presented in Section 3 of this article. This solution representation
has become the basis for formulating the boundary axisymmetric problems of elasticity theory in the
harmonic potentials mentioned above, namely, the problems of pure rotation and circular symmetry
for isotropic elastic bodies bounded by a canonical surface.

Note that the problems of research of spatial mathematical models of static theory of elasticity
and related problems are considered, in particular, in the known monographs [7,8|. Problems solv-
ing of dynamics and strength of machines, elements of technological equipment implies the study of
mathematical models described by dynamic boundary-value problems of the theory of elasticity [9,10].
At present, numerical [11,12], qualitative [13, 14| and analytical |15, 16] approaches to constructing
solutions of boundary-value problems of dynamic and static theory of elasticity have been developed.
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Static problem analysis methods allow us to evaluate, predict, and optimize the structural strength
parameters. The approaches developed in this paper to the construction of analytical solutions to the
boundary-value problems of the axisymmetric theory of elasticity can be effectively used to analyze
and synthesize the parameters of drilling equipment [17].

2. Formulation of the problem of linear elasticity theory for the body of rotation
We consider an isotropic elastic body X in a 3-dimensional space, which is bounded by the surface 0X

and whose surface is described by a canonical curve f(r,p,z) =0 (Fig. 1).
The body is under the action of the stationary force load

nT A2 f(rp,2) =0 applied to the lateral surface of the body 0X. The general
0x equation of an elastic isotropic body equilibrium in the absence
of bulk forces in a cylindrical coordinate system (r, ¢, z) has
X Onz the form [1]
Ong do, N 18030 0oy, N Or —0p _ 0
> or r dp 0z r ’
1Y T 0o, 100,., Oo. o
— — =0 1
: Tnr or r Op 0z + r ’ (1)
: o 0oy n 18030 N 0oy N 20, o,
r ! n \ Or r Op 0z r
|

Fig. 1. Isotropic elastic body bounded where 0, 04, 0z, Orp, Orz, 0z, are components of the stress
by a canonical surface tensor &, which satisfies the boundary conditions

9x — U;Li_ : (2)
The stress tensor ¢ can be presented in terms of the deformation tensor as follows:
or = XN +2ue,, 0y =N +2us,, 0= NI+ 2ue;,

Orp = UErp, Orz = UErz, Ozp = HUEzp,

where &, €, €2, €rp, €72, €. are components of the deformation tensor €. These components of the
stress tensor are determined in terms of the displacement vector w(u,, 1y, u.) by the following relations:

"or’ Y e T rop’ 7 0z
1 Ou, % Uy _ Oup | Oug _ Ouy, lauz

Erp = y Erz=—j— *+ y  Epx = - .
" O or r 0z or T 0z r Oy
We note that the volumetric expansion of the deformation tensor 1 has the form
our  up 10u, Ou,

VEe et = T e, T

Here p, A are the Lamé parameters; o, (r, ¢, ) is the vector of stresses on the surface 0X; o (r, ¢, 2)
is a given vector of surface efforts. The external normal vector m on the surface 0.X is presented as
follows:

vy

Zik

n=nrep +ny€p,+n€e; =

where V = %er + 5z€p + %ez is a Hamilton operator.
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3. General formulation of the boundary-value problem of elasticity theory in harmonic
potentials

To construct a solution to the boundary-value problem of linear elasticity theory (1), (2), we consider
the representation of the displacement vector u in the Revenko form [4] in terms of spatial independent
scalar harmonic functions R(r, ¢, z), ¥(r, ¢, 2), Q(r, ¢, z) in the form:

u=zgrad R— (3—4v)Re, +grad ¥ +rot Q e, (3)
which is the general solution to the equilibrium equation in displacements in the absence of bulk forces
pAu + (A + p)V(V -u) = 0. (4)

Consider this representation in a cylindrical coordinate system (r, ¢, z). Since

OR_ 18R OR

gradRz V- -R= Eer + , 8(pego + 56,&
ov 10V owv

gra‘d\ll =V U= Eer + ;%ecp + aeza

ot (Qex) = V x (Qez) = ~ 22, — %9,

rop - or

A=V-V = g—:z + %% + %288—:2 + 88—222 is a Laplace operator, then the representation (3) takes the form

U = Urp + Up€p + Uy
OR 0¥ 10Q zOR 10V 0Q OR ov
=lz—+—+-———|¢€r -— - - — —B—4v)R+ — ) e,.
<z8r+8r+r8cp>e+<r&p+r&p 8r>e“°+<z8z ( ) +82>e
Accordingly, the components of the displacement vector w will have the following form:

9V 19Q _ OR

UT—E—F;&’D-FZE, (5)
L_low 0Q  on o
YT rdp  Or  rop’

ov OR
uzza—i—z%—(ii—élu)R (7)

On the basis of the relations (5)—(7), we present the components of the strain tensor &:

L _Ow Y100 10Q R

or — 0r2 120y + r Opdr +ZW’
oy 1du, 199 180 19Q 19°Q | 29R 2 PR

- r@gp_;5+ﬁ8<p2+r28gp r Ordyp ;E—I_r_?&p?’

ou, 0%V 0’R OR
tagg 2 -1) 5,

=T T 022

1u,  Quy wy 2070 2090  18°Q 9°Q 19Q 2z &R 220R

T T Bp " ar r rordp r20p r20g2 o2 ror  rordp 2oy’

Oou,  Ou, ?v 1 0%Q 0’R OR
2T, * or 287‘873 + r 0pdz + 228287" +2(2v—1) or’

. _%_1_1%_282\1/ B 0%Q +2_z O’R +(21/—1)28R
0z rdp  rdpdz  O0rdz 1 0200

rdp’
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Then the volumetric expansion of the strain tensor ¢ takes the form:

V=¢r +e,+e;
P 10Q 10°Q O?R 10¥ 10Q z0R

~ %% 720y rordg  Corf Tror r2op ror
10°F  9%Q 0’R 0* 0’R OR

il 2020 — 1),
+r r Op? 8r890+Z8902 +8Z2+Z8z2+ (2v )873

Since the functions R(r, ¢, z), ¥(r, ¢, 2), Q(r, ¢, z) are harmonic, i.e. A(R,¥,Q) = 0, then

OR OR
5, = 20 -2)—.

This fact makes it possible to more easily obtain solutions to the boundary-value problems of linear
theory of elasticity. Accordingly, the components of the stress tensor o, oy, 0., 0y, 0pz, 0, can be
represented as follows:

9= AT+ 2AR — 2(1 — 20) "

2
ar=w+2uar=2u[a (¥ + zR) a_<1aQ> 26_1%}7

or? r Op 0z
i \II+ZR) 18(\I/+2R) <18Q>_2 O_R}
r2 7’ or or 0z
OR
%)

0@:/\19+2u5@:2u[ C O,

UZ:)\75‘+2MEZ:2M[8 +2(v—-1)

ﬁ

10V 10°Q 0°Q 10Q 0 [(10R
Tre = Herg = [87‘ <7’84p>+_—2_w+_5+228 <r8cp>]

[ 0*v 1 0%Q O*R OR}

= pEr, = |2 - 2 2(2v — 1) =
Trz = Hera = H 8r8z+r8<paz+ Z8z8r+ (2v—1)

2070 Q2 PR, 20R
r0pdz Ordz  r 0z20p rop |’

(8)

Oz = HEzp = K

It is easy to see that the representation of the stress tensor by the relation (8) satisfies identically the
equilibrium equation (1).

Thus, using the fundamental solution representation of Revenko, the boundary-value problem of
linear elasticity theory (1), (2) is reformulated to a boundary-value problem for spatial harmonic
functions R(r, ¢, 2), ¥(r, ¢, 2), Q(r,¢, z) in the form A(R, V¥, Q) = 0, which satisfy the corresponding
boundary conditions on the surface 0.X:

on=(n-0)lgx = (Onrer +onpep +0onzez)|gy = ((Mr0rr + 100 +n20.0) €

+ (NrOrp + MOy +N2020) €p + (NpOrz + NpTpz +12022) €2)| 5 = ol

Let us illustrate the application of the representation (3) in terms of the harmonic functions R(r, ¢, 2),
U(r, @, z), Q(r, ¢, z) to construct analytical solutions of the 3-dimensional rotation problem of the linear
theory of elasticity. In this case, the following distribution is correct for the stress tensor components:

o,=0, o0,=0, o0,=0.

Based on this condition, the volumetric deformation of the strain tensor ¢ is zero and, accordingly,
R = 0. Then, according to the representation (8), the above-mentioned condition can be written in

terms of the harmonic potentials ¥ (r, ¢, z), Q(r, ¢, z) as follows:
1 /00 10
r\or rdp

a<ax11 16@)_0 0_62\11 0 _16(16\11 aQ>

= \or Trop = r oo or

=5 =0 T,

Mathematical Modeling and Computing, Vol.7, No. 2, pp.259-268 (2020)



The study of mathematical models of the linear theory of elasticity by presenting ... 263

From the first two relations we obtain the structure of the harmonic functions ¥(r, ¢, z), Q(r, ¢, 2) in
the form

\Ij(rv 2 Z) = qI(](’r'v (10) + Z\Ifl(T‘, (70)7
Q(Tv 9072) = QO(Tv Z) + Ql(T, 90) + ZQ?(Ta 90)7

where ¥;, Q; (i = 0,2) are unknown harmonic functions.

We apply this representation to the relations of the stress tensor (8). Note that the harmonic
potentials Wo(r, ) and Q1(r, ) do not affect the structure of tangential stresses o, 0., which are
components of the moment characteristics of external loads, so they can be set equal to zero. Thus,
performing the transformation, we obtain the following form of the components of the stress tensor:

_0 (9% 10QaN 10 (10% 9Qy) 1 (0% 10Qs)
0T_87’<87’+7"&P>_0’ Uw_T3(P<T8cp 87‘>+7‘<8r+7‘84p>_0’ 7z =0,
_ 0?Qp  10Qo 9 (10T;  0Q- o oV, 10Q-
%—“K‘ o +;W>+2Z§ <;w‘w>}’ f’m—”[ar +<ar T a¢>]’
_ o [199 9PQo | (10¥;  9Qy

Tze TH | Op  Oroz r Jp or

Since the functions ¥, (o satisfy the Laplace equation A = (%% (r%) + ;lgai:g) (U1,Q2) = 0,
then we obtain, in particular, the following relations:

oV 10Q2 10¥:1 _ 0Q

or rdp’ 1 Op or

Based on these relations, we present the final version of the components of the stress tensor through
two harmonic potentials Qq(r, z), ¥1(r, ) in the form:

or=0, o0,=0, o0,=0,

o 62620(7", Z) 1 aQO (Tv Z) _ oV, (Tv 90) _ 1 8\1’1(7'7 (10) 82Q0 (Tv Z)
aw—,u[— or? e or }’ UTZ_'U[T]’ Uw_u[; do  Oroz }’

which form the structure of the vectors of the corresponding external loads on the body surface 0.X:

o= o (20D 10000 (0001

0?Qo(r,z)  10Qq(r, 2) 10V (r,0)  0%Qo(r,2)
+<"7”<_ oz 7 or >+"Z<F dp  0rd: >>e“’

+ <n¢ <—82anr(; 2) + %86208(:’ Z)> +n, <78\I'18(:, 90))) er}

Accordingly, the components of the displacement vector u = (u,, uy,u,) in terms of the specified
potentials are given as follows:

— ot
=o,.

0X

0
u, = 0, uwz—M, u, = Wy (r, ).

or
In [18], an example of using the developed methods for constructing a set of exact analytical solutions
of boundary-value problems of spatial theory of elasticity is considered. The example is based on
the representation of the general solution of the equation of the linear theory of elasticity in the
form of Papkovich-Neuber through scalar and vector harmonic functions [2,3]. By generalizing the
Cauchy—Riemann conditions, the displacement vector and the stress tensor are represented through

Mathematical Modeling and Computing, Vol.7, No. 2, pp.259-268 (2020)



264 Pabyrivskyi V. V., Pabyrivska N. V., Pukach P. Ya.

scalar and vector holomorphic functions of two complex variables, which in turn are given in the form
of polynomials of order n by powers of complex variables z; and z3. The corresponding boundary
conditions for the basic solutions are formulated and the integral conditions of zero equality of the
principal moment of the stress vector on the lateral surface of the body are concretized.

The mentioned boundary-value problem simulates the distribution of stresses and corresponding
external loads on the lateral surface of the drill. As follows from the results of the study of the
mathematical model of the linear theory of elasticity considered in this paper, the proposed approach
allows us to construct and analyze the structure of external force load on the basis of the general
solution in the form of Revenko. This can be used to synthesize the parameters of many mechanical
systems.

4. Formulation of axisymmetric problems of elasticity theory

For the formulated boundary-value problem (1), (2), we consider the case of axisymmetric boundary-
value problems. Let the z-axis coincide with the axis of symmetry of the rotating body (Fig.1),
which is under the action of forces symmetrical to the axis of rotation. Then the components of the
displacement vector u, = u,(r,2), uy, = ux(r, 2), u, = u(r,2) in the direction of the axes r, ¢, z are
independent of the coordinate .

Under such conditions, the components of the strain tensor €, due to the independence of the
displacement vector u from the coordinate ¢ have the form:
_ Ouy Uy Oou, _ Ouy,  uy, ou, Ou, _ Ouy,

= o= —, Ey=—2 Epp= Ery = — + —=. €,y = —2.
or’ 7 0z’ s or r’ 0z or’ 7 0z

Er —
According to the formulation of the axisymmetric boundary-value problem for the components of
the displacement vector w in the form (5)—(7) the conditions are imposed g—g = 0.
Given this condition, let us present the components of the elasticity tensor & (8) in terms of the
above-mentioned harmonic potentials:

r T A 2 Oor? oz |7 T e T or 0z |’
2\ 9?’R OR
oz = 2 [W“W‘m‘”)ﬂ’
9?Q 10Q A 9?’R OR
UT@:“{':W:M[_W_‘_;E]’ Opy = UEry = [ |:287‘82+2Z8287‘ —2(1—2V)E:|,

0*Q

Tz = Moz = Tl 02

Note that the linear invariant I; (&) of the stress tensor & is expressed only in terms of one harmonic
function R(r,z) and will have the form

11(5')EJT—FU@—FUZ:2[L<A\I’+ZAR—2(V—|—1)88—§> :—4u(1+y)g—f:—2Ea—R,

where E is the Young modulus.

Thus, the boundary-value problem on harmonic potentials U(r, ¢, z), R(r, ¢, z), Q(r, ¢, z) in the
axisymmetric formulation has the form A(R,¥,Q) = 0, moreover, the boundary conditions on the
surface X have the form:

2 2 2
Unzu[<2nr<aql+ aR—2ua—R>+n¢< 8Q+16—Q>

or2 ZW 0z or2 ' ror
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O*v O*R OR
+ n, <28r8z +2Z8z8r —2(1—-2v) E)) er

0%°Q 10Q 10¥  20R OR 0*Q
+ (" (‘m T ) +2n <FE o 2”5) e <_8raz>> €
0*v O*R OR 0%Q
- <nr (287‘873 * 2Z8z87‘ —2(-) W) e <_8raz>
o’V 9’R OR
+2n, (W +2w - 2(1 — I/) a) €Z>:|

The general axisymmetric stress state of the body of rotation, which is symmetric to the z axis, can
be considered as the superposition of two independent elastic states, namely: pure rotation and circular
symmetry. The first of the above-mentioned elastic states is described by equation of equilibrium (4)
under conditions [1]:

— ot
=o,.

0X

Ur = Uy = 0. 9)
Based on this condition, the components of the strain tensor € and stresses 6 will have the forms:
ou U ou
Er=€p =6 =6,=0, Erp=-—12— -2 £4 =",
r © z rz re or r pz 9z
Oug Ou,
Op =0p =0z =0pz = 0, Orp = MUErp = ( or - ) Ozp = MEzp = U—F—- 9z

Under the condition of rotation (9), the nonzero component of the displacement vector in the repre-
sentation (3) will be expressed only in terms of a single harmonic potential Q(r, z) in the form

0Q(r, z) .

Yo =7 or
Accordingly, the volume expansion 9 of the strain tensor ¢ will also be zero, i.e.

OR(r, ¢, 2)

0z =0

V=¢r+e,+e, =

Based on this relation, we obtain the expressions for nonzero components of the stress tensor o,,, 0.,
in terms of the harmonic potential Q(r, z):

92Q  10Q 2*Q
Tre = Here =P\ =55 T g 0 e T Hee = g0

Thus, using the representation of the general solution in the form of Revenko (3), the boundary-
value problem of rotation of the linear theory of elasticity is reformulated into the boundary-value
problem of finding the harmonic potential Q(r, z), which satisfies the corresponding boundary condi-
tions on the body surface 0X:

On = |ax

10Q  9°Q 10Q  0%Q 0°Q )
{ [(;E — W)] e,+ <7’L7«|:<;E — W)] +n, [_87"82]> €p + Ny [_M] ez}

_l’_
n

0X

Consider another axisymmetric stress state of the body of rotation, namely the circular symmetry,
which is described by the equation equilibrium (4) under conditions [1]:

uy, = 0.
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Under these conditions, the representation of the displacement vector (3) will have the form:

0¥ OR o 0Q _ov  OR
—E—i-zE, Uy = 87"_0’ uz—az+zaz (3—4v)R.

Up

Accordingly, the components of the strain tensor € and the volumetric expansion ¥ will be written as
follows:

" o2 o2’ Y o or  ror’ 7 922 022 0z’
0 [0V OR OR
672—25 <§+z5—(1—2u)R>, erp =0, €5, =0, 19—6,4—5%0—1—52——2(1—21/)&.

Therefore, the components of the stress tensor ¢ (8) are given only through two harmonic functions

B 0% (¥ + zR) OR 5 0 [0V +2zR)
Or = 2M <78’r’2 — 2V§> s O, = 2#& <7az — 2(2 — V)R) s
B 19(¥ + zR) OR .0 (0¥ +2zR) B B
g, =2 <r o 2u 82) ,  Opy = 2“87’ < 52 20 -v)R), 04o=0, 0.,=0.

Thus, the boundary-value problem of circular symmetry is reduced to finding the harmonic potentials
R(r,z), ¥(r,z), which satisfy the boundary conditions on the body surface 0.X:

B 0% (¥ + zR) OR 0 [(0(¥+ zR)
o (o (PO 00) 0 (00 )

10 (¥ + zR) OR
# (e (775 2 ) ) e

+ ((nTQ (M —2(1—-v) R) +n 2 (M —2(2-v) R>> ez}

J’_
or 0z 0z 0z "

=0,.
0X

5. Conclusions

In this paper, the approaches to the study of static mathematical models of linear elasticity theory
are developed. The boundary-value problem of the linear theory of elasticity for an isotropic body of
rotation in 3-dimensional formulation is considered. Based on the presentation of a general solution
of equilibrium equations in terms of spatial harmonic functions in a cylindrical coordinate system
in the form of Revenko, the boundary-value problem of theory of elasticity is reformulated to the
boundary-value problem for harmonic functions for the mentioned body.

The problem of finding the exact analytical solutions considered in the work is an actual scientific
problem. In comparison with the numerical approaches that have been used and are still being used
for this class of mathematical models, the possibility to obtain the exact analytical solutions allows us
to describe the patterns of behavior of the mechanical systems discussed in this article in the best way.

Using the method developed in this article has made it possible to obtain the expressions of the
components of stress and strain tensors in the three-dimensional formulation in terms of harmonic
potentials. As an example, the class of axisymmetric problems is considered, namely: problems of
pure rotation and axial symmetry; formulate appropriate boundary conditions for harmonic functions
for the specified problems; offer a practical approach to the construction and analysis of the structure
of external force load in the problems of synthesis and optimization of parameters of technological
systems.
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The results obtained and the methods developed in this paper can be used in engineering practice,

in particular, in the problems of optimization of the parameters of technological systems and the
calculation of the strength of structures.
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Docnig>xeHHA MaTeMaTUYHUX MoAenei NiHIWHOT Teopil NPY>XXHOCTI
LWASIXOM NMoAaHHs PyHAAMEHTa/IbHOIrO PO3B’'sI3KY B rapMOHIAHNX
noTeHuianax

[Tabupiscepkuii B. B., [Tabupiscoka H. B., ITykaaI1. 4.

Hauionarvrut ynisepcumem “/Ivsiscora nosimexnira”,
eyn. C. Bandepu, 12, 79013, Jlveis, Yxpaina

Y poboTi pO3BUHYTO MiAXOAU O TOC/PKEHHS MaTeMATUIHUX MOJeseit JiiHiftHol Teopil
npyxkHOCTi. Posrisimaerbest 3araibae pOPMYJTIOBAHHS 3a/1a9i Ha OCHOBI TOJaHHS DyHIa~
MEHTaJbHOrO po3B’si3ky y dopmi Perenka B.Il. wepe3 mpocroposi rapmoniitai dyHKIIT.
3ificCHeHO TOCTAHOBKY B FapMOHIYHUX MOTEHIAJIAX TPUBUMIPHOI 3388t MPYKHOCTI B 11~
JIHHJIPUYHINA cHCTeMi KOOPJMHAT JJis TiJI, OOMEXKEHNX KaHOHIYHOMI noBepxHero. Cdopmy-
JIbOBAHO KPAaMoBi 3a/ia4i YMCTOr0 KPYy4YeHHS Ta KPYIroBOl CUMETPil B TApMOHIYHHUX ITOTEH-
miasax. Bkazani mijgxomu Jai0Th 3MOT'Yy OTPUMATH AHAJITHUYHI PO3B’SI3KHU IUX 3aJa9 Ta €
TEOPETUYHUM IATPYHTIM PO3PaxyHKY ITapaMeTPiB MIITHOCTI TEXHIYHUX CUCTEM ILISTXOM
aHaJi3y X MaTeMaTUIHUX MOJEJeH.

Knto4oBi cnosa: meopis npyscrocmi, 3adaua kpyuerns, Gyrdamernmanvrul pose’asox,
2aPMOHITHI NOMEHUIAAU, MEH3OD JedoPpManit, MEHI0P HANPYHCEHD.
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