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the set of all admissible disturbances from all disturbances susceptible to the deformation
of control input. An algorithm for computing the maximum admissible disturbances set
is described and the sufficient conditions for finite termination of this algorithm are given.
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1. Introduction

Disturbed systems have also been extensively studied in the past decade. In most control systems, the
existence of disturbances has a remarkable probability. The influence of the physical environment on
the systems leads to the emergence of these undesirable parameters [1-5], and references therein. In
this direction, and in the control literature, there are many works and techniques to avoid the effects of
disturbances, [6-15] and references therein. These disturbances can be deterministic or stochastic and
can affect different components of the system, for example, the system’s dynamic, the control operator,
the initial state ..., which can drive the system to unstable behavior, or constraints violations. In
order to contribute to this thematic, we are interested in a class of systems described by

Tit1 = Az; + Bu,
xg € R,
Yi = C:L'Z', 12> 0,

where A € R™" is the dynamic matrix, B € R™*™ is the matrix governing the distribution of the
control variable on the different components of the state z;. (u;); € R™ is the control input and
y; = Cx; is the response output, where C' € RP*™. We assume that the feed-back control (u;); is given
by u; = Kx;, where K € R™*™, The gain matrix K is designed with the aim of forcing y; to achieve
the desired goal.

(© 2020 Lviv Polytechnic National University 293
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For reasons that are due to random phenomenon, or by the principle of action and reaction between
a system and its surroundings or in the system simulations via a machine, task, which always generates
approximations and various disturbances. We assume that when applying the gain K, one can not
avoid disturbances (K;);, in other words, it is rather the disturbed control u; = (K + K;)xz; which acts
on the system, where K;: R” — R™ is not necessarily linear.

Inspired by works of [16-21]. We develop in the present work a theoretical and algorithmic approach,
for determining, among all disturbances K; that may affect the system, those whose effect is relatively
tolerable, i.e. given a set of constraints {2, the aim is to determine all disturbances such that the
corresponding output satisfies

B €Q, 120

A violation of these constraints can lead the closed-loop system to an unstable behavior, or serious
damage may happen. Since time delay is encountered in various engineering systems, for examples,
chemical processes, biological systems, economic systems and hydraulic/pneumatic systems. A class
of delayed systems is also considered.

This paper is organized as follows. Some preliminaries are given in Section 2. Section 3 contains
efficient algorithms for computing the set of all admissible disturbances that infect the control input.
Section 4 provides numerical examples to show the efficiency of the proposed technique and contains
some figures illustrating the performance of the algorithm defined in the previous section. A class of
discrete-time delayed systems is also considered in Section 5 followed by conclusion in Section 6.

2. Preliminary results

The controlled linear discrete-time system considered is

Tit1 = Az; + Bu,
xg € R™.
The associated output function is
yi=Cxi, 120 (2)

and the infected control input is given by
U; = (K + Kl)l‘l S Rm, (3)

where the state variable z; € R™ and A, B, C, K are respectively (n x n), (n x m), (p X n), (m x n)
matrices, and (K;);>0 are maps which describe the disturbances that infect the control input. K;
represents all kinds of unwanted signals inputs which then affect the control-system’s output. For
instance, sensor noise signal, load disturbances, gusts of wind hitting the satellite dish of a tracking
radar create unwanted large torques that affect the position of the antenna.

Replacing (3) in (1) we have

Ti+1 = AJIZ + B(K + K,-)a:,-,
ro € R”
by changing A4+ BK — A and BK; — P; we have

Ti41 = (A + Pz)xh (4)
xg € R™.

For physical considerations, and without loss of generality, we assume that all disturbances suscep-

tible of infecting the system (4) have a limited age, i.e (P;);>0 are persistent on a given time interval

{0,...,I} which means that
P=0, Vi>I,

I is called the age of the disturbances (P;)i>o.
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Motivated by practical considerations, the controlled output is required to satisfies
yi €Q, 120, (5)

where 2 € RP is the set of constraints.

Definition 1. We say that a disturbance (P;)o<i<s is admissible, if the corresponding output satisfies
v €Q, 1>20.

Otherwise (P;)o<i<r Is said inadmissible.

Then the principal goal in this paper, is to characterize the set ¥ of all admissible disturbances which
will be called the maximal admissible disturbances set described as follows

E = {(P)o<i<s/yi € Q, Vi = 0}. (6)
We see that X can be written as follows

where
U = {(P)o<i<i/yi €, Vi=0,1,...,1}, .
V= {(P)o<i<t/yi € Q, Vi = I+ 1}.

Note that U is determined by a finite number of inequalities but V' is defined by an infinite number
of inequalities. The idea of this decomposition will be useful for the algorithmic determinations of V'

so of X.

Proposition 1. The set V in (8) can be written as follows

V = {(Pj)o<j<1t/CAT((Pj)osj<r) € Q, Vj > 0}, 9)
where T((Pj)o<j<s) = [1}—o(A + Pr_j).zo € R™.
Proof. For i > I + 1, we have

ri=(A+ P_1)(A+ P_3)...(A+ Ry)xo,

Ty = H(A + F)i—k)-l'(]v

k=1
i—I—1 i
T = (A+ Pi_y).xo. H (A+ P_).xo,
k=1 k=i—1I

z; = AT H (A+ P_g).xo,
k=i—1I

1
T; = Ai_l_l H(A + P]_j).ﬂf(),

=0
therefore '
z; = AT ((Py)osj<r) (10)
and
I
L((Pyo<jcr) = [ (A + Pi—j)-wo.
=0
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Using (2), (8) and (10), V is written as follows
V= { 0<z<1/CAZ = 1F((Pi)0<i<1) e, Vi>1+ 1}

V= {(P)0<J<I/CAJF(( i o<j<r) € Q, Vi = O}

[

As T'((Pj)o<j<r) is a vector of R™ then we will introduce a set A defined by
A={zcR"/CAz € Q,Vj >0} and (11)
Ay ={z eR"/CAz € QVj=0,1,...,k}. (12)

In [22], the set A is called the maximal output admissible set.
Remark 1. We note that for all £k > 0: A C Apy1 C Ag.

For a complete determination of A we need the following results.

Proposition 2. If there is an integer k* such that Ag+ = Ag=11 then Ag« = A, and A is said to be
finitely determined.

Proof. let © € Aj« then CAJ2z € Q V5 =0,1,...,k* since Ag« = Apyqq then CAF o = CAF (Az) €
Q) therefore Az €Aj«, then we have Ax €Ay« Vox € Ap-. By iteration we have Alx € Ap-Vj > 0,

therefore Ap« C A, and since A C Ay, we deduce that A = Ay-. [
Remark 2. We note that V is given by
V = {(Pi)o<i<t/T((P)o<i<r) € A} (13)

Proposition 3. If Ay~ = Ag«4q for an integer £* then the set of all admissible disturbances is given
by
E={(P)o<i<i/yi € Vi=0,1,.... T +1+k"}. (14)

Proof. If Ay« = Ap+41 then by proposition 2 and (13), the set V' can be written as follows
V ={(F)o<j<t/T((Pjlosj<t) € Ax-},
V= {(P')O\J I/ AJF((P])()ng[) € Q \V/j - 07 17 .. 7k }7
V ={(P)o<ici/CATIIT(P)o<icr) € U, Vi=T+1,..., ] +1+k*}
according to (2) and (10)
V=A{(Po<i<t/yi €, Vi=I+1,....I+1+k"}

and by (8), we have
Y ={(P)o<i<t/yi €% Vi=0,1,.... I +1+k"}

Hereafter, we will give some sufficient conditions for existence of such integers k*.

Theorem 1. If we have:
1) A is asymptotically stable (i.e., the eigenvalues \; of A satisfy the condition |\;| < 1 for all ).
2) The pair (A, C) is observable (i.e., the matrix [CT,ATCT ... (AT)"~'CT] has rank n).
3) Q bounded and contains the origin in its interior,

then there exists an integer k™ such that A = Ap«.
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C
CA
Proof. The pair (A, C) is observable implies that the matrix H = . has rank n, then the
CA.n—l
matrix HT H is invertible.
Therefore
Ja >0, Ve € R" such that olz|* < (HTHz,z),
then o |lz|? < ||HT| [|[Hz|||z]|, Yz € R™ (15)
n fois

It follows from the definition of A,,_1 that Hz € Q x Q x --- x QVx € A,,_1 and since {2 is bounded,
we deduce from (15) that

Blz|| Yo € Ap—1  for some S €R,
v, Ve € A,y for some vy €R.

2
allz|

NN

hence ||z

Since the origin belongs to the interior of € then there exists € > 0 such that B(0,e) C © (where
B(0,¢) is the open ball of radius ).
From the asymptotic stability of A we deduce that

Jdk* >n—1 such that HC’AHHH < E.
Y
On the other hand, Ay« C A,,_1 implies that

[z <, Vo € Ags,

thus for all Vo € Ag+ we have

lcA™ *al| < [leAM |||z
W
Y

N

Hence CA¥ *1z € B(0,¢) C Q, V& € Ay, this shows that Ap« C Ag-yq or equivalently Ag« = Agsyq
(since Agxi1 C Ags). ]

3. Algorithmic determination

To determine the integer k* defined above, the following algorithm is suggested.

Algorithm 1 Version 1
Step 1:  set k =0 and move to Step 2
if Ay = Agyq then k* =k
else continue
Step 3: k= k+ 1 and return to Step 2

Step 2:

This algorithm is conceptually similar to what is done in [22]. We show how the test in Step 2 can
be implemented, in the case where € is described as follows

Q={zeR"/fi(x) <0,Vi=0,1,...,s},

where f; : R™ — R are a given functions.
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Therefore A can be written as follows
Ay ={z e R"/fi(CAIz) <0,V¥j=0,1,...,kVi=0,1,...,s },

we note that for every integer k we have Ax11 C Ag, then Ay = Ay if and only if Ay C Agyq which
is equivalent to

fi(CAF2) <0, Vi=0,1,...,s, Yz € Ay,

or
sup f;(CAM12) <0, Vi=0,1,...,s,
IEGAk

or
supfi(C'AkHa:) <0,vi=0,1,...,s,
j€{0,...,k},
le{l,...,s}.

Then the algorithm 1 will be implemented as follows

Algorithm 2 Version 2

Step 1: set k = 0 and move to Step 2
For ¢ =0,...,s then
maximize F(z) = f;(C A1)
fi(CAIz) <0
je{0,... k}
Step 2: ie{l,... s}
Let F}* the maximum value calculated of Fj.
If FF <0for Fori=0,---,s then
Set k = k* and Stop
else continue
Step 3: k =k 4+ 1 and return to Step 2

Remark 3. i) This algorithm can never be useful, if there are no methods to solve rather large
mathematical programming problems which arise in Step 2. The search for a global optimum will be
more difficult. But in the case where € is a polyhedron (i.e., f; are affine functions for all: = 0,1,...,s),
the difficulty disappears as the programming problems are linear and an efficient algorithm for it still
exists.

ii) Assumptions of theorems 1 are sufficient but not necessary. If these conditions are not verified,
there is not guarantee that Algorithm 2 will stop. If the Algorithm 2 converge then the set A is finitely
determined, else it is not.

4. Examples

Consider the following system
zi+1 = Az; + Bu;

x0 = < :82 ) € R% (16)

where A and B are described as follows

A:<0?9 ?) and B:<_12 _23> (17)
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The infected control input is

u; = K + K;, (18)
where 2.675 0.55
K= ( 1.225 0.55 > (19)

is the desired gain matrix, and (K;);>¢ are a maps which describe the disturbances that infect the
control input. We assume that the disturbances are unknown and disappears at I = 10. The associated
output

where C = ( —0.1 -1 ), is required to verify the constraints
y; € Q=[-0.7,0.7], Vi > 0.

From (17) and (19), the change A = A + BK give
~ -09 0
A= ( ~0.1 —0.1 >

we see that A is asymptotically stable, and by means of simple hand calculations it is possible to verify
that the pair (;1, () is observable, thus by theorem 1 it follows that algorithm 2 will converge.

By execution of the algorithm 2 with this data, we 4
have k* = 2. As a result, the only disturbances which
did not affect our system are those which verify the
following equations 2

lyil < 0.7, Viel{o,...,13) :
and the set X in (14) is given by
¥ = {(Ki)o<i<1o/ lys] 0.7, Vi=0,1,...,13}, (21)

9t

while the set A in (11) is given by

-3+

A={zeR?/|CAZ|<0.7,Vi=0,1,2}, (22) N
T -3 -2 -1 0 1 2 3 4

which is represented in Fig. 1 by the filled area. Fig.1. The colored area represents the set A
Let us define a set of indices O as follows given by (22).
0 =1{0,1,...,10} (23)
and the indicator function of the set O given by
1, ifzxe0,
Lo(z) = . (24)
0, ifzégO.

Case 1. We consider an example of nonlinear disturbances (K;);>o defined as follows

e (5)- () (3)-

0 a : 1
Mi—<a 0)10(1),(16R and v—<1>.
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Where O and 1o are given by (23) an (24), respectively. It is obvious that
w(5)=(G) ()G
Y Y a 0 Y
Ki<x>:<0>,w>10
Y 0

and consequently the age of disturbances K; is I = 10.
By (16), (18) and (25) we have

fori=0,1,...,10, and

x = Axg + 2ax(()l)a:82)Bv, (26)
i—2

x; =2a (Zxél)xg)lev + azgl_)la;g)le> + Alzg. (27)
k=0

(1)
For ¢ > 2, where z; = ( xl@ ) € R2. From (20), (21) and (27) we deduce that
T

Y={aeR/|Fa)| <07, Vi=0,1,...,13}, (28)
where

FO(a) = CIIJ‘O,
Fi(a) = CAxy + 2axél)x(()2)CBv,

i—1"1—

i—2
Fi(a) = 2a <Zxél)xl(€2)Clev + x(l)lx(Q)lCBv> + CAlzg, i > 2.
k=0

i=0
i=1
— =2
— =3
=5
1=26
— =7
1=38
1 =9
=10
=11
=12
1 =13
- — - Bounds
v The set X

Fig. 2. Geometric representation of the set ¥ given by (28).

In Fig. 2, we plot functions F;, ¢ =0, ..., 13 with different colors, in order to simplify the determi-
nation of the set X given by (28). From the definition of 3 in (28), its clear that ¥ in this case is a
segment of R, which is plotted in this figure with the dotted segment in red.
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Case 2. We also consider here an example of non linear disturbances (K;);>o defined as follows

w () () (3)-
)

where 0
M; = < 8 b ) 1o(i), (a,b) €eR?* and wv= <

with O and 1o are given by (23) an (24) respectively. It is obvious that
T T a 0 T
Ki = s v
()= GG
K(””):(O) Vi > 10
Y 0

and consequently the age of disturbances K; is I = 10.
By (16), (18) and (29) we have

fori=0,1,...,10, and

z1 = Azo+ (a(ajgl))z + b(x(()z))2> B, (30)
i—2 )
x; = (a($§€1))2 + b(a:](f))2> ABwv
k=0
(a a:l(-l_)l)2 + b(a:l(-i)l)2> Bu + Alxy. (31)

i

1)
For ¢ > 2, where z; = < :E’('z) ) € R2. From (20), (21) and (31) we deduce that
x

2 = {(a,b) € R*/|F;(a,b)] < 0.7, Vi=0,1,...,13}, (32)
where
FO(a7 b) - C:I:Oa
Fi(a;b) = CAzy + <a(3:(()1))2 + b(a:(()z))2) C B,
i—2
Fi(a,b) = (a(xlgl))z + b(a:,(f))2) CABv
k=0

for i > 2. Let us define functions G; as follows

GQi(CL, b) = E(CL, b) - 077
G2i+1 (a, b) = E-(a, b) + 0.7.

In Fig. 3, we plot equations Go; = 0 and Gg;41 = 0, for each 7 in {0, 1,...,13}, with the same color,
in order to simplify the appearance of iterations, then the set 3 in (32) is represented in this figure
with the filled area.
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— =0
—_— =2
i=
i=25
- =
— =7
i=8
i=9
i =10
=11
i=12
i=13
i
¥
) I I I \ (N‘f { I I
-2 -15 -1 -0.5 0 0.5 1 15 2
a
Fig. 3. Geometric representation of the set ¥ given by (32).
1 Ty Case 2. We give here an example correspond-
0.8} - giigﬁdﬁii With the bbb Sl ing to the two families of disturbances given by

System’s output

-04F o 1

-0.6+ b

-0.8+ b

0 5 10 15
Time (in seconds)

Fig.4. System’s response with an admissible and inad-
missible disturbances.

Ko [ *F Sir'liylz) 1o (i 33
i — Z_ )
( ' ) ) RECRINEY

" ysin(z)
K;: < ) — ( cé:(;) > 1o(). (34)

4 ita?
Where O and 1o are given by (23) an (24)
respectively. Its clear that the age of these dis-
turbances is I = 10. Fig. 4 shows the impact of
these disturbances on the system’s output for

T = :83 ), where the impact of the dis-

turbances (33) do not cause constraints viola-
tion, which means that these disturbances are

and

admissible for the chosen z(, while the system’s output exceeds 0.7 when there are disturbances (34),
which means that disturbance (34) could possibly cause serious damage, thus, are inadmissible.

Case 3. We consider here an example of linear disturbances (K;)o<i<10 defined as follows

K;: <§>—>Mi<§>,w'e{0,...,10}, (35)

where M; = < 8 2
obvious that
( ax

by

) 1o(i) with (a,b) € R?, O and 1o are given by (23) an (24) respectively. It is

), if i€{0,...,10},

elsewhere.
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Thus the system (16) is rewritten as follows
z; = (A + BM;)'x (36)

for i € O. By (21) and (36), the maximal disturbances set corresponding to this example is given then
by
2 = {(a,b) € R*/|F;(a,b)| < 0.7, Vi=0,1,...,13}, (37)

where

—2a4—-0.9 2% ‘ .
. — >
Fi(a,b) =C < a—01 Csh_01 > ro, ©>=1,

Fo(a, b) = Cxo = 0.29.

0.8

0.6F

0.4

0.2

= 0

-0.2

-0.4

-0.6

-0.8

-1
-1.5 -1

Fig. 5. The colored area represents the set ¥ given by (37).

Fig. 5 depicts a geometric illustration of the set X
given by (37), we have to note that Fy(a,b) is not
plotted in this figure because it does not depend nei- 03
ther on a nor on b, and its clear that |Fy(a,b)| < 0.7.

We give in Table 1 some examples of the execution
of the algorithm 2, with different choice of matrices 01r
that define the system. ol

0.4

02

-0.1p

Remark 4. i) While the conditions in the theo- 0%

rem 1 are sufficient for the convergence of the algo- o3

rithm 2, example 4 show that they are not necessary, F

we can see that the matrix A is unstable. Further- 04 -0 -0z -01 0 01 o0z 03 o4
more, A is just Lyapunov stable in examples3 and 5. Fig. 6. The colored area represents the set A in

ii) In example 2, the fact of writing k* = oo does (11) corresponding to example 2 with k* = 327.

not mean that the algorithm is not convergent, but we explain that at the time of the analysis of this
example on a computer, we obtained higher values of k£* (k* = 327) in a somewhat larger time. Fig.6
shows the set A defined by (11) with data of example 2.

Mathematical Modeling and Computing, Vol.7, No. 2, pp.293-309 (2020)



304 Zakary O., Rachik M., Tridane A., Abdelhak A.

5. Discrete-time delayed systems

The considered discrete-time delayed systems are described by
Table 1. Data of examples 2-5.

. Tit1 = Aox;+ ...+ Arxir + Bou; + ... + Bsuj_s,
2| 8 i - N xo € R given (38)
'E' ': ) ﬁ Tj = Gy, _T<j<_1
o =] o o
Sl 3 | = | & o~ with delayed output function
T T
L L — — yi = Coxi + ...+ Cyqxi_g € RP, (39)
—— oo where z; € R" and u; € R™ are, respectively, the state, control
A .
o Tl. 2o~ input of the system (38). (Ai)o<i<r, (Bi)o<ics and (Ci)o<i<a
< ? oo g z are real matrices of appropriate dimension.
N g o - n ? o The infected delayed control input is given by
Il A —
N N o Uj_fp = (K + Ki)xi_k, 0<k<s, (40)
~
where K is a real matrix of compatible dimension, and (K;)i>o
— -~ ~ are a nonlinear maps which describe the disturbances that in-
PR ~—~lo o o , , ,
-+~ ey < fect the control input. We assume that there exists an integer
e HI o < z g I for which K; = 0, V¢ > I, in this case [ is called the age of
<oy — < S disturbances.
T T &/ |F9 — We assume that the control (40) is introduced such that the
~— \_‘; N corresponding output function (39) satisfies the constraints
~
yi €Q, 1>=0. (41)
— | —~ = We assume hereafter that » = s and using (40) in (38), we
—~ — (=)
~ | e ™ have
o
O vz |2 I Tiv1 = Aomi + ... + Apzir + Bo(K + K))ai + . ..
~ | I ; + BT(K + K,-)ac,-_,,,
SN—" SN—" | r
— Tip1 = Z(Ak + BpK + BLK;)xi_.
k=0
FE
N — o C\I‘ o By changing
(o] T O AN T (o] ~
M o~ v—|< oA A = A, + BrK and P@k = B, K;,
T - | T —
Y Y in the system (38) can be written as follows
~ oo
Tiy1 = kz (A + P )i,
—~_ > x _GOIR" iven (42)
A oo o 0 &
© —lom CT[\ rj=a; -r<j<-—L
< _ M -
o C\|] — g B We will investigate the admissible disturbances, i.e. the dis-
~— | | turbances such that the corresponding output function satisfies
v . . .
also the constraints (41). As above, the set of all admissible
mx ~ - - - disturbances ¥ is given by

¥ = {(Pr)o<i<rock<r/Yi € Q, Vi = 0} (43)
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or
>=U0UnYV, (44)
where .
U ={(Pir)o<i<ro<ker/yi € 2, Vi=0,1,..., 1}, (45)
V ={(Pir)o<i<rocker/yi € Q, Vi > T+ 1}.
First, we give the following result.
Proposition 4. The system (42) is equivalent to
Zit1 = (A + 1)z,
where
Zi = (‘T’h xi—17 A 7xi—T)T7
z20 = (‘T07 Q_1,... 7a—T’)T7
and - -
AO Al e Ar
I 0 0
A= _ ,
0 I 0
and
Py Pi1 P,
0 0
I = .
0 0 0
Proof. From (42), we have
x; T
I - Tiq Ti—1
w’i-ﬁ-l = (A07A17"'7A7“) : +(H,07—P7;,17"'7—Pi,7”)
Ti—yp LTi—r
and
T T
Ti—1 Ti—1
xl:(170770) Z- ) R :L'i—T-‘rl:(O)Ov"'vI?O) Z
Ti—r Li—r
Let z; = (i, 2i1,...,2i_r)", then we have z;41 = (A +T})z;. [

The output function y; can be written in terms of the new state variables z; as follows
Yi = é Ziy 1 = 0,

where ]
C = (CO, e 7Cd707 .. 0) c RpX(T—‘,—l)n'

Remark 5. A disturbance (I';)o<i<s is admissible for system (46), if and only if the corresponding
disturbance (P 1)o<i<r0<k<r is also admissible for system (42). Since system (46) have the form
of system (4) in Section2, we can apply the above results to characterize the set of all admissible

disturbances. Which means that
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Theorem 2. If the following assumptions hold:

1) A is asymptotically stable,

2) the pair (A, C) is observable,

3) Q is bounded and contains the origin in its interior,
then there exists an integer k*such that

Y = {(Fi)ogigj/yi S Q, Vi = 0,1,... ,I—I— 1+ k‘*}

Remark 6. i) In most case of delayed systems, one can find an equivalent system in the form (46),
and we can use the above ideas to solve the problem of perturbed control input.
ii) To execute the algorithm 2, described above, the following change is made

A=A and C=C.

Example. Without loss of generality, we consider the following discrete-time delayed model with

r=2:
Tip1 = —1.3x; +2.4x;_1 — 3.1x;_ 9 + %ul — %ui_l + %ui_g,
o = 0.2, (47)
r—1 = 0.1,
Tr_9 = 0.1.

With the delayed output

Y; = —O.la:,- + ZTi—1.-
The perturbed control function

is introduced in this model to satisfy the output constraint
yi € Q=[-0.5,0.5], Vi=0
We assume that the perturbation K; is inevitable for all i € {0,1,...,10}. By substituting the
control (48) in the model (47) we have
34
15

4 16
Tiy1 = —1.3z; + 2.4, 1 — 3.1x;_o + B (1.5 + Kz) T — (1.5 + Kz) Ti—1+ B (1.5 + Kz) XTi—2,

after simplification we have

4 34 16
it1= |09+ =K |oi+ | -1—- =<K )zi1+ | -15+ <K | zio.
it ( 09 15 > B < 15 > it < ] 15 > i

Then, by using the change of variables as before, we note

X
Zi = Ti—1
Ti—2

Therefore, the new equivalent model is written as

ziy1 = (A + By) 2,

where
-09 -1 -1.5
A= 1 0 0 ,
0 1 0
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and 4 34 16
B K kK
= 0 0 o |,
0 0 0
and

By a simple calculation
we can verify that the matrix
A is not stable and the pair
(A,C) is observable, never-
theless, the algorithm 2 con-
verges, for the two matrices
A and C and the set Q, and
gives k* = 3. As a result, the ) =S
only disturbances F; which
did not affect this system are
those which verify the follow-
ing equations

15 T T T

-15 | | | | 1 | | | |

lysl < 0.5, Vie{0,...,14} -05 04 -03 02 0.1 0 0.1 02 03 04 05
_ o Fig.7. The colored area represents the set A in (50) corresponding to
and the set 3 in (14) is given example of delayed model, where k* = 3.
by
Y ={(Po<icio/ lyil 0.5, Vi =0,1,...,14}, (49)

while the set A in (11) is given by
A= {z cR?/|CAZ| <0.5,Vi=0,1,2,3}, (50)

which is illustrated by the filled area of the Fig. 7.

6. Conclusion

In this paper, we have developed a new technique that allows us to determine admissible disturbances
susceptible to infecting the control input of a controlled linear discrete-time system. A disturbance
is said to be admissible if the corresponding output satisfies specific constraints. In this paper, we
restrict our interest in the determination of the set of all these admissible disturbances which is called
the maximal admissible disturbances set. By assuming that disturbances have a limited age, we
managed to develop an algorithmic method for computing this set, under some conditions. Numerical
examples were used to demonstrate the effectiveness of the proposed technique. We have shown also,
for a class of controlled discrete-time delayed systems, that the maximal admissible disturbances set
can be computed with the same way of delay-free systems, after some changes.

Acknowledgment

This work is supported by the system’s theory network and Hassan II Academy of Sciences and Tech-
nologies.

[1] FridmanE. Effects of small delays on stability of singularly perturbed systems. Automatica. 38 (5),
897-902 (2002).

Mathematical Modeling and Computing, Vol.7, No. 2, pp.293-309 (2020)



308

Zakary O., Rachik M., Tridane A., Abdelhak A.

2]
3]
4]
5]
16]
7]
18]
191
[10]

[11]

[12]
[13]
[14]

[15]

[16]
[17]
[18]
[19]
[20]
[21]

[22]

Goubet-Bartholomeiis A., Dambrine M., Richard J.P. Stability of perturbed systems with time varying
delays. Systems & Control Letters. 31 (3), 155-163 (1997).

Floquet T., Barbot J.-P., Perruquetti W. Higher-order sliding mode stabilization for a class of nonholonomic
perturbed systems. Automatica. 39 (6), 1077-1083 (2003).

Assawinchaichote W., Nguang S. K. H ., filtering for fuzzy singularly perturbed systems with pole placement
constraints: an LMI approach. IEEE Transactions on Signal Processing. 52 (6), 1659-1667 (2004).

Cheng Y., Xie W., Sun W. High gain disturbance observer-based control for nonlinear affine systems. In-
ternational Journal of Advanced Robotic Systems. 9, 116 (2012).

Krohling R. A., Rey J. P. Design of optimal disturbance rejection pid controllers using genetic algorithms.
IEEE Transactions on Evolutionary Computation. 5 (1), 78-82 (2001).

GaoZ. Active disturbance rejection control: a paradigm shift in feedback control system design. 2006
American Control Conference. 7 (2006).

ChenD., SeborgD. E. PI/PID controller design based on direct synthesis and disturbance rejection. In-
dustrial & engineering chemistry research. 41 (19), 48074822 (2002).

Zheng Q., DongL., LeeD.H., GaoZ. Active disturbance rejection control for mems gyroscopes. 2008
American Control Conference. 4425-4430 (2008).

XiaY., ShiP., LiuG.P., ReesD., HanJ. Active disturbance rejection control for uncertain multivariable
systems with time-delay. IET Control Theory & Applications. 1 (1), 75-81 (2007).

Dong H., Wang Z., GaoH. Robust H, filtering for a class of nonlinear networked systems with multiple
stochastic communication delays and packet dropouts. IEEE Transactions on Signal Processing. 58 (4),
1957-1966 (2010).

Kothare M. V., Balakrishnan V., Morari M. Robust constrained model predictive control using linear matrix
inequalities. Automatica. 32 (10), 1361-1379 (1996).

WuD., Chen K., Wang X. Tracking control and active disturbance rejection with application to noncircular
machining. International Journal of Machine Tools and Manufacture. 47 (15), 22072217 (2007).

LiuC.-S., Peng H. Disturbance observer based tracking control. Journal of Dynamic Systems, Measure-
ment, and Control. 122 (2), 332-335 (2000).

Venkataramanan V., Peng K., Chen B. M., LeeT.H. Discrete-time composite nonlinear feedback control
with an application in design of a hard disk drive servo system. IEEE Transactions on Control Systems
Technology. 11 (1), 16-23 (2003).

Rachik M., Abdelhak A., Karrakchou J. Discrete systems with delays in state, control and observation: the
maximal output sets with state and control constraints. Optimization. 42 (2), 169-183 (1997).

Hirata K., OhtaY. Exact determinations of the maximal output admissible set for a class of nonlinear
systems. Automatica. 44 (2), 526-533 (2008).

Gilbert E. G., Tan K. T. Linear systems with state and control constraints: the theory and application of
maximal output admissible sets. IEEE Transactions on Automatic Control. 36 (9), 1008-1020 (1991).

Rachik M., Lhous M., Tridane A., Abdelhak A. Discrete nonlinear systems: on the admissible nonlinear
disturbances. Journal of the Franklin Institute. 338 (5), 631-650 (2001).

Rachik M., Lhous M., Tridane A. On the maximal output admissible set for a class of nonlinear discrete
systems. Systems Analysis Modelling Simulation. 42 (11), 1639-1658 (2002).

Bouyaghroumni J., ElJai A., Rachik M. Admissible disturbance sets for discrete perturbed systems. Ap-
plied Mathematics and Computer Science. 11 (2), 349-368 (2001).

Gilbert E. G., Tan K. T. Linear systems with state and control constraints: the theory and application of
maximal output admissible sets. IEEE Transactions on Automatic control. 36 (9), 1008-1020 (1991).

Mathematical Modeling and Computing, Vol.7, No.2, pp.293-309 (2020)



Identifying the set of all admissible disturbances: discrete-time systems with perturbed gain matrix 309

lnenTudikauin Habopy BCix gonycTuMunx 30ypeHb: AMCKPETHO-4acoBi
cuctemn 3i 30ypeHO0 MaTpuuerlo NiaCcUIeHHs

Baxapu O.', Paunx M.!, Tpugan A2, A6nenbxax A3

L Tabopamopisa amnanisy, Mo0es06aHHIA MA CUMYAIOEANNA,
Kadedpa Mamemamury ma 064UCAI0OBAADHUL HAYK,
daxysvmem nayx Bew M’cix, Yrnisepcumem Xacana II Kacabaanxu,
Kacabranxa 20000, Mapoxko
2 Biddin mMamemamusnur Hayx,

Vuisepcumem O6’conanur Apabevkur Emipamis,
Aav-Adn, Aby-/labi, 06’cdnani Apabeori Emipamu
3 Kagedpa mamemamuru,
daxysvmem nayk, Ywnisepcumem Ion Togatin,

Kenimpa 14000, Mapoxko

CraTTsi IpUCBsTYeHa JIHIAHIM KEPOBAHUM JIMCKPETHO-YACOBUM CHCTEMAaM, Ha #AKi JII0Thb
BXiHi 36ypennsi. 30ypeHHsT BBaXKAIOTHCS JOIMYCTUMUAMH, SKIO (PYHKIs BUXOLY 3310BOJIb-
Hsi€ BUXIiJIHI OOMeXKeHHsi. ¥ IIiff CTATTi BUPIIIYEThCA HACTYIHA 3aJa4a: BU3HAYUTHA HADID
ycix momyctuMux 30y peHb 3 yeix 30ypeHb, CIPURHSTIIMBUX 10 AedOpMaIiil KepyodIoro BXo-
jy. Onmcano aaropuTM 00UYMCIeHHST MHOXKIHI MAaKCUMAJIbHO JIOIYCTUMUX 30ypeHb 1 HaBe-
JIEHO JIOCTATHI YMOBHU JUUId IIPUINIMHEHHS [IBOro ajropurMy. HaBejneHo 4mcioBi mpukiiaim.
TakoxK PO3IIAIAETHCH BUIAIOK JTUCKPETHO-YACOBUX CUCTEM i3 3aTPUMKOIO.

Knwouosi cnoBa: duckpemno-uacosa cucmema, AinitHa cucmema, 30ypena cucmema,
donycmumi 30YperHA, CUCTEMGE i3 34MPUMEKOIO.
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