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PERFORMANCE EVALUATION OF SELF-QUOTIENT IMAGE METHODS

Lighting Normalization is an especially important issue in the image recognitions systems since different illumination condi-
tions can significantly change the recognition results, and the lighting normalization allows minimizing negative effects of vari-
ous illumination conditions. In this paper, we are evaluating the recognition performance of several lighting normalization met-
hods based on the Self-Quotient Image(SQI) method introduced by Haitao Wang, Stan Z. Li, Yangsheng Wang, and Jianjun
Zhang. For evaluation, we chose the original implementation and the most perspective latest modifications of the original SQI
method, including the Gabor Quotient Image(GQI) method introduced by Sanun Srisuk and Amnart Petpon in 2008, and the Fast
Self-Quotient Image(FSQI) method and its modifications proposed by authors in previous works. We are proposing an evaluation
framework which uses the Cropped Extended Yale Face Database B, which allows showing the difference of the recognition re-
sults for different illumination conditions. Also, we are testing all results using two classifiers: Nearest Neighbor Classifier and
Linear Support Vector Classifier. This approach allows us not only to calculate recognition accuracy for each method and select
the best method but also show the importance of the proper choice of the classification method, which can have a significant
influence on recognition results. We were able to show the significant decreasing of recognition accuracy for un-processed
(RAW) images with increasing the angle between the lighting source and the normal to the object. From the other side, our expe-
riments had shown the almost uniform distribution of the recognition accuracy for images processed by lighting normalization
methods based on the SQI method. Another showed but expected result represented in this paper is the increasing of the recogni-
tion accuracy with the increasing of the filter kernel size. However, the large filter kernel sizes are much more computationally
expensive and can produce negative effects on output images. Also, we were shown in our experiments, that the second modifi-
cation of the FSQI method, called FSQI3, is better almost in all cases for all filter kernel sizes, especially, if we use Linear Sup-

port Vector Classifier for classification.

Keywords: lighting normalization, illumination normalization, self-quotient image, SQI, Gaussian filter, Gabor filter, Gabor
quotient image, GQI, fast self-quotient image, FSQI, illumination invariant face recognition.

1. Introduction

Lighting Normalization is an efficient, powerful, and
usually a simple approach for improving recognition results
for the object and facial recognition. Since the most recog-
nition systems work with single images to provide the smal-
lest latency for users, illumination variations can produce
significant changes in recognition results. The reason for it
is that image variation due to lighting changes is more sig-
nificant than that due to the difference of information on it,
what was shown by Y. Adini, Y. Moses and S. Ullman [1].
From another side, creating the recognition system which
can be stable for illumination variances is a complex and
expensive task, since natural, as well as artificial illuminati-
ons, can produce an extremely large number of lighting sce-
narios. As a result, the Lighting Normalization is one of the
fastest and most efficient ways to minimize effects of illu-
mination variances in the recognition systems, since it not
requires any changes in the recognition system itself and
works as a per-processing step for each input image.

The object of the study is illumination conditions on the
image and their effect on the accuracy of the recognition
systems.

The subject of the study is a lighting normalization and
methods for the lighting normalization, which allow mini-
mizing effects of different illumination conditions and
improving recognition accuracy.

The purpose of the study. Lighting Normalization met-
hods investigated for more than fifteen years, but new met-

hods introduced almost every year. Previous research sho-
wed a lot of results of comparisons and surveys of previ-
ously created methods [13], [18], [34], but since new met-
hods appear very frequently, and previous research usually
use different criteria for evaluation, research in this area
still actual and important.

The practical significance of the obtained results:

1. The obtained results provide the latest results of the evalua-
tion and comparison of the most popular lighting normali-
zation methods based on the Self-Quotient Image appro-
ach.

2. The obtained results allow analyzing the recognition accu-
racy of evaluated methods depending on the illumination
conditions and filter kernel size.

3. The obtained results allow choosing the optimal lighting
normalization method for practical usage.

Analysis of recent research and publications. Lighting
Normalization methods usually divided into several types
based on approaches which they use for lighting normaliza-
tion:

o Simple methods or image enhancement methods, which act
directly on the dynamic range of the image and are re-
gardless of the image content. The most well-known method
of this kind of methods is Histogram Equalization [9]. Other
methods of this method types are Gain/offset Correction,
Adaptive Histogram Equalization [24], like Contrast Limited
Adaptive Histogram Equalization (CLAHE) [24], [25], Ho-
momorphic Filtering and Non-linear Transforms, like as a
Log Transform and Gamma Intensity Correction (GIC) [9],
[13], [14], [34].
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e Methods based on Retinex theory use the lighting model de-
fined in the Retinex theory proposed by Edwin H. Land and
John J. McCann [16]. The Retinex theory describes the rep-
resentation model of the colour and lighting of a natural sce-
ne for the human visual system. The Retinex theory uses two
major assumptions:

1. The human visual system computes each colour channel in-
dependently;

2. The intensity signal of each channel is proportional to the
product of the illumination and the surface reflectance:

I(xy)=R(xy)L(xy), (1
where / — image channel, R — reflectance and L — illuminati-
on.

3. The two most popular methods based on Retinex theory are
Multiscale Retinex [15] and Anisotropic Retinex Method
[10].

® Model-based methods use the Lambertian model or its vari-
ations for describing the image as the product of the surface
normals of the object #”, its albedo (or surface texture) p and
the point light source s (Fig. 1):

I(xy)=p(xy)-n" (xy)s. 2)

S
%\)-
R

surface

n(z,y)

Figure 1. Lambertian lighting model [13]

Lighting Normalization methods based on the Lamberti-
an model are represented by the large set of methods [2],
[12], [22], [23], [26], [28], [30], [32], [33]. These methods
can be divided into two types: 1) methods, which require
training of the model and 2) methods, which not require tra-
ining of the model [8], [11], [20], [27], [31]. The most po-
pular model-based method, which requires training of the
model, is the Quotient Image Method introduced by A.
Shashua and T. Riklin-Raviv [26], [27]. The most popular
model-based methods, which not require training of the mo-
del, are Self-Quotient Image Method [30], [31], [32] and its
various modifications [4], [19], [21], [22], [23], [28], [33].

e Diffusion-based methods use partial differential equations to
derive a blurred version of the original image, which consi-
dered as an approximation of luminance field L(x, y) of the
original image [13].

Since there is a large scope of various lighting normali-
zation methods, complete evaluation of their performance
requires creating a flexible and high-quality framework,
which should be suitable for different types of methods. As
the first step of the creation and testing such a framework,
in this work we focused on a creation evaluation framework
for various Self-Quotient ImagE(SQI) methods based on
the Extended Yale Face Database B [7]. Self-Quotient Ima-
ge methods chosen for evaluation for several reasons:

1. SQI methods are extremely simple and not require any pre-
processing, alignment, or training.

2. SQI methods actively develop in the last years and a lot of
new methods and their modifications introduced.

3. The authors worked with these methods last two years and
proposed own modifications of the Self-Quotient Image
method [22], [23].

The paper is organized in the following way. Section 2
contains a brief overview of the original Self-Quotient Ima-
ge method and its stacked version [30], [31], [32]. Section 3
provides a description of the Gabor Quotient ImagE(GQI)
introduced by Sanun Srisuk and Amnart Petpon in 2008
[28]. In section 4, we describe the Fast Self-Quotient Ima-
gE(FSQI) [23] and its modifications [22]. Section 5 conta-
ins the description of the evaluation framework and provi-
des results of performance evaluation of considered met-
hods.

2. Overview of Self-Quotient Image Method

The Self-Quotient ImagE(SQI) Method is an original
approach for robust face recognition under varying lighting
conditions based on the Quotient Image method [26], [27]
and introduced by Haitao Wang, Stan Z. Li, Yangsheng
Wang, and Jianjun Zhang [32].

In comparison with the Quotient Image method, the
Self-Quotient ImagE(SQI) method has three advantages:

1. The SQI method uses only one face image for lighting nor-
malization. It allows using the SQL method in real-time fa-
ce recognition systems, which cannot provide the image se-
ries or video output. It also minimizes delays between ima-
ge registration and getting processing result.

2. Since the SQI method uses only one image, it means that
alignment is not needed and the method does not need any
face detection to minimize the face movement on images.
As a result, the SQI method is simpler and faster, than
Quotient Image method, which needs at least a few images
for training [26], [27].

3. The method works in three types of regions: 1) regions wit-
hout shadows and with small surface normal variation, 2)
regions without shadows but with the large surface normal
variation, and 3) shadow regions.

The original Self-Quotient image Q of the image / is de-
fined by:

0=2=-L, 3)
where 7 is the smoothed version of /, F is the weighted Ga-
ussian filter kernel, and the division is point-wise as in the
original quotient image [30], [31], [32].

The most important processing step in the SQI is smoot-
hing filtering. The SQI uses the weighted Gaussian filter
designed for anisotropic smoothing and defined as

1
F=—WG, 4
N @

where W is the weight, G is the Gaussian kernel, and N is
the normalization parameter.
The weighted Gaussian filter must match the following

property
1
— ) WG =1, 5
N; ©)

where Q is the convolution kernel size.
The weight matrix W defined as
0,if I(i,j)eM,;
()=o) M, ©)
1Lif I(i,j)e M,
where M, and M, are two sub-regions of the convolution re-
gion divided by a threshold z:

t=Mean(1,) . (7)
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Stacked SQI method [30] is implemented as the sum of
several self-quotient images computed using the SQI met-
hod with different sizes of the weighted Gaussian filter. Ad-
ditionally, to operations of the original SQI method, the
stacked SQI method uses nonlinear transformation for redu-
cing noise in Q and weighted summarizing function. The
general flow of the stacked SQI method contains the follo-
wing operations:

1. Select several smoothing kernels G,, G,
rent size;

2. For each smoothing kernel, calculate corresponding we-
ights W, W,, ..., W, according to the image /;

3. Smooth / with each Weighed Anisotropic filter F; = Wg;:

..., G, with diffe-

R 1 —
Ik:1~NWGk,k:1,n; (8)

4. Calculate Self-Quotient Image between each input image /
and its smoothing version;
0 =L k=Tn; 9)
]k
5. Transfer Self-Quotient Image with a nonlinear transform

function 7

D,=T(0,)k =1 (10)
6. Summarize results of the transformation;
0= Z m,D, , (11)
k=1

where m;, m,, ..., m, are the weights for each scale of the
filter. In [30], all weights are equal to 1.

3. Gabor Quotient ImagE(GQI) Method
Gabor Quotient ImagE(GQI) method [28] defined in the

same way as Self-Quotient Image method, however, instead
of the weighted Gaussian filter kernel, the GQI method uses
the even Gabor filter kernel G,,., defined as

2 2
Go(x,9) = cos(zf x,,jExp(—;(;% + )O_}"ZD . (12)

In this case, the equation (1) for GQI method ca be rew-
ritten as [28]

I 1 I
T rI 6 a1

even

(13)

Additionally, the GQI method uses linear transformati-
on function to normalize the quotient image in a range of
[0, 1] and exponential normalization to increase contrast of
the image [28]:

B :Q(x’y)_Qm[n 14
Q (x’y) Qmm _Qm[n ’ ( )
0'(xy)
(o) =1 Exp| ——2 Y| 15
Qnmm(x y) Xp( E(Q/(x’y))] ( )

where Q,.x and O, are maximum and minimum values of
QO respectively, and E(.) is a mean value.

4. Fast Self-Quotient ImagE(FSQI) Method
and its modifications

Fast Self-Quotient ImagE(FSQI) Method based on the
equation (1) of the original SQI method, but the FSQI met-
hod, as well as the GQI method, uses another representation
of the smoothing filtering kernel F. In the case of the FSQI
method, the smoothing filtering kernel F is equal to the cir-
cularly shifted Gaussian filter kernel G° and the general eq-
uation of the FSQI method can be rewritten as [23]

I F1I G-I’ (16)

The circularly shifted Gaussian kernel was created by
shifting the filter kernel on the selected number of cells ver-
tically and horizontally [23]. For our experiments, we used
the one-cell shifting for each filter kernel size, since it is
applicable as for smalL(for example, 3x3 pixels) as for lar-
ge kernels. However, the proposed approach can be used
with any number of cells less than the size of the filter kernel.

Also, [23] propose alternative implementation of the
stacked SQI method based on FSQI method called the Stac-
ked FSQI method. However, this implementation is still
computation complex and slow as the original stacked SQI
method.

Since the FSQI method uses the same approach for nor-
malization of the quotient image as the original SQI met-
hod, the [22] proposes two modifications of the FSQI met-
hod based on the different normalization functions. Norma-
lization of the FSQI method uses nonlinear transformation
represented as Logarithm function, which was recommen-
ded as the optimal normalization function since it has simi-
lar characteristics of the human visual ability [15]. Howe-
ver, authors of the original SQI method shown that Arctan-
gent and Sigmoid functions can have similar or superior re-
sults [30].

The first modification of the FSQI method proposed in
[22] uses the Histogram Truncation to truncate the lowest
and highest values of the quotient image histogram and nor-
malize the image. Histogram Truncation can reduce the
contrast of the quotient image, but allows reinforcing medi-
um values of the colour histogram, which contains the ma-
ximum of textural information. In our experiments, this mo-
dification called FSQI2.

The second modification proposed in [22] uses the nor-
malization proposed by Sanun Srisuk and Amnart Petpon
for the GQI method [28] and based on linear normalization
function (14) and exponential normalization function (15).
In our experiments, this modification called FSQI3.

5. Experiments

For the evaluation framework of recognition results, we
used the cropped version [17] of the Extended Yale Face
Database B [7]. The Cropped Extended Yale Face Database
B [17] contains 38 subjects each seen under 65 viewing
conditions (1 pose X (64 illumination conditions + ambi-
ent)), which equal 2470 images in total. Since 18 images
corrupted, we manually fixed them using original images
from the Extended Yale Face Database B [7]. As a result,
the testing database contains 2470 images, which divided
into 5 sets according to the angle of the light source directi-
ons. Each set contains the next number of images:

e Set 1 ([-12°, +12°]) — 14 face images under different illumi-
nation conditions for each identity, 532 images in total for all
identities.

e Set 2 ([-25°, -13°], [+13°, +25°]) — 10 face images under dif-
ferent illumination conditions for each identity, 380 images
in total for all identities.

e Set 3 ([-50°, -26°], [+26°, +50°]) — 12 face images under dif-
ferent illumination conditions for each identity, 456 images
in total for all identities.

e Set4 ([-77°, -51°], [+51°, +77°]) — 10 face images under dif-
ferent illumination conditions for each identity, 380 images
in total for all identities.
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e Set 5 ([<-78°], [>+78°]) — 19 face images under different il-
lumination conditions for each identity, 722 images in total
for all identities.

The idea of this configuration bases on the proposed ex-
periment in [28], but we changed the distribution of images
between test sets. Also, we skipped manual rotation, resi-
zing and cropping to 100x100 pixels, since all images of
the Cropped Extended Yale Face Database B are already
rotated and cropped to 168x192 pixels [17].

The evaluation process consists of three steps:

1. All images are processed using the following methods:
e Histogram Equalization (HE) [9];
e Contrast Limited Adaptive Histogram Equalization (CLA-

HE) [24], [25];

e Self-Quotient Image Method (SQI) [30], [31], [32];

e Gaussian Self-Quotient Image Method (GSQI) [23];

e Gabor Quotient Image Method (GQI) [28];

e Fast Self-Quotient Image Method (FSQI) [23];

e Fast Self-Quotient Image Method (FSQI2) with Histogram

Truncation [22];

e Fast Self-Quotient Image Method (FSQI3) with Exponential

Normalization [22].

2. All processed images transformed into the principal compo-
nent analysis (PCA) [29] with 1000 principal components.

3. All principal components representations classify using two
classifiers:

e Nearest Neighbor Classifier (NNC) based on L’ distance bet-
ween the representation of the training image x and the test

image y

D, =3 (=) ; (17)

e Linear Support Vector Classifier (LSVC) uses the imple-
mentation of the C-Support Vector Classification [3], [5]
provided in the liblinear library [6].

Since, evaluation database divided into 5 sets, we made
5 experiments, and each of them uses the one set as the tra-
ining set and others as test sets. Then for each method, we
calculated average accuracy. Additionally, we provided si-
milar experiments for four different sizes of the filter ker-
nel(3%3, 5x5, 7x7, and 9x9). Filter kernel size is one of the
most important parameters of Self-Quotient Image methods
since large filter kernel extracts more details from the ima-
ge and provides a better estimation of lighting conditions on
the image. However, a large filter kernel is more computati-
onally expensive and can increase side effects, like halo ef-
fects near step-edge regions. Therefore, selecting the opti-
mal size of the filter kernel is an especially important issue
of the practical usage of Self-Quotient Image methods.

Results for each filter kernel size generalized in 4 tables,
each of them contains results for one filter kernel size and
all 5 experiments for each classifier (see Table I-IV). Such
structure allows analyzing the recognition accuracy for each
set of data and the lighting normalization method for the
used filter kernel size. These tables also show how the
lighting angle effects on recognition accuracy. The main
goal of these tables is not only to show that the recognition
accuracy increases after the lighting normalization. But
they also show that the lighting normalization decreases de-
pendency of the recognition accuracy from the lighting
angle and the distribution of the recognition accuracy after
the lighting normalization is more uniform than without the
lighting normalization.

Table 1. Recognition results for filter kernel size 3x3

Trainingset | RAWimages | HE [ CLAHE | SQI | GSQI [ GQI | FSQI | FSQR | FSQm3
Nearest Neighbor Classifier (NNC), %

Set 1 23.82 44.30 35.19 26.60 85.38 65.91 62.35 80.89 68.85

Set 2 27.35 50.07 36.01 18.28 77.51 63.03 58.76 67.38 65.05

Set 3 20.61 51.33 30.38 9.67 76.98 26.27 49.64 72.62 34.14

Set 4 22.33 56.60 37.73 4.39 73.23 16.19 47.74 65.50 22.34

Set 5 7.54 35.75 18.15 6.35 45.20 15.45 22.74 39.75 17.28
Average Accuracy 20.33 47.61 31.49 13.06 71.66 37.37 48.25 65.23 41.53

Linear Support Vector Classifier (LSVC), %

Set 1 62.05 90.93 65.42 87.05 97.02 97.80 98.16 97.90 98.34

Set 2 61.75 89.09 67.54 53.81 94.89 96.36 93.77 94.40 97.25

Set 3 83.57 98.79 81.21 86.80 95.02 95.49 95.41 94.48 96.20

Set 4 87.12 98.03 91.39 81.16 92.98 93.16 94.44 93.11 94.20

Set 5 30.39 88.72 42.28 69.94 90.47 90.69 93.30 92.01 92.61
Average Accuracy 64.98 93.11 69.57 75.75 94.08 94.70 95.02 94.38 95.72

Table II. Recognition results for filter kernel size 5x5
Trainingset | RAWimages | HE [ CLAHE | SQI | GSQI | GQI | FSQI | FSQR [ FSQm3
Nearest Neighbor Classifier (NNC), %

Set 1 23.82 44.30 35.19 29.50 89.06 81.59 77.60 87.06 87.67

Set 2 27.35 50.07 36.01 22.64 82.43 77.26 77.71 77.12 82.55

Set 3 20.61 51.33 30.38 24.31 81.98 61.25 75.13 84.10 74.72

Set 4 22.33 56.60 37.73 20.51 78.29 59.38 77.06 81.90 69.22

Set 5 7.54 35.75 18.15 9.47 58.42 37.15 49.65 67.05 54.17
Average Accuracy 20.33 47.61 31.49 21.29 78.04 63.33 71.43 79.45 73.67

Linear Support Vector Classifier (LSVC), %

Set 1 62.05 90.93 65.42 94.91 97.49 98.53 98.63 98.60 98.77

Set 2 61.75 89.09 67.54 86.01 95.57 97.28 95.53 96.46 97.96

Set 3 83.57 98.79 81.21 94.07 95.34 96.81 95.88 95.93 97.37

Set 4 87.12 98.03 91.39 90.63 93.91 95.72 95.77 95.38 96.81

Set 5 30.39 88.72 42.28 88.23 92.20 93.63 94.69 94.47 95.50
Average Accuracy 64.98 93.11 69.57 90.77 94.90 96.39 96.10 96.17 97.28
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Table II1. Recognition results for filter kernel size 7x7

Trainingset | RAWimages| HE [ CLAHE | SQI [ GSQI | GQI | FSQI [ FSQR | FsSQi3
Nearest Neighbor Classifier (NNC), %
Set 1 23.82 44.30 35.19 48.51 89.21 87.44 80.90 87.93 91.81
Set 2 27.35 50.07 36.01 37.69 82.63 82.79 78.43 79.26 89.22
Set 3 20.61 51.33 30.38 56.36 82.64 74.01 79.47 88.41 82.24
Set 4 22.33 56.60 37.73 52.45 78.78 73.85 80.76 90.01 82.98
Set 5 7.54 35.75 18.15 26.96 59.43 55.01 56.35 80.63 79.41
Average Accuracy 20.33 47.61 31.49 44.39 78.54 74.62 75.18 85.25 85.13
Linear Support Vector Classifier (LSVC), %
Set 1 62.05 90.93 65.42 97.20 97.68 98.67 98.66 98.77 98.91
Set 2 61.75 89.09 67.54 91.42 95.72 97.73 96.40 96.77 98.28
Set 3 83.57 98.79 81.21 96.11 95.53 97.42 96.68 97.11 97.86
Set 4 87.12 98.03 91.39 94.48 94.08 96.84 96.73 96.78 98.22
Set 5 30.39 88.72 42.28 91.82 92.36 96.23 96.13 96.16 97.22
Average Accuracy 64.98 93.11 69.57 94.21 95.07 97.38 96.92 97.12 98.10
Table IV. Recognition results for filter kernel size 9x9
Trainingset | RAWimages | HE | CLAHE [ SQI | GSQI | GQI [ FSQI | FSQR | FsSQm3
Nearest Neighbor Classifier (NNC), %
Set 1 23.82 44.30 35.19 57.14 89.30 89.66 79.08 83.24 94.70
Set 2 27.35 50.07 36.01 52.97 82.66 84.97 73.50 76.55 91.88
Set 3 20.61 51.33 30.38 69.40 82.67 79.02 80.06 88.78 87.46
Set 4 22.33 56.60 37.73 62.97 78.92 78.39 83.01 91.67 86.96
Set 5 7.54 35.75 18.15 41.02 59.49 65.12 60.03 84.33 86.49
Average Accuracy 20.33 47.61 31.49 56.70 78.61 79.43 75.14 84.91 89.50
Linear Support Vector Classifier (LSVC), %
Set 1 62.05 90.93 65.42 98.05 97.68 98.73 98.66 98.84 99.01
Set 2 61.75 89.09 67.54 94.56 98.76 97.94 96.97 97.09 98.34
Set 3 83.57 98.79 81.21 96.73 95.53 97.59 97.35 97.98 98.38
Set 4 87.12 98.03 91.39 95.58 94.11 97.34 97.91 98.02 98.41
Set 5 30.39 88.72 42.28 93.13 92.41 97.29 97.39 97.32 97.90
Average Accuracy 64.98 93.11 69.57 95.61 95.70 97.78 97.66 97.85 98.41
Table V. Average Recognition Accuracy for all methods
Method NNC, % LSVC, %
3x3 s<s | 717 ] 9x9 3x3 s<s | 717 ] 9x9
RAW images 20.33 64.98
HE 47.61 93.11
CLAHE 31.49 69.57
SQI 13.06 21.29 44.39 56.70 75.75 90.77 94.21 95.61
GSQI 71.66 78.04 78.54 78.61 94.08 94.90 95.07 95.70
GQI 37.37 63.33 74.62 79.43 94.70 96.39 97.38 97.78
FSQI 48.25 71.43 75.18 75.14 95.02 96.10 96.92 97.66
FSQI2 65.23 79.45 85.25 84.91 94.38 96.17 97.12 97.85
FSQI3 41.53 73.67 85.13 89.50 95.72 97.28 98.10 98.41

Table V contains generalized results for all experiments
and displays the average accuracy of face recognition for
each method depending on the filter kernel size and used
classifier. This table allows showing the dependency on the
recognition accuracy from the filter kernel size and cho-
osing the optimal configuration for each illumination nor-
malization method.

6. Conclusion

The obtained results show the high accuracy of the face
recognition, especially for the Fast Self-Quotient Image
method and its modifications. These results again confir-
med conclusions which we got during the investigation of
modifications of the FSQI method [22]. The unexpectedly
high result shown the Gaussian Self-Quotient Image met-
hod, which uses a Gaussian filter kernel without any modi-
fication. From another side, the obtained results show the
importance of choosing proper classifier for such evaluati-

on, since it can have a significant effect on not only recog-
nition accuracy, but also on the choosing of the method
with the highest recognition accuracy.

Despite the high recognition accuracy and the choosing
of the optimal filter kernel size investigated in this paper,
Self-Quotient Image methods still have other parameters
required for the proper configuration of these methods.
Most of them are related to the configuration of the filter
kernel used by some method. The optimal selection of these
parameters not completely investigated and can be a subject
of future research. Also, in future research, we plan to in-
vestigate other classifiers and their effect on the recognition
accuracy and, probably, investigate other approaches for
retrieving the image representation instead of the PCA.
From the other side, we are interested in the even more
complex evaluation using larger databases, like the Exten-
ded Yale Face Database B [7], which also can be investiga-
ted in future research.
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B. 0. Illapy6ouuii, P. . lllyeap

Jvsiecvkuti HayionanvHuil yHieepcumem imeni leana Ppanxa, m. Jlveis, Yrpaina

OLIHKA EEKTUBHOCTI METOAIB CAMOOIIHIOBAHHA 30BPAXKEHHA

Hopmarizamist OCBITIIEHHS € Ty’Ke BaXIHBOIO IIPOOIEMOI0 B CHCTEMAaX PO3Ii3HaBaHHSA 300paKeHb, OCKIIBKY Pi3HI YMOBH OC-
BITJICHHSI MOXKYTh ICTOTHO 3MIHUTH pe3y/IbTaTH PO3Mi3HaBaHHSA, a HOpMaJli3alisl OCBITICHHS Jja€ 3MOTY MiHIMi3yBaTH HeraTHBHI
HACIIJKH PI3HUX YMOB OCBITJIEHHS. Y Lilf poOOTI MM OLIHIOEMO €(heKTHBHICTH PO3Ii3HABAHHS AEKITBKOX METOAIB HOpMasi3amii
OCBITJICHHSI, 3aCHOBaHMX Ha METOAI caMooIiHIoBaHHS 300paxeHHss SQI (aurn. Self~Quotient Image method), 3anpoBamKeHOMY
Haitao Wang, Stan Z. Li, Yangsheng Wang, Ta Jianjun Zhang. J[ns omiHkn My BHOpaiy OpUTiHAJBHY peali3allilo Ta Haimep-
cnekTuBHIII Momudikamii opuriHameHOro Metony SQI, B T.4. it Meron Gabor Quotient ImagE(GQI), 3anpononoBanmii Sanun
Srisuk Ta Amnart Petpon y 2008 pori, a Takox meron Fast Self-Quotient ImagE(FSQI) ta #foro mogudikanii, 3anponoHoBaHi aB-
TOpPaMH CTaTTi B MOMEpeaHix podorax. Y miif poObOTi MU 3aIpOIIOHYBAIN MOJEINb OLIHKH, sika BHKopucToBye Cropped Extended
Yale Face Database B, mo mae 3Mory nmoka3aTy BiJMiHHICTb pe3yJIbTaTiB PO3IMi3HABAHHS JUIS PI3HUX YMOB OCBITJICHHS. Takox
MH TIepeBipsAEMO BCl Pe3ynbTaTH 3a JOIIOMOTOI0 IBOX KJIAacH(ikaTopiB: Ki1acudikaTopa HalOmmkanx cyciniB (aHri. Nearest Ne-
ighbor Classifier) Ta niHiifHOro KnacrugikaTopa ONOPHHUX BeKTOpiB (aHri. Linear Support Vector Classifier). Taxuit miaxin nae
3MOT'Y HE TLIBKH OOYMCIUTH TOYHICTH PO3Mi3HABAHHS AJISI KOXKHOTO METOY Ta BUOpATH HalKpamuii METo, ajie i MOoKa3aTH BaK-
JIUBICTH NPAaBHJIBHOTO BHOOPY MeTOAy Kiacu(ikamii, sSIKHif MOXKe MaTH 3HAYHUN BIUIMB Ha Pe3yJIbTaTH po3mi3HaBaHHI. Ham Bra-
JI0CS TIOKa3aTH 3HauHe 3MEHIIEHHS TOYHOCTI pO3Mi3HaBaHHS A1t HeoOpooiaeHnx (RAW) 300pakeHs i3 30UIBIICHHAM KyTa MiXk
JDKEPESIOM OCBITIICHHS Ta HOPMAJLTIO 10 00'ekTa. 3 iHImIOro 60Ky, Halll eKCIIEPHMEHTH ITOKA3al Maike PIBHOMIPHUH PO3MOMIT
TOYHOCTI pO3Mi3HABaHHS IS 300paxkeHb, 00pOOICHIX METolaM1 HopMaizamii ocBiTiIeHHs Ha miacrasi meroxy SQIL Ille omrnm
OTPHUMaHHM, IIPOTE OYiKyBAaHUM PE3yNbTAaTOM, NPEACTABICHUM Y Liii poOOTi, € MiABUIEHHS TOYHOCTI PO3Ii3HABAHHA i3 301/1b-
HICHHSM Po3Mipy sinpa ¢insTpa. OMHAK BEMHKI po3MipH sapa (inbTpa € OUIbII 00YHCTIOBAIBHO-3aTPATHI 1 MOXKYTh CHIPHYNHATH
HeTaTHBHI e()eKTH Ha BUXiJHUX 300pakeHHsX. OKpiM IbOTO, B HAIIMX SKCIEePHMEHTax OyJ0o MOoKa3aHo, 0 Jpyra MOAudiKaris
meroxy FSQI, sxy Mu ckopodeno nmoznavaemo sik FSQI3, kpama maibxe B ycix BUIMaakax I BCiX po3MipiB simpa ¢igsTpa, 0cod-
JIMBO SIKIIO MM BUKOPHCTOBYEMO JIiHIHHUN K1acu(ikaTop OMOPHUX BEKTOPIB TS KIacH(iKarmii.

Knruoei cnosa: Hopmaiizaiis OCBITICHHS, METO]] CAMOOIIHIOBaHHS 300paxkeHb, SQL, dinerp Mayca, ¢pineTp ['abopa, merox
l"abopa nust camooriHOBaHHs 300paxkeHb, GQI, MeTox mBHIKOI caMooLliHIOBaHHS 300paxeHs, FSQL
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