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THE METHODOLOGY OF APPROXIMATE CONSTRUCTION
OF THE THREE -DIMENSIONAL MASS DISTRIBUTION FUNCTION
AND ITS GRADIENT FOR THE ELLIPSOIDAL PLANET SUBSIDIES

Purpose. To create an algorithm for constructing a three-dimensional masses distribution function of the
planet and its derivatives taking into account the Stokes constants of arbitrary orders. Being based on this
method, the task is to perform the research on the internal structure of the Earth. Methodology. The derivatives
of the inhomogeneous mass distribution are presented by linear combinations of biorthogonal polynomials which
coefficients are obtained from the system of equations. These equations follow from integral transformations of
the Stokes constants, the calculation process is carried out by a sequential approximation and for the initial
approximation we take a one-dimensional density model that is consistent with Stokes constants up to the second
inclusive order. Next, the coefficients of expansion of the potential of higher orders are determined up to a
predetermined order. In this case, the information on the power moments of the density of surface integrals
makes it possible to analyze and control the iterative process. Results. The results of calculations using the
software according to the described algorithm are obtained. A fairly high degree of approximation (sixth order)
of three-dimensional mass distributions function is achieved. Carto diagrams were created being based on the
values of deviations of the three-dimensional average distributions (“isodens”), which give a fairly detailed
picture of the Earth’s internal structure. The presented maps of “inhomogeneity’s” at characteristic depths
(2891 km core — mantle, 5150 km internal — external core) allow us to draw preliminary conclusions about
global mass movements. At the same time, the information on derivatives is significant for interpretation. First
of all, it should be noted that the gradient of “inhomogeneity’s” is directed toward the center of mass. The
presented projections of this gradient on a plane perpendicular to the rotation axis (horizontal plane) show the
tendency of spatial displacements. Scientific novelty. Vector diagrams of the gradient, in combination with carto
diagrams, give a broad picture of the dynamics and possible mechanisms of mass movement within the planet.
To a certain extent, these studies confirm the phenomenon of gravitational convection of masses. Practical
significance. The proposed algorithm can be used in order to build regional models of the planet, and numerical
results can be used to interpret global and local geodynamic processes inside and on the Earth’s surface.

Key words: potential; gradient; harmonic function; Earth; mass distribution model; Stokes constants.

Introduction & Anderson, 1981). Further, the expansion coefficients
of the potential with a certain order are calculated
(Meshcheryakov, Fys, 1986). The model created in
this way reflects in sufficient detail the internal
structure of the planet (Meshcheryakov, Fys, 1990).

Considering the effectiveness of this approach
(Meshcheryakov et al. 1986, Meshcheryakov et al. 1990),
it should be applied in order to determine the gravitational
field not only to the mass distribution function, but also to

its derivatives. In this paper, an attempt of such an

Spatial models of the Earth’s interior mass density
form an idea about its three-dimensional external
gravitational field. Therefore, the use of the gravitational
field parameters during the study of the Earth’s
internal structure is being justified.

The radial models for the planet masses interior
distribution created in geophysics provide for the
use of Stokes constants of zero and second orders

(mass and moment of inertia) (Meshcheryakov, Fys,
1990). The addition of higher-orders gravitational
field parameters generates a methodology for
constructing three-dimensional models, where
successive approximations are considered as their basis.
In this case, a three-dimensional density model is
taken as the initial value (Meshcheryakov, Fys,
1986), which is consistent with the Stokes constants up
to the second inclusive order and corresponds to one of
the standard models, for example, PRE (Dzewonski M.

implementation has been made. The proposed method is
also approximate, but the iterative process is partially
reduced to controlled values (power density moments that
are determined on the surface of the planet), which makes
it possible to analyze the approximation process. The mass
distribution function constructed by using the proposed
method is more informative and describes the planet mass
distribution in more detail, because using the data in the
above-mentioned method increases the approximation
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order due to the possibility of restoring the mass
distribution of the planet’s bowels by its derivatives,
in contrast to constructing only the density function
(Meshcheryakov et al. 1986). Therefore, the obtained
mass distribution function by the above-mentioned
method and involving even Stokes constants up to
the second inclusive order gives a detailed picture
of the distribution of density anomalies (the
deviation of the three-dimensional function from
the averaged over the sphere — “isodens”) compared
with the “inhomogeneities” obtained using equality
(1) based on the same data (Fys, Brydun & Yurkiv,
2018). Chart diagrams for derivatives provide the
additional information about the possible mechanisms of
the redistribution of masses within the planet.

Purpose

To create an algorithm for constructing a three-
dimensional masses distribution function of the planet
and its derivatives taking into account Stokes constants
of arbitrary orders. Being based on this method, the
task is to perform the research on the internal
structure of the Earth.

Methodology

1. Theoretical basis of the approximate
construction method of the gradient and the mass
distribution function of the ellipsoidal planet.

An approximate method of constructing three-
dimensional models of the Earth’s density, taking into
account the Stokes constants of a given order and features
of the internal structure, has been proposed by A.
Meshcheryakov (Meshcheryakov, 1975; Meshcheryakov
and Fys, 1981). The essence of this method is to
represent a piecewise continuous distribution function
by the system of orthogonal (later biorthogonal
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model, for example, PREM (Dzewonski & Anderson,
1981).

The expansion of coefficients bmnk in (1) are

determined as follows:
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and are a linear combination of the following quantities
(power moments of the mass distribution function of
the planet interior):

I =

pgs

x/xix;odt (p+q+s=t), (3)

et
where M - planet mass; a, — equatorial radii of the

Earth.

The construction of the density function of the
planet interior using the Stokes constants of higher
orders is possible only approximately and is detaily
described in papers (Meshcheryakov, 1990;
Meshcheryakov et al. 1986), in which the question
of assessing the reliability degree of determining
quantities was not considered. Therefore, there is a
need for a technique that allows you to analyze the
calculation process and objectively evaluate the
reliability of the construction of the density distribution
function. Also, along with the determination of the
mass distribution function, there is a need to
determine its derivatives, which in geophysics is
mentioned as a study of the gradient, or the law of
the growth rate of the mass distribution. An attempt
of such construction was made in (Chernyaga, Fys,
2012), where the task reduces to controlled quantities
(surface integrals). It has been done by moving to the
construction of not one function, but its derivatives,
which are presented as follows:
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where i=1,2,3. The known coefficients a, , can

be used to set the appearance of the function itself
(Fys et al., 2018).

The coefficients of decomposition are calculated
by the formula (2) according to the power moments of

the derivatives of density O :
. 1 00
L, =—5Ixfx§x§ —dr,p+q+s=t
Ma}aja; ox,
(%)
The quantities (5) are determined by the power moments
of the density function o using the Ostrogradsky
formula:
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where (COS a,,cosa,,Ccosa, ) — normal vector to

the surface, with next components
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The representation of the ellipsoid surface in
formulas (7) can be considered in another form, for

example, expressed X, through X, , X, . Therefore,

36, (2P —1)11(2g —1)11(2s 1)1
SR(2(p+q+s)+1)N

ins Oma — Minimum and maximum density

where O
on the planet’s surface. Such an estimation makes it
possible to control the process of calculating these
quantities, which is an additional argument for the
development of this approach.

The right side of equality (8) is the integral over
the surface, and therefore we will call them surface
power moments. These integrals can be calculated
from the known values of the density on the
surface, which, by the way, gives an impetus to the
study of the behavior of the density function on the
Earth’s surface, in particular, to the construction of
a “generalized” function of the surface mass
distribution on the surface. However, it should
be noted that the use of such information requires a

2p2q2s =

the quantities (5) are determined through the power
density moments (3), which degree is one less than in
(6), and the expressionS'

O s = Mal i J;le xjx;6 cosa,do
1 do
. 549
T R LTy
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where p, =p+8(i—1), q, =q+8(i—2),
Li=1
s,=s+¢e(i—3), e(z’):{o .

For o pas there is an estimation, for example, for

even degrees we have:
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separate study on the subject of error resistance,
and therefore in the future we will look for values

; )

O, using the integral characteristics of the Earth's

gravitational field:
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where U,V — harmonic polynomials inside a

sphere. In a rectangular coordinate system, the
formula for their representation is the following (Fys,
Zazuliak, Zajats’, 2004):
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Using the Ostrogradskii theorem, relation (10) can be represented as:
1 00 .
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where U,l;k = IUnkdxi, ank = IV;lkdx — polyno-
0 0

mials of n+1 degree on variables X, X,,X;.

Thus, the system of equations (12) is linear with
respect to the quantities (8) and given the relation (6)

we have:
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Stokes constants are calculated by the known density
function O N
The add the identities of the form to relations (13)
o-p+2qs +Gh ,q+2,s +o—p q,5+2 :qus’ (14)

which can be symbolically represented as:

2t
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(15)
Each elements of expansion (15) can be represented as
follows:

Thus, the total number of equations which corresponds
to the Stokes constant of the nth order and identities (15) is

3(2n+1)+3 with (n+1)(n+2)(n+3)/6+1

unknowns O s

Unknowns values from system (13), corresponding
to Stokes constants:

o0, (ror23]
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can be united into four groups:
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with 7; equations and #; unknowns, respectively:
=3n/2+4 -

t, = n(n+l)/2 unknowns,

I group: equations with
IHV rpyma:7, =7, =1, =3n/2+1 — equations
with £, =1, =1, :[n(n+1)/2] unknowns.

In the matrix form equations (13), (15) can be
represented as follows:

B =4X, i=123,4, (17)
where X; —the column vector of the dimension 7; of
unknowns © B. — is the column vector of the

rqs’ i

dimension 7 of the right-hand sides of systems of

equations (13) and (15), Al. — is the 7 X¢, matrix of
the systems of equations (13) and (15).
For systems (17) at different values #; and 7;, the

following cases are possible: the system has a smgle
solution, no solutions (overridden), multiple solutions
(undefined). Numerical experiments in (Fys, Brydun,
Yurkiv 2018; Fys et al. 2016) show that the only

24

solution exists when # =3 and n =4 (except for I
in (16)).

Let’s write a generalized solution of system (17)
looking for it with minimal deviation from some
accepted value. Mathematically, the problem can be

formulated as follows: for a given density 5N, we

look for quantities

kK

qus = qus + AGqu > (18)
- 1 do
where O, ——J‘ Pyiz30, ,
Malala; " D(x,,x,)
are the surface power moments according to a given
model 5N,

Substitution (18) into relations (11) and (13) gives:

O-Pﬂzfz a prqs \J
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Then the identity (15) for the corrections Ac ok OF
the fixed density function will look like
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The solution of system (17), (20) under condition

Z AZqus —> min can be given as follows

71 Kk
Ac,=4,(44]) (C,-C). @1)
The power moments for the 1-st approximation of

the derivatives of the density function O with respect
to (6) have the form:

; 1
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Their right-hand sides do not change because, for

OAS
t<N jxl”l xfxit —2dr =0 (the combination of
ox,

derivatives of N, N+1 orders), and O pa

. are previously

determined from equality (6).
Therefore, according to the known approximation of

the mass distribution function O v » We obtain expressions
for derivatives that are corresponding with the Stokes
constants of an already higher order 2/ — 1,2/, and then

the appearance of the mass distribution function 5N 0

: Pr 31 45
Z (apq_§+lﬁpqs).[xllx21x4
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As a result, the elements of the 1-st approximation
are defined as follows:
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where — the derivatives of the mass

distribution function set in the previous step (Fys,
Brydun, Yurkiv 2018; Fys et al. 2016).
Note that each /-st step of iterations involves the

use of two adjacent orders 2/,2/—1of Stokes
constants with corresponding approximation numbers
N =2/, N =2[+1. The coordination of the function

Ad, (x,,X,,X;) with the Stokes constant of n—1, n

orders is determined by polynomials W

a Of N, N+1
order, and therefore does not affect the value of the
Stokes constants of the lower orders  already involved.

Indeed, identities (12) can be represented as:

0(6,+ASy)

X,

prq+s#E=t+2 :|

3 dt + Z qus((apqs+iﬂpqs))}
i prq+s#=t+2

Z (apqs+iﬂpqs).|.xl”‘x§‘xj‘%dr+ Z qus((apqs+iﬁpqs))

dr.

X

itself. The iterative process is carried out to a
predetermined approximation order.

2. The implementation of the approximate
construction method algorithm.

For the basic function in the construction we take
the function of mass distribution in the form
(Meshcheryakov, 1991):

52(x1,x2,x3)=50(p)+
2

+ Z bmnk I/V;nnk (xl b x2 > x3 )

m+n+k=0
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where &’ ( p) — one-dimensional spherical mass

distribution model (for the Earth, this is the reference
PREM model (Dzewonski & Anderson, 1981)).

b

2

Coecfficients bmnk in (1) are determined by the

Stokes constants and dynamic compression (Meshche-
ryakov, Fys, 1986):

3
000 :6c 1—6—I5o(p)p2dp > bno =355cS21, b101 :3560C2l’ bon :35605’21’
c 0

b =z5 5 _C2°+2C —l—ij5°(p)p4dp+ij6°(p)p2dp
200 c 2H 22 SCO 600 s

7 _C20 5 1 0 4 3 1 0 2
by =0, 5( —2C22j—1—5—f5 (p)p dp+5—I5 (p)pdp |, (23)
c 0 c 0
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The values of power moments (3) are defined [15] as
follows

—C. —C.
Lyy = 21_;0 +2C225 Loy :2—1_;()_2C22’
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1
1011 :SZI’ ]110 :5522'

(24)
The approximate surface moments
O hys ( ptqg+s=< 4) are determined by involving
Stokes constants in the second order, inclusively, and
by known coefficients boooa bzooabozoa bOOZ’bIIO’
b101’b011 , namely (Fys et al., 2016):

_ 56.Cy + (3b200 + by + By )

O = 5 ?
_ 58.Coo + (byoo +3buzy + by )

O = 5 ’
_ 58.Cy +(bagg +bung +3bysn)

Oon2 = s .

Using identity (14) for { = 1, we determine Oy, :

Oo00 = 0200 T Ta0 + Tpa-
According to the Stokes constants of the first order,
we establish the value of 0, ¢ (p +qg+s= 3) :
Oa01 = Ot = Cig» O3 = 2C,
O30 = 2G4, 0159 =01y = (5
Sy

O30 = Sl]’ Oj19 =01 =

5
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—6—I5° (p)p4a’p+3_(i:6° (p)pzdp}

c 0

When placing the origin of the coordinate system
in the center of mass from the above relations we
obtain that

O s =0, (p+q+s=3),
then we have:
Ol90 =0300 701 70 = 0,
Oo10 = O30 T 0219 + 01y =0,
Ogo1 =O0gp3 + 05, +0py =0.
0Odd values o pas of the fourth order (p, or ¢, or s

are odd) are determined by the Stokes constants
G, Sy
Oy =4C,, 015, =Gy,
O30 =013 = 485,011, =55,
from identity (14) and using these relations, we have
O101 =0301 T 0121 T 01035 O119 = 0310 T 0130 7010
with

The calculation of fourth-order values o pas

paired indices is carried out using the Stokes
constants C,;, C,, .

In the article (Fys et al., 2016), a method for
determining these elements by a phased solution of
systems of equations with one free unknown and its
further determination from condition (14) for
t=2,p=qg=s5=0 has been proposed To do this,
we form a matrix of equations according to formulas
(1) and free terms according to (2), whence we obtain
the necessary surface moments o, , p+qg+s=4,

D,q,s —pairwise, according to which with (24) we

calculate the power moments (6), then using the
power moments and formula (2) — coefficients

a, . (m+n+k<3). As a result, we obtain (Fys et
al., 2016):
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We construct the next approximation by the
Stokes constants of the third and fourth orders.

According to an unknown scheme, we find O,

taking for the initial approximation O 4+ - Moreover, the

approximate moments are determined by formulas
(21). An exception is one case when system (19)
contains only one equation:

1
S, = M!éxlxg%dr.

Then some of the quantities o are determined

pgs?
directly:

The found values by the given algorithm determine the
coefficients a,,,, (4 <m+n+k <5),and therefore O

Taking the found approximation 56 and the Stokes
constants of the 5—6th orders we obtain respectively
58 and so on to the order /N, established in advance.

Results

The described method is more general in
comparison with those described and implemented in
(Fys et al., 2016). The generalizations relate primarily

to the construction of matrix relations A7 with (17)

and obtaining an approximate solution of (17)
regardless of the conditions of its existence. The
comparison of the calculation results in different ways
gives similar results, so the application of the above
algorithm is justified.

Based on the above technique, a three-dimensional
density model was constructed with the use of Stokes
constants up to fourth order inclusively, which retains
all the basic properties of the PREM reference model:
the magnitude of jumps and their depth, the nature of
the density change along the relative radius.
Moreover, in contrast to the model, density anomalies
are more structured, that is, they give a more detailed
picture of the mass distribution. So, at different
depths, a redistribution of masses is observed.
However, the property of moving masses toward the
surface follows from the obtained maps, the reason
for which is the planetary rotational motion. It is
characteristic that such clusters are inherent throughout
the radius of the Earth. On the contrary, near the axis
of rotation there is a dilution of the masses in depth.
This is illustrated by the isodens map in Fig. 2 (depth
5150 km, boundary inner-outer core) and in Fig. 3
(depth 2891 km, core-mantle boundary). So, based on
the same information, we get a density model that
gives a more detailed picture of the distribution of
masses inside the planet.

For clarity, the density anomalies (Fig. 1) and their
derivatives (Fig. 2—4) were calculated at the “core-
mantle” boundary, which are illustrated by the

corresponding cartodiagrams.

Fig. 1. Map of isolines of the Earth’s interior density anomalies
on the “core-mantle” (depth 2891 km) (@) and their spatial image ()
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Fig. 2. Map of isolines of the derivative with respect to variable x, anomalies
of the Earth’s interior density on the core-mantle (depth 2891 km) (a) and their spatial image (b)

Fig. 3. Map of isolines of the derivative with respect to variable x, anomalies
of the Earth’s interior density on the core-mantle (depth 2891 km) (a) and their spatial image (b)
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Fig. 4. Map of isolines of the derivative with respect to variable x; (rotation axis) anomalies
of the Earth’s interior density on the core-mantle (depth 2891 km) (a) and their spatial image (b)
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Similarly, we will carry out calculations and make  location of the objects of study in the middle of
corresponding illustrations for a depth of 200 km  the mantle and their possible influence on the
(Fig. 5-8). The choice of this value is due to the  geodynamic processes of the Earth.

Fig. 5. Map of isolines of the Earth’s interior density anomalies
at a depth of 200 km (a) and their spatial image (b)

Fig. 6. Map of isolines of the derivative with respect to variable x; anomalies
of the Earth’s interior density at a depth of 200 km (a) and their spatial image (b)

Fig. 7. Map of isolines of the derivative with respect to variable x, anomalies
of the Earth’s interior density at a depth of 200 km (a) and their spatial image (b)
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Fig. 8. Map of isolines of the derivative with respect to variable x; anomalies
of the Earth’s interior density at a depth of 200 km (a) and their spatial image (b)
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Fig. 9. Map of the projections
at the points of the ellipsoidal surfac

b

of the density anomalies gradient
e onto the xOy plane (horizontal plane)

at the core-mantle boundary (depth 2900 km) (@) and at a depth of 200 km (b)

We note the most significant points of the above
results. Fig. 4, 8 reflect the distribution of density

derivatives anomalies along the axis 0x3 (in a certain
sense, the vertical derivative). From the figures it is

clear that the density anomalies gradient is directed
towards the center of mass, because for two depths

T
(Fig. 4, 8) for 0< 9 < E , the angle between it and

. T .
the axis is obtuse, and for 5 <9 <7 —itis sharp.

The nodal point of Fig. 2 with approximate coordinates
93 =120°, A =35° which can be interpreted as a

point of compression and tension in different
directions. Interestingly, it falls into the area of
interaction between the Arabian and African tectonic
plates.

Obviously, a more detailed interpretation
requires other methods for the integrated presenta-
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tion of information, for example, illustrating the
total effect of derivatives with respect to variables

X,,X,.An attempt of such an approach was

performed in Fig. 9. Even the first step in this
approach reveals features (Fig. 8a), namely: the
redistribution of masses on the edge of the “core-
mantle” is carried out from the south to the north
pole, which coincides with the action of the
magnetic field. It is characteristic that in the second
case (Fig. 8b) the picture of the movement is
completely different, and it can be associated with
tectonic movements. Hence, we can conclude that
the maps of density anomalies and its gradient
complement the studies of the inner structure of the
upper mantle and the earth's crust using seismological
methods, and a comprehensive interpretation of
tomography data and data obtained on the basis of
the above technique makes it possible to establish
the sources of mass redistribution in the upper
layers of the Earth.
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Conclusions

1. The proposed method for the approximate
construction of the mass distribution of the Earth and
its derivatives makes it possible to use the information
about the planet’s gravitational field more thoroughly.

2. Unlike the traditional method of determining
the density, the proposed method allows to control
partially the calculation process, therefore, to evaluate
the degree of reliability of a such construction.

3. The constructed maps of density anomalies at
certain depths make it possible to draw preliminary
conclusions about their accumulations inside the
Earth, and the vector schemes reflect the possible
movements of the planet’s masses, due to the rotating
component of gravity.

4. The above technique makes it possible to
construct a model of the planet's interior masses
distribution and its gradient of an arbitrary order, and
makes it possible to begin a more detailed study of the
Earth's internal structure.
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METOJIUKA HABJIVDKEHOI TTIOBYJOBU TPUBUMIPHOI ®YHKIIIT PO3IIOALTY MAC
TA ii TPAJIICHTA JJIS1 HAJIP EJITICOITAJILHOI TNIAHETHA

Meta. CTBOpUTH alNropuTM NOOYIOBH TPHBHMIpHOI (YHKIII po3mominmy Mac IUIaHeTH Ta ii MOXiTHHUX 3
ypaxyBaHHSM CTOKCOBUX CTaJHMX JOBUIbHUX MOpsAKiB. CIUpArOYUCh Ha Iel alrOPUTM, BUKOHATH JOCIIIKESHHS
BHYTpiltHbOi OymoBu 3emuti. Meroauka. [IoxifHi HEOMHOPIMHOTO PO3MOAUTY Mac MOAAIOTh JTIHIHHUMH KOMOi-
HalissMK OlOPTOTOHANBHUX MHOTOWIEHIB, KOS(ILIEHTH SKUX OTPUMYIOTh i3 CUCTeMH piBHSHb. L{i piBHAHHS
OJICP)KYIOTh IHTETPAIFHIMH TIEPETBOPEHHSIMH CTOKCOBHX CTalIMX, a NPOIEC OOYMCIEHb 3JiHCHIOEThCS MOCITi-
JIOBHAM HAOJIMKEHHSAM 1 32 MOYaTKOBE HAONMKEHHS OepyTh OJHOBHUMIPHY MOJENb T'yCTHHH, Y3TOJDKEHY 3i
CTOKCOBHMH CTaJIIMHU JIO0 JPYTOTO MOPSIKY BKIIOYHO. Jlani BU3HAYaroTh KOS(imieHTH PO3KIaLy MOTCHILIATY 10
TPETHOTO, YETBEPTOTO 1 T. A. MOPAIKIB, aX 1O HAIepe] 3aJaHOro IMOPSIKY. 3BEICHHS CTEIIEHEBHX MOMEHTIB
TYCTHHHM [0 TIOBEPXHEBHUX IHTErpajiB Ja€ MOMJIMBICTh aHANi3yBaTH Ta KOHTPOJIIOBATH iTepauifiHMil mporec.
PesyabraTu. PesynbraTi 00UMCICHD OTPUMAHO 3 BUKOPHCTAHHIM IPOTPaMHOTO NMPOAYKTY 33 OMHMCaHUM aJro-
puT™MOM. J[OCATHYTO TOCTATHHO BUCOKOTO CTETEHS alpoKCUMalii (IIIOCTOTO MOPSAAKY) TPUBUMIPHUX PO3MOILIB
Ta CTBOPEHO KApTOCXEMHU 3a BPaxOBAHUMH 3HAUCHHSAMH BiIXWJICHb TPUBUMIPHUX PO3MOALUIIB Bil CepeIHBOrO
(“i30omencn’™), AKi [alOTh JOBOJI AETalbHy KapTHHY BHYTpimHBOi OynoBu 3emii. HaBeneni xapTu “HeomHO-
pimHOCTell” Ha xapakTepHUX TinuOuHaxX (2891 kM sapo—manTig, 5150 KM BHYTPIITHE—30BHIIIHE SIPO) JAIOTh
MiZICTaBU 3pOOUTH TIOMEPEIHI BHCHOBKH MPO TIOOAIbHI MEpPEMIlIeHHs Mac. 3HAUyIIO Ui iHTepHpeTalii €
iHpopmMarig npo noxinHi. Hacamrepe MokHa HaroJIOCUTH, IO TPAIi€HT “HEOJHOPITHOCTEH CIPIMOBAHUMA 10
nerTpa mac. [lomani mpoekmii pOro rpajfieHTa Ha IUIOIIKHY, MEPICHANKYISIPHO A0 Oci 00epTaHHS (TOPU30H-
TaJIbHOT IUIOLIMHM), BiTOOpaXXaloTh TEHAEHIIIO MPOCTOpoBHX IepeMimens. HaykoBa HoBHM3HA. Bexroprpamu
TpallieHTa B CYKYITHOCTI i3 KapTOCXEMaMH HAlOTh LIUPIIE YSABJICHHS MPO AWHAMIKY AMOBIPHOTO HEpPEMIICHHS
Mac BCEpEeIWHI IUIAHETH Ta MOXJIMBI MEXaHI3MH, IO iX CHPHUYHHSIOTH. [I€BHOIO MIpOIO Mi JOCIIIKCHHS
HiATBEP/KYIOTh SIBHIIE IpaBiTariiiHoi koHBekmii Mac. IIpakTuyHa 3HaYymicTh. 3anpOIIOHOBAHUH aNTOPUTM
MOXHa BHKOPHCTOBYBATH JUIsI NMOOYJIOBH PErioHaJbHUX MOJAEIEH IJIaHeTH, a YHUCIOBI pe3ynbTaTH — I
iHTepHpeTanii r1o0anbHUX Ta JOKAJHHUX FCOJHHAMIYHHX MPOLIECIB BCepeIiHI Ta Ha MOBEPXHI 3eMIIi.

Kniouosi croea: noTeHIIAN, IPaIiEHT; TapMOHIUHA (DYHKILSA; 3eMIIsT; MOJIEIb PO3MOIiTY MAcC; CTOKCOBI CTAJI.

Received 16.04.2020

32



