
IMPLEMENTATION OF FPGA-BASED PSEUDO-RANDOM WORDS
GENERATOR

Volodymyr Opanasenko, Stanislaw Zavyalov, and Olexander Sofiyuk

Institute of Cybernetics of the National Academy of Science of Ukraine,
40, Glushkov Avenue, Kyiv, 03187, Ukraine.

Authors’ e-mail: opanasenkoincyb@gmail.com, radionix13@gmail.com, otsof@yandex.ua
Submitted on 12.11.2020

© Opanasenko V., Zavyalov S., Sofiyuk O., 2020

Abstract – A hardware implementation of pseudo-
random bit generator based on FPGA chips, which use the
principle of reconfigurability that allows the modernization
of their algorithms and on-line replacement of the internal
structure (reconfiguration) in the process of functioning
have been considered in the paper. Available DSP blocks
embedded into the structure of FPGA chips allow efficient
hardware implementation of the pseudorandom bit
generator through the implementation of the basic
operations of multiplication with accumulation on the gate
level. Using CAD ISE 14.02 Foundation and VHDL
language three types of pseudo-random bit generators have
been implemented on Spartan series chip 6SLX4CSG225-3,
for which time and hardware expenses are represented.
Using the simulating system ModelSim SE 10.1c, timing
diagrams of simulation for these structures have been
obtained.

Index Terms: pseudorandom bit generator, simulation,
CAD, DSP, FPGA

I. INTRODUCTION

Now, in connection with the intensive development
of mobile communication systems with code channel
distribution, the problem of technical modernization of
devices that implement algorithms for generating
pseudo-random words (PRW) [1, 3], using a modern
element base - the chips with programmable logic, has
been raised.

FPGAs are increasingly used in the world to create
modern control systems, high-performance data pro-
cessing, digital signal processing, telecommunications
support and others [4, 5, 8].

PRW generation (sampling) is performed by
pseudo-random numbers of sensors. The number of
pseudo-random numbers is in a fairly wide range: from
tens of thousands for simple tasks, to hundreds of
thousands or more for complex systems. Therefore, an
important problem is to ensure high speed.

Sensors with a given distribution law (for example,
normal, exponential and others) are usually implemented
programmatically, their work is based on the conversion
of a sequence of pseudo-random numbers with a uniform
distribution in the interval [0, 1] in PRN with a given
distribution law. Therefore, the quality and efficiency of
the formation procedures largely depend on the
properties of the sensor of evenly distributed pseudo-
random numbers [2, 3].

Today, there are a large number of algorithms for
forming pseudo-random words, which have their own

advantages and disadvantages and are used in various
applications.

The most widespread in practice are linear con-
gruent methods [2, 3, 9] of generating pseudo-random
numbers with uniform distribution and formation on
their basis of PRW of a given length, which have given
properties. In General, the algorithm of such sensors is
implemented using a recurrent relationship:

1 1
0

(mod)
j

n i n
i

x a x c M+ −
=

= +∑ , (1)

where: 0 1, ,..., ja a a , 1, 1c M> > , and the obtained

numbers 1x , 2x , … jx are integers. Module M means:

the number 1
0

j

i n
i

A a x c−
=

= +∑ is divisible to M ; the

obtained integer q and integer remainder 1nx − are
presented as:

1 1; 0 1n nA qM x x M+ −= + ≤ ≤ − .
Since 1nx + – the number that is between 0 and M ,

it must still be divided into M to get a number that is
between 0 and 1:

1
1

n
n

x
R

M
+

+ = .

Sequences obtained using linear congruent methods
are repeated periodically. This is because numbers x
can only take values 0,1, 2,..., (1)M − . The maximum
length of the sequence period cannot exceed 2M m= ,
so take, as a rule m N= , where N – the number of
significant digits to represent integers.

From relation (1) we can obtain various modifi-
cations of the linear algorithms of pseudo-random
number sensors.

The mixed congruent method of generating pseudo-
random numbers proposed by Lemer is obtained from
(1) by 1 2 ... 0ja a a= = = = and assuming 0 0, 0a c> > .
Then:

1 (mod)n nx ax c M+ = + . (2)
You can improve the algorithm that implements the

multiplicative congruent method.
To do this, in (1) we substitute 1 2 ... 0c a a a= = = = =

... 0jc a a a= = = = = and accept 0 0a > . In this case:

1n nx ax c+ = + .

Volodymyr Opanasenko, Stanislaw Zavyalov, and Olexander Sofiyuk 86

The quality of numbers that are calculated by this
algorithm is worse than in algorithm (2), but the program
that implements it is simpler and allows you to generate
numbers with higher performance. This is important
when experimenting with simulation models, because
the run time is reduced.

The numbers 0 1 0, , , ,..., ,jc M a a a x are called sensor
parameters. 0x is the initial value of the number from
which the sample generation begins. The quality of the
sample generation depends on the sensor parameters, so
they cannot be selected at random. The rules for
selecting the parameters of linear sensors are considered
in [2].

II. THE ALGORITHMS OF PRS FORMATION
Algorithm 1.
PRS is formed by a pseudo-random sequence

generator (PRSG) according to the following formula:
[]1 1i i iX A X B+ += × + , (3)

where: 1 1i iB B+ = + (when overflowing iB the informa-
tion in the lower categories is not distorted); iX – cur-
rent n –bit word PRS; N – the number of words PRS.

Since the result 1iX +
will be 2n –bit, we take
only n the lower digits of
the result.

The value of n –bit
words A , 0X , 0B is a
constant.

The block diagram of
sequence formation is shown
in Fig. 1.

Algorithm 2.
PRS is formed by a

pseudo-random sequence
generator by (3).

Since the result 1iX +
will be 2n –bit, we take
only n bits (for odd i –
only n lower bits, for even
i – only n medium bits)

of the result (2)i z w= + , where: z – whole, w –
fractional part of the division result).

The block diagram of sequence formation accor-
ding to algorithm 2 is shown in Fig. 2.

Algorithm 3.
PRS is formed by a pseudo-random sequence

generator to the following formula.

1 1[(1)]i i i iX A X X B+ += × + + , (4)
where: 1 1i iB B+ = + (when overflowing iB the infor-
mation in the lower categories is not distorted); iX –

current 16 –bits PRS word; ()iA X× – (only the n
lower digits of the multiplication result are taken);
()i iA X X× × – (only the n medium digits of the multi-

plication result are taken);

0 0i : , j := =

i iX , A, B

1j : i= +

1j iB B= +

j i jX (A X B)= × +

2i z w= +

0w =

0 2 1
j

j

Rg[X] :
X [[(n)]]

=

÷ −2 4 3 2 1
=

÷ −
j

j

Rg [X] :
X [(n) (()n)]

1i : i= +

i N≤

Fig. 2. Block diagram of the calculation
 of the pseudo-random sequence according to algorithm 2

Since the result 1iX +

will be 2n –bits (when the
amount is overflowed, the
information in the lower
digits is not distorted), we
take only the n lower digits
of the result. The block
diagram of sequence forma-
tion according to algorithm
3 is shown in Fig. 3.

III. IMPLEMENTATION OF PRW FORMATION
ALGORITHMS

Initial data for the development of the algorithm for
the formation of PRW.

The bit size of pseudo-random words is n .
Numerosity of PRW which is required to receive – N .

0 0i : , j := =

i iX , A, B

1j : i= +

1j iB B= +

1j i i jX (A X (X) B)= × + +

1j jRg[X] : X [n (n)]= ÷ −

1i : i= +

i N≤

Fig. 1. Block diagram

of the calculation of the
pseudo-random sequence
according to algorithm 1

0 0i : , j := =

i iX , A, B

1j : i= +

1j iB B= +

1j i i jX (A X (X) B)= × + +

1j jRg[X] : X [n (n)]= ÷ −

1i : i= +

i N≤

Fig. 3. Block diagram

of the calculation of the
pseudo-random sequence
according to algorithm 3

Implementation of fpga-based pseudo-random words generator 87

Frame encryption requires the N words PRW, then we
will determine:

1 1,X B , 2 2,X B , …, ,N NX B .
Algorithm 1.

We will use (1).
This algorithm for FPGA-based implementation

has the following functional diagram, which is shown in
Fig. 4 (where: iCnB – counter that implements the
increment; ()iRg X – register for storing n –bit values

iX ; ()Rg A – register for storing n –bits constant
()Rg A).

0B i
C

n
B

RG
(A

)

A

i
RG

(X
)

0X

iA X×

jXj
i

j
X

A
X

B



=

×
+




Fig. 4. Functional diagram of the pseudo-random word
generator, which implements the algorithm 1

Algorithm 2.
We will use (3).
The functional diagram of the pseudo-random word

generator based on the proposed algorithm is shown in
Fig. 5:

0B j
C

nB
(

)
RG

AA

(
) i

RG
X0X

iA X×

jX

j
i

j
X

A
X

B



=

×
+




Fig. 5. Functional diagram of the pseudo-random word

generator, which implements the algorithm 2

where: MX is a multiplexer that transmits the n lower
bits of the result jX to the output for odd i , or n
medium bits for even i).

Algorithm 3.
We will use (4).
The functional diagram of the pseudo-random word

generator based on the proposed algorithm is shown in
Fig. 6.

0B i
С
чB

(
)

RG
AA

(
) i

RG
X0X

iA X×

1iX +

i
i

A
X

X
×

×

1
1

[
(

1)
]

i
i

i
i

X
A

X
X

B
+

+
=

×
+

+

Fig. 6. Functional diagram of the pseudo-random

word generator, which implements the algorithm 3

IV. HARDWARE IMPLEMENTATION
OF ALGORITHMS FOR FORMING

PSEUDO-RANDOM WORDS.
Consider the example of developing a pseudo-

random number generator by describing in VHDL using
the ISE Foundation package, its modeling using the
ModelSim system [7] based on the crystal
6SLX4CSG225-3 series Spartan6 [10] for bitwise
pseudo-random words – n bits and the number of PRW
to be obtained – N .

The stages of development involve verification of
the project by the simulation method, in the process of
which the inputs of the logical model of the designed
device are fed input effects in the form of virtual signals
(test-bench) generated by the developer, i.e., using the
stand described below.
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;

ENTITY PVS_1_TB IS
END PVS_1_TB;

ARCHITECTURE behavior OF PVS_1_TB IS

 -- Component Declaration for the Unit Under Test (UUT)

 COMPONENT PVS_1
 PORT(
 CLK : IN std_logic;
 A : IN std_logic_vector(15 downto 0);
 X0 : IN std_logic_vector(15 downto 0);
 B0 : IN std_logic_vector(15 downto 0);
 X1 : OUT std_logic_vector(15 downto 0);
 X2 : OUT std_logic_vector(15 downto 0);
 X3 : OUT std_logic_vector(15 downto 0);
 X4 : OUT std_logic_vector(15 downto 0);

Volodymyr Opanasenko, Stanislaw Zavyalov, and Olexander Sofiyuk 88

 X5 : OUT std_logic_vector(15 downto 0)
);
 END COMPONENT;

 --Inputs
 signal CLK : std_logic := '0';
 signal A : std_logic_vector(15 downto 0) := (others => '0');
 signal X0 : std_logic_vector(15 downto 0) := (others => '0');
 signal B0 : std_logic_vector(15 downto 0) := (others => '0');

 --Outputs
 signal X1 : std_logic_vector(15 downto 0);
 signal X2 : std_logic_vector(15 downto 0);
 signal X3 : std_logic_vector(15 downto 0);
 signal X4 : std_logic_vector(15 downto 0);
 signal X5 : std_logic_vector(15 downto 0);

 -- Clock period definitions
 constant CLK_period : time := 10 ns;

BEGIN
 -- Instantiate the Unit Under Test (UUT)
 uut: PVS_1 PORT MAP (
 CLK => CLK,
 A => A,
 X0 => X0,
 B0 => B0,
 X1 => X1,
 X2 => X2,
 X3 => X3,
 X4 => X4,
 X5 => X5
);

 tb : PROCESS
 BEGIN
 CLK <= '1'; wait for 12.5 ns;
 CLK <= '0'; wait for 12.5 ns;
 END PROCESS;

 tb1 : PROCESS
 BEGIN
 A <= X"1357"; wait;
 END PROCESS;

 tb2 : PROCESS
 BEGIN
 X0 <= X"2468"; wait;
 END PROCESS;

 tb3 : PROCESS
 BEGIN
 B0 <= X"ABCD"; wait;
 END PROCESS;

END;

The simulation results (time diagrams) of the
proposed random word generators for the corresponding
algorithms are shown in Fig. 7-9.

The obtained data will be used in the process of word
encryption, for transmission over the radar line, as well
as in the process of decrypting words after receiving
parcels at the facility.

As a result of the implementation of PRW generators
by three algorithms, the following characteristics are
obtained, given in Table.

Fig. 7. Time diagram of the PVA generator according to algorithm 1

Table
Estimates of hardware and time costs in the implementation of PRW generators

DSP Numerosity Tg Numerosity LUTs Algorithm Type TCLK, нс
Used Available Used Available % Used Available %

Algorithm 1 5,773 1 8 103 4800 2 108 2400 4
Algorithm 2 10,750 2 8 103 4800 2 92 2400 3
Algorithm 3 6,224 2 8 87 4800 1 45 2400 1

Implementation of fpga-based pseudo-random words generator 89

Fig. 8. Time diagram of the PVA generator according to algorithm 2

Fig. 9. Time diagram of the PVA generator according to algorithm 3

V. CONCLUSIONS
FPGA-based generator was developed for the

implementation of pseudo-random word generation
algorithms using the Xilinx ISE computer-aided design
(CAD) system ISE 14.02 Foundation by Xilinx and its
modeling was performed using the ModelSim SE 10.1c
system. The advantage of the developed devices over the
existing analogues is the use of the principle of
reconfigurability to build high-performance computer
tools, which provides opportunities to upgrade algo-
rithms and quickly replace their structure (reconfi-
guration) during operation.

REFERENCES

[1] Knuth, Donald E. Seminumerical Algorithms. The Art of
Computer Programming. (vol. 2). Third edition. Boston:
Addison-Wesley, 1998. P. 764.

[2] V.V. Korchinsky, K.M. Filkin, “On the choice of the
primary sensor for the simulation tasks”. Modeling and

information technology, vol. 42, 2007. pp. 81-90. (In
Russian)

[3] A.A. Lavandsky, “Quality assessment of pseudo-random
number generators by argest reproduction error
distribution law”. Bulletin of Khmelnytsky National
University, no. 1, 2014, pp. 113-116. (In Russian)

[4] A.V. Palagin, and V.N. Opanasenko, Reconfigurable
computing systems. Kiev, Prosvіta Publ., 2006. 295 p. (In
Russian).

[5] Available at http://www.xilinx.com/products/design-
tools/ise-design-suite.html.

[6] ModelSim. ASIC and FPGA design / Available at http: //
www.mentor.com/products/fv/modelsim/

[7] Available at http://www.xilinx.com/products/design-
tools/ise-design-suite.html.

[8] Random Number Generator Results. Available at
http://www.cacert.at/cgi-bin/rngresults.

[9] Spartan-6 Family Overview. Product Specification
DS160 (v2.0), October 25, 2011. Xilinx, Inc. 11 p.

[10] Spartan-6 FPGA DSP48A1 Slice. User Guide, UG389
(v1.2) May 29, 2014. Xilinx, Inc. 46 p.

Volodymyr Opanasenko, Stanislaw Zavyalov, and Olexander Sofiyuk 90

V. Opanasenko was born in Uzbe-
kistan in 1957. He received an Engineer
Degree in Radio-electronic Engineering
from the Kazan Aircraft Institute (Kazan,
Russia) in 1979 and PhD degree in Com-
puter Systems in 1987 and Dr.Sc degree
in Computer Systems at V.M. Glushkov
Institute of Cybernetics of the National
Academy of Sciences of Ukraine in 2007.

From 1979 to 1982 he was an engineer in research and
production association "Cybernetics" of the Academy of
Sciences of Uzbekistan. After graduating from full-time
graduate school (1982-1985) at V.M. Glushkov Institute of
Cybernetics of the National Academy of Sciences of Ukraine
from 1985 to the present he has been working at the
Microprocessor Engineering department, has passed the way
from junior researcher to leading researcher.

Fields of research are FPGA-based reconfigurable
computer system, modeling of computer system. Author of
more than 150 publications.

S. Zavyalov was born in city of
Polevskoy, Sverdlovsk region, Russia,
in 1964. He received the Engineer
Degree in Radio-electronic Enginee-
ring at Kyiv Higher Military Aviation
Engineering School in 1987 and Ph.D.
degree. From 1985 to the present he has
been working as a director of "Radio-
nix" Limited Liability Company.

Fields of research are radar, digital
signal processing. He is the author of more than 27 scientific
publications, including scientific articles and patents for
inventions.

Sofiyuk O. was born in Chere-

pashintsi village, Vinnytsia region,
Ukraine, in 1949. He received an
Engineer Degree in Radio-electronic
Engineering at Ryazan Radio
Engineering Institute (Ryazan,
Russia) in 1972. Since 2004 he has
been working as a researcher at the
Microprocessor Engineering Depart-

ment of V.M. Glushkov Institute of Cybernetics of the National
Academy of Sciences of Ukraine.

Fields of research are design theory of the FPGA-based
problem-oriented devices and systems. He is the author of
more than 30 publications.

