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Abstract. The methodology of the studying of dynamic processdwo-dimensional systems
by mathematical models containing nonlinear equatid Klein-Gordon was developed. The
methodology contains such underlying: the concepthe motion wave theory; the single -
frequency fluctuations principle in nonlinear sysse the asymptotic methods of nonlinear
mechanics. The aggregate content allowed descritiiegdynamic process for the undisturbed
(linear) analogue of the mathematical model of moset. The value determining the impact of
nonlinear forces on the basic parameters of thewfr the disturbed analogue is defined.
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Introduction

The concept of wave motion in the study of varidysamic processes has been widely used for
many linear models of physical or mechanical systeHowever, in the linear models cannot always
explain many phenomena that take place in reaésysstFirst of all talking about the fluctuationsarfe
and many-dimensional bodies and environments. Thblgm is much more complicated for the case
when the last are characterized by constant oabigriongitudinal movement speed [1], [2], [3], [4dpe
tensions, belt and chain gear, loose medium duilbigatory processing, pipelines along which thedflu
moves and others). It is impossible to apply tlessical methods such as Fourier or D'Alembert for
analytical studies even linear (simplified) oscitig models of these systems. Despite the specitiex
systems classes are allocated in the work. Thethen@atical models of the process are same type of
nonlinear partial differential equations, which tains mixed derivative of linear and time variablés
takes into consideration the longitudinal compor@rihe medium movement and associated with it majo
problems linear models of systems integrating. Basethe wave theory of motion the single — fregqen
decoupling is managed to build for it. This in tdnas served the basis for consideration nonlinemtets
of systems, dissemination of asymptotic methodaasflinear mechanics [5], [6], [7] on new classes of
dynamical systems. They allowed receiving the dated dependences to research the impact of physica
— mechanical parameters, nonlinear forces and spidledgitudinal motion on the main characteristiés
a dynamic process.

Problem Statement

As known the mathematical model of nonlinear lomgdjmal or transverse vibrations of two-
dimensional environment in Euler variables whiclareleterized by a constant speed of longitudinal
motionV is differential equation:

U + VU —a* U = B U, tyuEe Uy, yw gy, ), (1)
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where a, 5,y are constants, which are expressed through thsigathyand mechanical characteristics of
the environmentg f (u, U, U, U, Uy, Uy, q(y) is known analytic functiong is small parameter.

For equation (1) we consider the form of boundamyditions:

U(t, X y)\x:O = U(t, X »\x:l =0. (2)

The problem is to determine the impact on envirammatire spectrum of external and internal
factors dynamical process. It is fully possiblemiake only based on the solution of the boundaryeval
problem (1), (2). For its location the basic idgassented in [8], [9] are developed in this paféreir
essence is to spread the concept of wave motioase of longitudinally moving media.

It should be noted that, based on the wave thebmation in the works [10], [11], asymptotic
approximation quasilinear and nonlinear models of-dimensional equations Klein-Gordon and
Brezerton, that consider the dynamics of their mmrnents without longitudinal movement are builtisl
reviewed the cases of a so-called “long systemsWitich the boundary conditions were not considered
In papers [5], [6] the basic idea is spread in acafséshort systems” with consideration of appropia
boundary conditions. This shows: the environmentadyic process in the case of one-dimensional
medium, which characterized by a constant veloc@ignponent longitudinal movement, can be seen as
overlapping waves of different lengths but ideritifl@quencies. Moreover, based on the above the
asymptotic approximation aces for perturbed modafisthese equations were managed to built,
autonomous and non autonomous case was reviewed.

Mathematical model

Considering that the right side of equation (1)pi®portional to the small parameter for
constructing asymptotic solutions formulated abbeeindary value problem we can apply the general
ideas of perturbation methods. According to theetatve’ll show that the unperturbed € 0) boundary
value problem that corresponds (1), (2), namely:

Up + 2V, = (@° = V*) Yo = B Uy, = ¥ 4= 0; (3)

Uy (% ), o = (L X Y = O (4)
has a solution of the wave type. Developing thechdsa of works [8], [9], indeed the solution afuation
(3) for the boundary conditions (4) will be soughthe form:

u(t,x y) = acogk x+J y+wtr @)+ bcogy xJ yw ty), (5)
where, respectivelyv is frequency;a, b are amplitudes of the direct and reflected wawesy are their
wave numbersp is a wave number of the transverse componenteofudive; ¢, ¢ are initial phases of
the waves.

Representing the solution in the form (5) doesatitradict to known classical results, because, of it
as will be shown below were obtained known classiadue as a special case whend =0. Indeed,
substituting (3) in place of derivative expressiartich deriving from (5), to contact between freqoye
and wavenumber the dispersion relations are olstaine

W + Nk - (@*-V)k?-pB0*-y?=0,
& -N (N2 _\/2\\v2_ Nn252_ ,2_ (6)
wx-(@ -V)y-po°-y-=0.

Also, the representation of the solution in therfdb) will satisfy the boundary condition at=0,
if there is a relationship between the amplituded aitial phases of the wave form=-b ¢=-¢,
Similarly the representation of the solution in floem (5) will satisfy the conditions k=1, if the
identity is performed:

cog(kl +dy +at +¢) - cogxl Iy -at—¢) = (. (7

Identity (7) will be carried out at any moment ohe t, if there is a connection between wave

numbersk , x, 0 and parametelr:
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cog(kl +Jy) - cogxl -dy) =

8
sin(«1 +dy) - sin( 1 -dy) = C. ®)

Identities (8) are defined by wave numbers y in the form:
K+)(=¥, k=12, ... )

The dispersion relation (5), together with the daejemce (9) allows determining the wave numbers
K, x and frequency of process:

_ﬂJrV\/IzyZJZ + 7%k (@ 2-V )
| al\a® -Vv? '

_nk V1320t + k@ -V ) (10)
| alNa? -V ? ’

w=a -V Qi e k@ -V )
al

K

In the obtained dependences parameieis the wave number of transverse waves that resmain
undefined. It can be found with additional condig8oIn particular assuming that across the meditsn f

integer number of half-wave, than the parameteakes the value5=m—bn (b is the width environment,

m=1, 2,..). Thus, the specified assumptions the dynamicga® a linear environment model described
by the relation:

2 _\p2
U (t % y) = aco{((kl—ﬂ+%Aj x+%T y+a v At+¢]—

a
kr V mr a® - \? ,
—co{(l——Eij—T y- po At—(pﬂ ; (12)
A- J1228% + mk Ha *-V )
INa?-Vv? '

Submitted graphical dependencies show the impaphgéical and mechanical properties and the
speed of longitudinal movement on the dynamicdeflinear model environment. In particular, fogkar
values of velocity of longitudinal movement thedquency of natural oscillations is smaller and apeed
of longitudinal motionV =a oscillation is failured.

The obtained value pave the way for the study efdffect on the dynamic process of nonlinear
forces, that is, to derive the solution perturbgdagion. According to the general principles of stomction
of solutions nonlinear differential equations wétfsmall parameter in the right side, the solutieriygbed
equation (1) for homogeneous boundary conditiohsv{l2 be sought in the form of asymptotic series:

u(x y.t) = afco{k x+J y+8) - cody %0 y-0))+e u ax W)+e* 4 axg)+ . (12)
where 8=at +¢, and unknown functionsy (&, x y,6), u( a x yd) , ... should be determined so that:

a) asymptotic representation of the solution (E2isfes with the required degree of accuracy thigiral
equation (1); b) be periodic relatively 10 y, 8 ; c) satisfy the boundary conditions arising fr(ith

In addition, the nonlinear force is the reason thatparametera and ¢ for a perturbed case are

variables. Below we consider the case when thesmmgders are depending on time, and do not change
their values along the tape. Laws of changes wikaught in the form of differential relations:

a=¢eA(a+e*A(a+..., @ =B (a)+&°B,(a)+.... (13)

10
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Thereby, task is to identify these unknown fundtiod (a), A(4d),... B(a), B(4d),..., and
u(axyd), u(axyd),.. in which the asymptotic representation of the sofu (11) with the
necessary degree of accuracy satisfies the origigahtion (1). To do this by differentiating (12jthw

regard to the variable (13), we have:
U (x t) = -aw[ sin(k x+ & y+ ) + sin| + £{ A( 9 cogx x & w8) - coby xJ y6)]-

—aB (a)[ sin(k x+J y+6) +sin(x x-J y-6)] +%a)}+£2

U, (X t) =~aw’ [ cogk x+ & y+6) ~ cogx x- 3 y-6) |- (14)
—we{2A (@)[ sin(k x+ 3 y+6) + sin(y x-J y-6) ] +

+2aB (a)[ cogk x+J y+6) - cogx x-J y—H)]—g;; w}ﬂ:z .

-1 -1
y-m-s~ 47" o,m-s” 00

c

Fig. 1. The dependence of wave numbers on speaad physical-mechanical characteristics of envirent
(parameters, y) and frequency of natural oscillations of thesepweters

d

11
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Similarly, we findu,, u,,, U,

Uy (X 1) = —aw] K cos(k x+J y+6) + x cogy x-0 y-6) |-
_g{pi(a)[/(sin(/(x+ 5y+6’)—)(sin()( X=0 y—6’)]—

~aB, (a)[ kcos(k x+3J y+6) + x cogx x-0J y-6) |+ o’y a)}+£2
060X (15)

2
Uy (% t) = —a k* cog(k x+ 3 y+6) - x* cogx x-J y—6’)]+£%+£2
X

0'u, +&% ..
ay?

u,, (% t)=—ad*[ cos(k x+J y+6)~ cogx x-J y-6) | +¢

The asymptotic representation of the solution ({112) will satisfy the original equation (1), iftaf
substituting in his place the functior( XY, t) and its derivative expressions that are consistéht (12)—
(15), coefficients of the same powers of a smathpeeter s of the right and left parts of it will be the
same. The latter is a prerequisite for the deteatiin of unknown functions, (a, x,6), u( a x8), ..., in

particular, to findu, (@ x6) let us obtain a linear differential equation:

2 2 2 2
) ) T 02
w2 L11+2\/ ul_(a,Z_VZ) 1_ 2 1=F(a,x, )6)"'
o TeV@ y 1
96 06X ox2 dy2

+2{Al(a)(a)+/(v) (sin(k x+0 y+8) +(w=-x V) sin(xy x 3 y-6)
+aBl(a)((a)+KV)cos(K x+0 y+6)—(w-xV) cogx x9J y—e)})

Flax8)=fuu.y

(16)
u=a(cos(kx+Iy+8)- cogx x-0 y-6)) ,
u, =-a(xsin(kx+dy+8) - ysin(x x-J y-6)) ,
u, = —ad(sin(k x+ 3 y+8)+sin(y x-5 y-6))

u, =-ac(sin(kx+3y+8)+sin(yx-Jy-6)).

After simple transformations the coefficients oé th (a) and B,(a) in the right side of equation
(15) presented in the form:
[(w+&V)sin(kx+dy+6)+(w=xV)sin(x x-0 y-6) | A 3+
+a[ (w+kV)cos(k x+ I y+8) ~(w-xV) cog x x-0 y-6)] B( 3=
=[(w+&V)sinkx+3Yy)+(w-xV)sin(x x-3 y)|( A 3 cod- aB si)+
+[ (w+ V) cosx+dy)-(w-xV) cosf x-6 y]( A § sid+ aB cos)

17)

For an unambiguous determination the unknown fonstiA (a) and B,(a) from the differential
equation (15) impose upon the functiUQ(a, X, y,¢9) additional conditions, namely: it can not conttiia

schedule of terms proportionaln@ and cosg . With 277 periodicity of & this function implies that the
same properties are and its partial derivativel vaspect tod, x and y. This allows us to get from (17)

the system of algebraic equations connecting tieawn functionA (a) and B, (a) in the form:
[(w+&V)sinx+3y)+(w-xV)sin(y x-3y)| A 3+
_ e
+a[ (w+kV)cosk x+3dy)-(w- xV) cosf x-3 y) B( ;):2_‘9_.' H ax ) cosd (18)
T 0

12
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[(w+KV)coskx+dy)-(w-xV) cosy x-3y) A 3~
—a[ (w+KV)sink x+ 3 y)+(w= xV)sin(y x-3 y)] B z):;—zzf H ax ¥) sirv @

By averaging left and right parts of (18) by lineariablesx, y, we find:

= i H
A(a) 2ﬂb|[(a)+K\/) }Hjo a %y,
><{[(w+KV)sin(/(x+ 5y)+(a)—)(v) sin(y x-0 y)| co+
+[ (w+&V) cosfex+ Jy)—(a)—)(v) cosf x-0'y) si} & dydx

I b
5(a)= a2b71|[(w+/(v) w=XV) JE[{
><{[(w+/(v)sin(/(x+ dy)+(w=xV)sinfy x-3 y)| sing -

~[(w+ V) cosx+dy)-(w= xV) cosf x-3 y) coé} @ dyd
Defining functions that define the first approximoat of the main characteristics of wavéga) and

B,(a), we'll move to find functiondU, (a, x, y,8) .This function will satisfy the conditions imposed it,
defined in the form:

U,(axy) =233 Uyn(d) X (%’ xj Y{%‘” 9exp (), (20)

kzZl m s

(19)

2

f,(a x6)x
0

Where{xs(sl—ﬂ j} {Ym (%ﬂ j} must complete orthogonal system of functions fatise appearance,

s o 55

To find the unknown coefficients of expansith,,,(a) from the differential equation (15) we

have:
dx
_k2w2><S (%T xj Ym(%w ﬂ+ 2 ind—: Yn{l: 9
O R R L
+((" v )( | j *(Tj )XS(T Xij(T j (21)

=f(ax y,0)+ Z[S-a();fv,\/zls)lgr/:&;i—?ej( Ai( 3 coP - af sh6)+

+2[ (w+KV) cosk x+ Iy - (w= xV) cosg x-J y]( A( § sie+ aB cc@)
Last value determines the unknown coefficienthaform:

gl

000
I b

xexp(-i k@)dydxd?, k#1.
Such species derived differential equations fordbeond and the following approximations, only
the right side of the equation is a functiby(a, x, y,6) has more bulky look.

Below (in Fig. 2), for the casé (u,uﬂ U, Y,y Uy Yy L{(y)Z Ku, + BU, there are presented graphical

dependencies that illustrate the impact velocitylafgitudinal motion, the amplitude and frequency
parameters on natural oscillations.

13
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Fig. 2. The dependence of the oscillation frequency orathplitude of the motion and the physical and mpeiudah
characteristics of the environment at differentesfseof longitudinal motion

Conclusions

Developed in work methodology allows to determihe tmpact velocity of longitudinal motion,
different nature of nonlinear forces on the maimapeeters of oscillation of flexible elements of the
systems gear and transportation, as well as loosgoaments in their vibratory processing. These
formulas can serve as a basis for engineering ledilcos related elements of systems and presemt¢ieo
basis of their image dependences recite a significapact on both the physical and mechanical,
geometrical parameters on the dynamics of the pspgarticularly for higher speeds longitudinal it
frequency natural oscillations is smaller and augabf the lattera is the failure of oscillation. The
reliability of the developed method is confirmedthg fact that in the limiting case when- 0. Based on

the results value related to oscillation one-dinmmed systems. The very same method will be thésldas
a more complex case study of the dynamics longiali moving systems - external periodic
perturbations.
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