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Abstract 

Synthesis methods of controllers based on the use of frequency characteristics or root hodographs are considered classic 

or traditional. Frequency methods are available in practical applications, and most control systems are designed based 

on various modifications to these methods. A distinctive feature of these methods is the so-called robustness, which 

means that the characteristics of a closed system are insensitive to the minor errors of the model of the real system. This 

feature is significant because of the complexity of constructing an accurate model of the real system, as well as the fact 

that many systems are inherent in all kinds of nonlinearities, which complicate their analysis and synthesis. In recent 

years, many attempts have been made to develop new methods of synthesis, commonly referred to as modern control 

theory. One synthesis method is like the root hodograph method, which allows positioning the poles of the closed-loop 

transfer function at predetermined points. 

In the article on the basis of information about the desired transient characteristic of the reference, which is obtained on 

the basis of a dynamic neural network, using the Ackerman formula, a procedure for calculating the coefficient matrix, 

whose introduction in the structure of the object model provides the specified dynamics of the process. On the base of 

the reference mathematical model is created the architecture of the corresponding dynamic neural network. During 

training, there is the target function as a numerical sequence that corresponds to the desired transient characteristic of 

the system, and the input signal is given in the form of a numerical sequence that reproduces jump function. Using the 

values of the weight coefficients obtained in the course of learning the neural network, the coefficients of the 

mathematical model of the reference and the roots of its characteristic equation are calculated, with the following 

calculation using the Ackerman formula of the coefficients of the matrix, whose values are entered into the structure of 

the model ensuring the specified dynamics of the process in it. 
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1. Introduction 

The robots become more sophisticated and reliable from year to year. They often are used in the different 

manufacturing operations such as at the assembly line and perform a variety of tasks usually done by skilled operators. 

The tasks range from pick and place, welding and pointing, to the placement of engine blocks into cars. Today’s 

manufacturing cells are designed around the capabilities of robot speed and reach, and they are becoming an essential 

element of manufacturing processes. 

Mostly mechatronic as well as robotic systems consist of nonlinear elements that are covered by complex feedbacks, 

and the operation of such systems in the real world is affected by a variety of noises, interferences and other disturbing 

factors [1] – [3]. It significantly limits the use of modern and classical control theory when creating controls [4] - [6]. In 

recent decades, management strategies have used theories based on the idea of system linearization, which does not 

fully reflect its physical properties, and in some cases, even when the dependencies between the inputs and outputs of 

the system are accurately reproduced, their use cannot provide adequate control of the system. Therefore, artificial 

neural networks are increasingly used in synthesizing control algorithms, which take into account the features of the 

object that the network must reproduce, and its training is conducted on the basis of the input and output data that 

characterize the processes that take place in the object [7] – [15]. Because neural networks are inherently nonlinear, 

they can be used to identify both linear and nonlinear objects, as well as to implement control algorithms in such 

objects. 

In recent years, the synthesis of neural controllers to control processes in dynamic objects has been performed based on 

methods based on the use of a root hodograph or frequency response [2], [4], [5]. It is known, when using a root 

hodograph synthesis of the controller can be done in two ways. In the first case, the synthesis is based on the 

requirements imposed on the system operation in transient mode, and the second involves the use of system 

characteristics in the steady-state. 

One of the peculiarities of the root hodograph method is that when used, the controller synthesis is performed in the 

time domain, which requires the use of a mathematical model of an object with characteristics that are close to the 

characteristics of a real object, which in some cases is difficult to implement. In addition, the scope of the root 

hodograph method is limited by the fact that it provides the possibility of location in a given area of the complex plane 

only one pair of poles and in cases where the order of the system is higher than the second, it is almost impossible to 

influence the location of the other poles. Thus, if these poles in the complex plane occupy positions that do not allow 



 

 

providing the specified dynamics of the system, then the synthesis of the controller based on the root hodograph method 

is reduced to using the trial and error method. The controller synthesis using frequency characteristics is based on the 

Nyquist stability criterion, which allows evaluating the stability of a closed system by its frequency characteristics when 

open. For the synthesis of the controller using frequency characteristics, the basic dynamic parameters of the system 

must be predefined the open system transmission coefficient, phase stability or bandwidth, installation time, 

perturbation compensation efficiency, etc. 

Frequency methods are widely used to synthesize controllers and most control systems are designed based on various 

modifications to these methods. When using frequency methods, it is possible to provide to a certain extent the 

insensitivity of the characteristics of a closed system to changing its parameters, which is essential for control systems 

with pronounced nonlinearities, the presence of which significantly complicates the process of controller synthesis. 

It should be noted that frequency methods involve the transition from the time domain of signal representation to the 

frequency with the subsequent procedure of controller synthesis, which significantly complicates the possibility of 

direct estimation of temporal characteristics of the system and, as a consequence, the choice of effective ways of their 

improvement. 

In recent years, certain methods of synthesis of controllers, the implementation of which involves the possibility of 

placing all the poles of the transfer function of a closed system at specified points of a complex plane, have acquired 

certain development [6]. The use of these methods requires the availability of information about object state variables, 

the measurement of which is not always possible due to the complexity of the access to them or the absence of 

appropriate measurement converters. In practice, the estimation of state variables, whose measurement causes 

significant difficulties, is performed based on data on variables that can be directly measured. 

 

2. Task of the Research  

The goal of the current paper consists of the specified dynamics of the process getting based on the desired reference 

transient characteristic which was taken from a dynamic neural network. The last may be obtained thanks to the 

Ackermann’s formula using for calculating the coefficient matrix, whose introduction in the structure of the object 

model provides the specified dynamics of the process. 

 

3. Formulation of the Problem  

Synthesis of controllers by positioning the poles of the transfer function of a system at given points of a complex plane 

implies the presence of its mathematical model in state variables, which for a linearized object is as follows: 
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where x(t) is a state vector of dimension (n×1) whose components are the n-order object state variables;  tx  is a 

time derivative of the vector x(t); A is a matrix of coefficients with (n×n) dimension; B is the input matrix with 

(n×r) dimension; u(t) is the input vector of dimension (r×1) with components as input object variables; y(t) is the 

output vector of dimension (p×1), the components of which are the output object variables; C is the output matrix with 

(p×n) dimension; D is the bypass matrix that determines the direct link between object input and output. In most cases, 

the matrix D elements are equal to zero because the connection between inputs and outputs in real physical objects is 

dynamic. Let us consider a control object that is described by the following transmitting function: 
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For such an object, the equations of state can be written as follows 
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The peculiarity of the coefficient matrix A is that all its coefficients, except for coefficients above the main diagonal, are 

equal to zero, and the last raw is filled with the coefficients of the characteristic equation with the opposite sign. Thus, 

knowing the matrix of coefficients of an object, one can write its characteristic equation. Consider a synthesis procedure 

for a controller based on the location of the poles of the closed-loop transfer function at given points in the complex 

plane. It is assumed that the system has one input and one output, and the defining signal supplied to its input is equal to 

zero. The control law can then be represented as a functional relationship between the state vectors and the object input 

as follows: 
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Let's form a control law for our case in the following form: 
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where K is the coefficients vector of dimension [1 × n]. Substituting (5) into the first equation of system (1), one 

obtains: 

 

           txAtxBKAtBKxtAxtx f ,     (6) 

 

where Af is the following matrix of closed-loop coefficients: 
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The characteristic equation of a closed system can be written in the following form: 
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where I is a unitary matrix of dimension [n × n]. 

If considering the conditions of the given process dynamics, the roots of the characteristic equation of a closed system 

should acquire values -λ1, -λ2, ..., -λn-1, then the desired characteristic equation for such a system will be as follows: 
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In accordance with the procedure for the synthesis of the controller on the basis of the poles positioning method at given 

points of the complex plane, it is necessary to calculate a matrix K, which would ensure the equality of the left parts in 

expressions (8) and (9), i.e.: 
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Equating in (10) the coefficients for equal degrees S, one obtains n linear equations with respect to n unknowns as 

follows: 
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the solutions of which are the coefficients of the matrix Ki 
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Relations (12) determine the overall solution of the problem of synthesis of a system with one input and one output on 

the basis of the poles positioning method at the setpoints of the complex plane, but it is necessary to ensure the 

correspondence of the model of the system in the canonical form of controllability. Remark, that it cannot always be 

achieved because the state variables of the model in the canonical form of control in most cases do not correspond to the 

state variables of the real system. Therefore, consequently, they are not those variables that determine the physical 

content of the processes that take place in the real system. In addition, state variables in the canonical form of control 

may in some cases be unavailable for measurement. Thus, in the general case, the calculation of the coefficients of the 

matrix K is based on the transformation of similarity, which provides the possibility of transition from a given model of 

any structure to a canonical form of controllability, with subsequent carrying out of the corresponding mathematical 

transformations. To implement this procedure can be used Ackerman's formula [16] in the following form: 
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where  Ac  is a characteristic polynomial calculated on the basis of the coefficients of the desired characteristic 

equation of the system  Sc , i.e. 
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where I is a unit matrix. Consider the problem of a dynamic neural network designing to reproduce the transition 

characteristic, which is given in the form of a numerical sequence. Consider the problem of a dynamic neural network 

creation to reproduce the transient characteristic, which is given in the form of a numerical sequence. Let us suppose 

that a physical object or its mathematical model in the form of a differential equation, which includes input and output 

quantities and their derivatives in time up to the n-th order, is used to obtain the desired transient characteristic. Remark 

that the dependence of the output quantities on the input and derivatives from the input and output is unambiguous. Let 

us assume that the analytical representation of this equation is unknown in advance or known only in general form. 

The above assumptions about the differential equation make it possible to present it in the general form: 
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where nx and ny is the maximum order of the derivatives from the inputs and the outputs, respectively; 

 xnx...,,x,x,x   and 
 yny...,,y,y,y   is the input and output vector and its derivatives, accordingly, i.e. 
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The task is to choose a dynamic neural network architecture that, after completing the training procedure, with a given 

degree of accuracy, can reproduce the dynamics of the process that meets the desired transient response. As a basis, it 

can be taken a two-layer neural network in which the layers are arranged one after the other. Obviously, the created 

neural network should provide the ability to solve equation (15), and therefore its architecture is determined by the way 

of solving this equation, considering its kind, or other assumptions about it. 

Equation (15) includes time derivatives (up to the n-th order inclusive), so there must be a mechanism for calculating 

the values of these derivatives based on the presented sets of input and output signals. For practical implementation of 

such a mechanism in the created neural network it is necessary to provide for the presence of several functional units, 

namely: 

- the unit of derivatives reproduction (dynamic part), in which using the delay lines at the inputs of neurons of the first 

layer reproduces the structure of a given equation; 

- the unit of implementation of the functional equations given by the equation, by which the network weights are 

calculated. 

Let us consider the implementation of neural networks for partial cases of equation (15), and where it is possible, 

formulate not only the requirements for the architecture of the network but also ways of selecting the initial values of its 

coefficients, if the coefficients of the equation are known in advance. 

 

4. Problem Solving 

For the case where the input and output quantities are one-dimensional, the differential equation (15) can be represented 

as: 
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Since the values of input and output variables are known only at certain intervals t , derivatives can be calculated only 

by approximate formulas. For example, for some q-th sample of variables x and y there are expressions as following: 

 

  .  .  .  .  .  .  .  .  .  .  .  .

,
t

xx

dt

dx 1qqq








     (17) 

,
)t(

x)1(x)1(C...x)1(C...xCxCx

dt

xd
n

nq

n

1nq

1n1n

nmq

mm

n2q

2

n1q

1

nq

n

q

n











   (18) 

  .  .  .  .  .  .  .  .  .  .  .  .

,
t

yy

dt

dy 1qqq








      (19) 

,
)t(

y)1(y)1(C...y)1(C...yCyCy

dt

yd
n

nq

n

1nq

1n1n

nmq

mm

n2q

2

n1q

1

nq

n

q

n












   

(20) 

;
)!mn(!m

!n
Cm

n


              (21) 

 

Substituting expressions (17) - (21) into equation (16), reducing such terms and dividing by a factor of a variable qy , 

the equation is obtained: 
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By solving relatively to value qy , it can be obtained: 
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Equation (23) uniquely defines the architecture of a neural network on a single neuron with a linear activation function, 

which can be represented [17] - [19] as a recurrent digital filter (Fig.1). From the foregoing considerations, it follows 

that in the simplest case, to reproduce a linear differential equation with constant coefficients, the neural network can be 

implemented as a single neuron, the input of which is the current value of the input value and at least, than nx of its 

values at previous samples, as well as not less than ny of its previous values of the output value. Here there is the order 

of the input variable equal to nx and the order of the output variable equal to ny . Consider the procedure for 

constructing a neural network for the case where the differential equation looks like: 
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There is created the model for equation (24) solving in the Simulink environment [20] (Fig.2). 
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Fig. 1. Scheme for solving of the difference equation (9) 

 
Let us reduce the equation (24) to a discrete form, using expressions (17) - (21) to approximate. To do this, by 

presenting the first and second derivatives of the original variable in the form: 
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and by substituting expressions (25), (26) in the equation (24), there is obtained the following expression: 
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Grouping in the expression (27) the additives at the arguments 2q1qq y,y,y   and multiplying both parts of the 

obtained equation by  1tata1
10 E

2

E  , there is obtained the following: 
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and using the following notation: 
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It was obtained as follows: 
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which is the equation of a neural network with a linear activation function. 

 

 
Fig. 2. Model for solving equation (10)  

 

The equation (32) corresponds with a certain scheme of the neural network (Fig. 3). Thus, if the values of the 

coefficients of the differential equation are known, then the transition to the corresponding neural network can be 

carried out using relations (17) - (21). After carrying out the corresponding mathematical transformations, it will give 

approximate values of the coefficients that can be used in the construction of the digital filter. These values will be the 

initial coefficients for the network being created. The ability of the neural network to learn allows, based on the desired 

transient characteristic of the system to refine the values of these coefficients or to set the values of unknown 

coefficients after arbitrary selection of their initial values. This procedure is based on a training numerical sequence 

which is used as an expected signal. 
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Fig. 3. A neural network scheme for solving the second-order equations 

 

Solving the system of equations (29) - (31) with respect to unknown variables 
10 EEE  aand, ab , it is possible to 

obtain the relation as follow: 

,
TW

W
b

2

13

11
E             (33) 

,
TW

1WW
a

2

13

1312
E0


           (34) 

.
TW

W2W
a

13

1312
E1


            (35) 

 

Above mentioned variables provide the ability to calculate linear differential equation coefficients whose solution at the 

jumping action of the input variable corresponds to the desired transient response that was used as the expected signal 

when learning a dynamic neural network. 

Thus, by defining the expected signal for training the neural network in the form of the desired transient characteristic 

of the system and selecting on the basis of information about the object the architecture of the corresponding linear 

dynamic neural network, it is possible to determine in the course of its learning the weighting factors. Using 

transformations (33) - (35) the coefficients of the linear differential equation are calculated, the solution of which 

reproduces the desired process dynamics in the system. The presence of information about the coefficients of the linear 

differential equation, which in our case can be used as a model of the reference, provides for the possibility of 

calculating the roots of the corresponding characteristic equation and thereby determining the position of these roots in 

the complex plane. 

Let us consider the problem of synthesizing a control system using the method of positioning poles at given points of a 

complex plane for a second-order object. If taking into account the conditions of the given dynamics of the process in 

the system, the roots of its characteristic equation must take the value ,λ- ,λ- 21 then the characteristic equation for 

such a system has the form: 
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By setting an object model with a transfer function in the form as follow: 
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and using the following notation: 
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let us present the equation (37) as follows 
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4.1. Ackermann’s Approach Application 
 

Then, in our case, Ackermann’s formula [16], [21] looks like: 

 

];Iλλ)Aλ(λA[]AB  B[]1 0[K 2121

21  
        (41) 

 

To calculate the coefficients K, it is necessary to make a series of transformations. Let us write the characteristic 

polynomial of the system in matrix form using the coefficients of the desired characteristic equation (36) as follows 
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where I is a unitary matrix. Having defined the following matrix:  
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and substituting equations (42), (43) into the expression (41), there is obtained an expression for calculating the matrix 

of coefficients K: 
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Thus, the final expressions for calculating the coefficients K1 and K2 are as follows: 
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Summing the coefficients K1 and K2 with the corresponding values of the coefficients a1 and a0 of the characteristic 

equation of the object allows correcting the system in the direction of approximation of its transient characteristic to the 

transient characteristic of the reference. In practice, the procedure for determining the coefficient matrix K on the basis 

of the desired transition characteristic using a dynamic neural network is carried out in two stages. In the first stage, 

based on the features of the construction (structure) of the mathematical model of the object, the architecture of the 

corresponding dynamic neural network is created and trained. Here the objective target is a numerical sequence that 

corresponds to the desired transient characteristic of the system, and the input signal is given in the form of a numerical 

sequence, which reproduces the step function. In the second stage, using the values of the weighting coefficients 

obtained in the learning process of the neural network, the coefficients of the mathematical model of the reference and 

the roots of its characteristic equation are calculated, followed by the calculation of the coefficients of the matrix K. 

 



 

 

4.2. Dynamic System Simulation 
 

In such a way was created (Fig. 3) a block scheme of a dynamic neural network, whose weight coefficients were used to 

calculate the coefficients of a mathematical model of the reference with the desired transient characteristic at the 

training process completed. Network training was based on the identification of a dynamic object using the Levenberg-

Marquardt algorithm [19]. The network was trained using the Neural Network packet offline. The input for training the 

network was given in the form of a numerical sequence that corresponded to the step function, and the expected output 

signal was specified by a sequence of numbers that reproduced the desired transient characteristic of the system. It was 

observed the dynamics of the learning process of the neural network in the form of dependence of the target function, 

given in the quadratic representation 
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Fig. 4. Dynamics of the neural network learning - (a), the output signals of the reference (1) and the adjusted object (2) -

comparison – (b) 

 

On the basis of the values of the weight coefficients W11, W12, W13 obtained in the neural network training process, 

the coefficients 
00 EEE b,a,b  of the mathematical model of the reference were calculated using the equations  

(33) - (35). Using the mathematical model of the object with the given values of its coefficients, as well as the 

coefficients K1 and K2 were calculated based on the results of the neural network learning using Ackermann's formula. 

Its implementation into the structure of the object provided the identity of its transition characteristic with ones 

corresponded to the reference. It allows obtaining the mathematical models of the reference and the adjusted control 

object (Fig.4, b) by the implementation of corrected coefficients K1 and K2 (Fig. 5). 
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Fig. 5. Reference and adjustment models of the controlled object 



 

 

 

The output signals of the reference and the adjusted object refer while acting on the inputs of the step signal. 

5. Conclusions 

 
On contrary to the known synthesis methods based on the use of frequency characteristics or root hodograph the 

proposed Ackermann’s formula application guarantees the desired transient function obtain. The considered approach 

was realized according to the results of the neural network learning by using Ackermann's formula. The latter is based 

on the transformation of similarity, which translates a given model of an arbitrary structure into a canonical form of 

control. Such a procedure simplifies the determination of the desired elements of the matrix K. Comparison of the 

output signals of the reference and the adjusted objects simultaneously activated by step signal confirms our assumption 

about the expediency of the object model correction by the coefficients K1 and K2.  
The implementation of the corrective coefficients which were obtained into the object dynamic model ensures that the 

processes in the models of the reference and the adjusted objects are almost completely identical. The value of the RMS 

error in the modeling of the system was equal to 31087,1  . It indicates the high efficiency of the proposed algorithm of 

the object model improvement. 
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