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Abstract: The multi-pattern matching is a fundamental 
technique found in applications like a network intrusion 
detection system, anti-virus, anti-worms and other signature-
based information security tools. Due to rising traffic rates, 
increasing number and sophistication of attacks and the 
collapse of Moore's law, traditional software solutions can no 
longer keep up. Therefore, hardware approaches are 
frequently being used by developers to accelerate pattern 
matching. Reconfigurable FPGA-based devices, providing 
the flexibility of software and the near-ASIC performance, 
have become increasingly popular for this purpose. Hence, 
increasing the efficiency of reconfigurable information 
security tools is a scientific issue now. 

Many different approaches to constructing hardware 
matching circuits on FPGAs are known. The most widely 
used of them are based on discrete comparators, hash-
functions and finite automata. Each approach possesses its 
own pros and cons. None of them still became the leading 
one. 

In this paper, a method to combine several different 
approaches to enforce their advantages has been developed. 
An analytical technique to quickly advance estimate the 
resource costs of each matching scheme without need to 
compile FPGA project has been proposed. It allows to 
apply optimization procedures to near-optimally split the 
set of pattern between different approaches in acceptable 
time. 

Index Terms: combining approaches, DPI, FPGA, 
information security, multi-pattern matching, signature. 

I. INTRODUCTION 
The massive propagation of Internet and network 

applications, coupled with the widespread availability of 
system hacks and viruses, have made the importance of 
network security more significant. Increasing number 
and sophistication of attacks against the network 
infrastructure necessitates more robust security solutions. 
Despite the great progress that has been made, there is an 
ever-widening performance gap between the processing 
requirements of security tools and their software 
implementations. The speed limitations of sequential 
software execution and the increase in network throu-
ghput also contribute to the widening of this gap [1]. 

Field Programmable Gate Array (FPGA) devices 
have commonly been proposed because they feature both 
the flexibility of software and the high performance of 
specialized hardware [2], [3]. So the reconfigurable 
accelerators became a suitable and popular hardware 

platform for many security applications, including 
network intrusion detection systems (NIDS), anti-virus, 
anti-worms and other signature-based information 
security tools, which have to scan the incoming data in 
real time. The computation-intensive multi-pattern string 
matching task is a major performance bottleneck in such 
systems, known from the beginning of millennium [4], 
[5]. 

In fact, not only signature-based systems are used 
for network security now. Anomaly detection, fuzzy 
logic, machine learning, deep learning and many other 
directions have been actively developing lately [6]. 
Nevertheless, all of them still suffer from respectively 
high rate of false positive and, especially, false negative 
mismatches. 

So, in this paper, the state-of-the-art FPGA-based 
multi-pattern string matching technical solutions have 
been analyzed, experience of many developers has been 
studied.  

Each of known approaches to build an FPGA-based 
scheme aimed to fulfill multi-pattern matching has its 
own strengths and weaknesses. None of them 
demonstrates key advantages over others, a solution 
effective enough has not yet been found. 

To resolve this contradiction a method to combine 
several different approaches in one device to enforce 
their advantages has been developed, the corresponding 
hardware structure has been constructed. To implement 
this it was necessary to investigate the features of every 
approach in terms of resource costs, speed/throughput 
parameters, functional characteristics and scaling 
parameters, and also to formalize this knowledge. 

II. FPGA-BASED NETWORK INTRUSION 
DETECTION SYSTEMS 

Historically the first and, consequently, the most 
studied FPGA-based tools of information security were 
intrusion detection systems (IDS) [7]. Therefore, without 
losing the generality of reasoning, consider the typical 
functions and efficiency parameters of reconfigurable 
security systems on the example of IDS. 

Depending on the protected object, there are IDS, 
which protect individual computers and analyze network 
traffic packets of the entire local network. As the use of 
hardware solutions is more efficient for the second type 
of tools – network intrusion detection systems (NIDS), 
we consider just such systems. 
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A. THE STRUCTURE OF RECONFIGURABLE NIDS 
The generalized structure and the composition of 

the FPGA-based network intrusion detection system, 
composed as a result of analysis of related works, is 
presented in Fig. 1. 
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Fig. 1. The generalized structure of the FPGA-based network 
intrusion detection system 

The Matching module (MM) is the most important 
component of NIDS, which characteristics essentially affect 
on the performance parameters of the system as a whole [8], 
This module solves a computationally complex problem of 
multi-pattern string matching, i.e. checks the content of 
network packets against certain sequences of symbols, so-
called patterns, which are parts of the signatures – the 
descriptions of the known attacks. 

Signature databases of modern security protection 
tools contain from tens of thousands to hundreds of 
thousands (for NIDS), even millions (for anti-virus) of 
patterns that need to be detected simultaneously in the 
input data at wire speed. 

B. EFFICIENCY PARAMETERS  
OF RECONFIGURABLE NIDS 

The main parameters (or indicators) of the 
effectiveness of reconfigurable NIDS which is a typical 
signature-based security tool can be divided into three 
groups [9]: 

� cost parameters; 
� parameters of speed, or performance parameters; 
� functional parameters. 
Cost indicators are as follows: the amount of 

logical resources of programmable logic needed to create 
a digital circuit, memory costs (external to the FPGA 
chip, internal memory of FPGA – block memory 
(BRAM) and distributed memory (flip-flops in logical 
cells)), as well as other costs, which make up the total 
cost of ownership, including the development, 
manufacture and programming costs. 

Performance parameters include: the volume of the 
signature database (i.e. the number of pattern to be 
recognized), the speed of the system (which is defines as 
either the delay of data propagation from input to output 
or as bandwidth), and the predictability of speed as well. 

An important intermediate metric that links speed 
and cost characteristics is scalability – the ability to 

increase performance without excessive resource costs. 
There are three types of scalability: by the bandwidth, by 
the pattern set size, and by the pattern length. 

Functional indicators include: the ability of NIDS 
to work in the mode of network intrusion prevention 
system (NIPS), the ability to dynamically update the 
patterns without interrupting the matching process, the 
ability to counter attacks targeted at the NIDS itself, and 
others. 

III. COMPARISON OF THE MAIN APPROACHES 
TO THE BUILDING OF RECONFIGURING 

MATCHING MODULES 
The analysis of numerical developments of 

researchers from all over the world shows that when 
creating NIDS, the best abilities were demonstrated by 
three approaches which use the following technical 
solutions based on the corresponding technologies: 

� content addressable memory (CAM) based on 
discrete comparators (DC) [10], [11], [12], [13], [14], 
[15]; 

� Bloom filter (BF) based on hash-functions (HF) 
[16], [17], [18], [19], [20], [21]; 

� Aho-Corasick algorithm (AC) based on finite 
automata (FA) [22], [23], [24], [25], [26], [27]. 

A detailed study of each approach, which was 
conducted by the author in [28], [29] and [30] 
respectively, allows to compare their features and 
technical capabilities using the parameters discussed 
above. The Table 1 shows the results of a comparative 
analysis of these approaches. 

As we can see, each of these approaches has its 
own pros and cons. And none of them fully meet the 
requirements for the reconfigurable signature-based 
security systems. 

For example, DC and based on them CAM 
modifications provide maximum performance, but are 
very expensive in comparison with other approaches in 
terms of hardware resources and electricity consumption, 
they also lose in scaling. The Bloom filter is more 
effective by resources and scalable, but imposes 
restrictions on the length of the patterns; it also requires 
additional costs to check the obtained results due to its 
not eliminable inherent percent of false positive 
recognition errors. Finite automata are modest in terms 
of logic consumption, provide stable but relatively low 
bandwidth, are difficult to build, and lead to an 
"explosive" increase in memory costs for large signature 
databases. 

The lack of a leading direction that would 
outperform competitive solutions in all respects makes 
the developers offer numerous modifications of the main 
approaches, trying to overcome their shortcomings. But 
these attempts predominantly are heuristic, unsystematic. 
A lack of formalization and generalization does not 
allow to shift the problem from engineering level to the 
scientific one. 



Parallel Combining Different Approaches To Multi-Pattern Matching For Fpga-Based Security Systems 9 

Therefore, based on the study and systematization 
of existing experience in the construction of 
reconfigurable NIDS, a method of formalizing the idea 
of combining different approaches in order to maximize 
the effectiveness of each was proposed by author. Let us 
consider this method. 

IV. PARALLEL COMBINING METHOD 
The essence of Parallel Combining Method (PCM) 

is to split the pattern set, which should be analyzed by 
the MM, into subsets when simultaneously synthesizing 
the same number of matching units (MU). Each of the 
latter most effectively matches patterns of the 
corresponding subset, thereby maximizing the benefits 
of its approach. The highest efficiency is being achieved 
by covering both the splitting process and the choice of 
technical solution modification for each MU with a 
common optimization procedure.  

 

C. THEORETICAL BACKGROUND 
The background of the PCM method is in the fact 

that the patterns included in the signature database differ 
in length and self-similarity. Hence, the processing 
efficiencies also differ and depend on the approach of 
the corresponding scheme. 

Another factor in favor of this method is a fixed set 
of resources of reconfigurable devices, on which NIDS 
is built. Using a single recognition method leads to the 
situation that some resources (for example, logical) are 
involved almost completely, while others (resources of 
block or external memory) are not used at all. As a 
result, efficiency is lost. 

D. STRUCTURE OF THE METHOD 
The Fig. 2 schematically presents the structure of 

the PCM. 

 

Fig. 2. The structure of the Parallel Combination Method. 
Schematic representation 

During synthesis, the pattern set P to be recognized 
is divided into n pattern subsets Pi, by the splitting 
procedure, i = 1 … n. When functioning, each MU in the 
MM searches for the patterns of the corresponding 
subset in the input data stream, which is fed 
simultaneously to the inputs of all MUs. If a fact of 
matching of input data fragment with some pattern is 
detected, the corresponding signal is activated. 

To achieve maximum efficiency, the process of 
forming the MM structure is carried out under the 
control of the general optimization procedure. 

Variable parameters are the number of pattern 
subsets n and a certain splitting combination of the 
subsets Pi, as well as certain combination of units MUi, 
which are selected from the library of components. 

Table 1 

The comparison of the main approaches to the construction  
of the reconfigurable multi-pattern matching modules 

Approach 
№ Parameter 

CAM Bloom Filter Aho-Corasick 
1.  Logic costs - - - + +++ 
2.  distributed - - - + +++ 

3.  BRAM +++ + - - - 
4.  M

em
or

y 
co

st
s 

external +++ +++ - - - 
5.  Speed +++ + - 
6.  Speed predictability +++ - - - +++ 
7.  by bandwidth +++ + - 
8.  by pattern set size - - - +++ - - - 
9.  Sc

al
a-

 
bi

lit
y 

by pattern length - +++ +++ 
10.  Ability to use redundancy of pattern set + - - - +++ 
11.  dynamic update - - - + +++ 
12.  the ability to counter attacks targeted at the 

defense system 
+++ - - - + 

13.  Fu
nc

tio
na

l 
pa

ra
m

et
er

s 

ability to work in NIPS mode +++ + - 
14.  A significant drawback that negates the main 

advantages of the approach 
Excessive 
resource costs 

Fixed 
pattern length 

"Explosive" 
memory growth 

 

Notation: "+++" – significant advantage; "+" – medium advantage; "- - -" – significant drawback; "-" – medium drawback. 
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The optimization criteria when using PCM can be 
chosen depending on the needs of the user of NIDS. This 
question is discussed in the next section. 

E. OPTIMIZATION PROCEDURE 
Different optimization criteria can be used 

depending on the NIDS user's needs. In any case, the 
goal of optimization is to minimize or maximize a 
certain objective function, which is the numerical value 
of a certain technical parameter: consumed resources, 
performance, productivity, and so on. 

To gain the goal of optimization the algorithm that 
implements PCM varies the variable parameters, 
calculating the resource and time characteristics of MUi 
and entire MM at each step. 

Of course, the characteristics of the reconfigurable 
matching module can be found by synthesizing its digital 
circuit using the design tool from FPGA developer. But 
this process takes too much time [31] that it makes such 
an approach unfeasible for PCM implementation. 

Therefore, the author proposed a technique of the 
accelerated calculation of the characteristics of MUi and 
MM. Its essence is to create the so-called estimation 
function (EF) for each library component. Such a 
function, having a given set of patterns Pi at the input, 
calculates the amount of resources (and/or time 
characteristics) that the ith MU has to consume to be 
able to recognize this pattern subset. 

F. ESTIMATION FUNCTIONS 
Due to the distinction of the nature of approaches, 

estimation functions for them are being composed in 
different manner. For example, because of transparent 
and regular structure of CAM-based matching unit 
circuits, the EF for it can be formed by direct calculation 
of the required resources. 

Let us consider in detail how such EF is formed 
using the example of a basic scheme of pattern matching 
BsCAM based on discrete comparators [28], clarifying 
along the way some important points about building DC-
based CAM on FPGA. 

The BsCAM scheme implements directly the function 
of detecting the matching of the input word with the pattern 
and consists of a set of discrete comparators working in 
parallel, each of which compares the input byte with a 
predefined symbol [12], [13]. The Fig. 3 shows such a circuit, 
which contains a pipeline consisting of 8-bit registers RGi, 
comparators CMP1 … CMP3, each of which performs the 
function of comparison with a certain symbol, and a logical 
circuit "AND", which aggregates their outputs. The set of 
comparators corresponds to one pattern to be recognized. The 
analyzed sequence of symbols is fed to the input of the 
pipeline. In case a fragment of sequence matches the pattern 
"ABC", the active signal appears on the output "Match". 

A scheme in the Fig. 3 looks pretty simple. But 
some difficulties rise in its practical implementing on 
FPGA. 

Since the signature database of modern security 
systems can contain a large number of patterns [26] he 
output load ability (fan-out) of registers RGi, which are 
made from conventional FPGA components, becomes 
insufficient. And a high length of the digital lines 
connecting a large number of logic elements distributed 
along the surface of the FPGA chip leads to delays in 
signal propagation, which reduces the maximum 
operation frequency of the entire digital circuit. 

To solve the problem, a pipeline of several stages 
can be created [32]. Each output signal is branched into a 
plurality of inputs of D-latch of the next stage (Fig. 4). 

This solution at the expense of moderate additional 
hardware costs and acceptable increase in latency allows 
to distribute the outputs of the RGi registers to any 
number of comparators without reducing the clock 
frequency. 

 

 

Fig. 3. A basic scheme of direct matching  
the "ABC" pattern by discrete comparators 

 

 

Fig. 4. Solving the FAN-OUT problem 

Another problem of comparators-based scheme is 
related to the large number of inputs of logic circuit 
"AND". The length of pattern can be of tens of 
characters, whereas the number of inputs of lookup table 
(LUT) of modern FPGAs, which implement this scheme, 
does not exceed 8. This difficulty can also be solved by 
pipelining (Fig. 5) [12], [32]. 
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We can now return to composing the estimation 
function for the BsCAM scheme. 

In general case, the resources required for synthesis 
in the FPGA of any MU (as well as the whole MM in 
general) can be calculated in conventional units which 
are equivalent in terms of costs, for example, to one 
LUT: 

iiiii MBFLR γβα +++= ,                  (1) 

where Li – amount of resources of logics of FPGA, 
which is required to synthesize ith unit (number of 
LUTs); Fi – amount of resources of distributed memory 
of FPGA (number of flip-flops), Bi – amount of 
resources of block memory of FPGA (number of BRAM 
blocks), Mi – amount of external memory resources – 
on-board memory of reconfigurable accelerator (Mb), 

γβα ,,  – normalization coefficients of different type 
resources in relation to logic resources (LUTs). 

 

 

Fig. 5. Solving the problem of multi-input "AND" circuit 

Because the logical cells of most modern FPGAs 
have the same number of LUTs and flip-flops (α = 1), 
and because the CAM-based matching schemes do not 
require BRAM or external memory, the expression (1) 
for the basic scheme on discrete comparators BsCAM is 
simplified to: 

BSCAMBSCAMBSCAM FLR += ,                 (2) 

where LBSCAM and FBSCAM – numbers of LUT and flip-
flops in this scheme respectively. 

The lookup tables LUT are used in the scheme 
BsCAM, firstly, for synthesizing comparators CMP 
(Fig. 3), secondly – to create multi-input circuit "AND" 
(Fig. 5), which is built as a pipeline [28]: 

&CMPBSCAM LLL += .          (3) 

The feature of the BsCAM scheme is the fact that it 
requires as many comparators Ω  as there are characters 
in all the patterns of the set to be recognized: 

∑
=

⋅=Ω
max

min

m

mj
j jδ , (4) 

where j – length of a pattern in the set; mmin – length of 
the shortest pattern; mmax – length of the longest pattern; 

jδ  – pattern length distribution function. 
The discrete comparator CMP, which recognizes 

one character in byte encoding, requires two 4- or 6-
input LUTs, or one LUT having 8 (or more) inputs, 
when constructing CAM schemes. Let us introduce the 
qualifier function 

( )




<
≥

=Λ
8,2
8,1

 
x
x

x , 

where x – the number of inputs of the LUT for a given 
FPGA. Then the number of LUTs required for creating 
all comparators in BsCAM scheme will be equal to 

( ) Ω⋅Λ= xLCMP .                (5) 

Taking into account the fact that the x-input LUT 
can synthesize a logic circuit "AND" not more than for x 
inputs, the number of LUTs required to join j inputs with 
a cascade circuit "AND" (Fig. 5) for each pattern is equal 
[33] to: 







−
−

==
1
1)(

x
jjLL j .                     (6) 

The number of LUTs to form all pipelines of all 
patterns is calculated similarly to (4) take into account 
(6): 

∑
=







−
−

⋅=
max

min
1
1

&

m

mj
j x

jL δ .                         (7) 

The number of flip-flops required to create a 
BsCAM scheme consists of their number FRG required to 
build the input pipeline, the number Ffan-out of flip-flops 
to increase the FAN-OUT of the input pipeline registers 
(Fig. 4) and the number F& of flip-flops in the pipeline, 
which joins comparator outputs for all patterns by 
function "AND" (Fig. 5): 

&out-fanRGBSCAM FFFF ++= .                    (8) 

The pipeline, on which the input stream of 
characters moves, is not shorter than the length of the 
longest pattern of subset mmax and has one byte width. 
Therefore, the number of flip-flops required to build it is 
as follows: 

maxRG 8 mF ⋅= .         (9) 

Finding the number Ffan-out (Fig. 4) is more difficult 
compared to the previous calculations. The load on the 
output registers of the input pipeline (Fig. 3) is irregular. 

The signals from its first mmin stages are used to 
recognize all the patterns of the subset whereas the 
signals from the last stage – only to recognize the longest 
patterns. By performing all the necessary calculations 
[28], we get: 
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∑
∑

+=

=
−



















−

−
+








−
−

=
max

min

max

1
minoutfan 1

1

1
1 m

mi

m

ji
i

yy
mF

δ
σ ,       (10) 

where σ  – number of patterns in the subset; y – FAN-
OUT property of the given FPGA. 

The number of flip-flops in the pipeline for 
combining "AND" for each pattern is less for one than 
the number of LUTs in this pipeline L& according to (7), 
because a flip-flop is not required after the last stage of 
the scheme "AND" (Fig. 5): 

1
1
11

max

min

&& −





−
−

⋅=−= ∑
=

m

mj
j x

jLF δ .                  (11) 

Substituting (5) and (7) into (3), as well as (9), (10) 
and (11) into (8), and then – (3) and (8) into (2), and 
taking into account that the flip-flops and LUTs, which 
are involved in the synthesis of the pipeline circuit of the 
multi-input circuit "AND", can be used together in the 
same logical cell of FPGA, we obtain the total number of 
computing resources of the DC-based CAM basic 
scheme BsCAM: 

( ) +













−
−

+Λ= ∑
=

max

min
1
1m

mj
jBSCAM x

jjxR δ  

∑
∑

+=

=



















−

−
+








−
−

++
max

min

max

1
minmax 1

1

1
18

m

mi

m

ji
i

yy
mm

δ
σ .          (12) 

Let us analyze the result obtained. The function 
(12) which estimates resources for Matching module 
built using the basic BsCAM scheme on digital 
comparators depends, on the one hand, on the parameters 
of the pattern set: σ , mmin, mmax, δ , on the other – on 
the characteristics of the FPGA chip used in the 
reconfigurable accelerator: x and y. When performing the 
optimization procedure (splitting into subsets), the 
parameters of the pattern set are variables, while the 
characteristics of the FPGA are constants. 

The above example for the BsCAM scheme allows 
to get a certain understanding of the process of estimate 
function composition. Without extra details, let us look 
at the EF representation for a simplified pattern matching 
scheme BFS based on a Bloom filter [29], and for Aho-
Corasick finite automaton using block memory 
ACBRAM [30] 

The EF for the BFS scheme is as follows [34]: 

+



















+























 −

++⋅⋅







= 4

2
1BFs x

GG
p
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1

1

1
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18
x

p
e

x
x
L

x
LGe αα ,    (13) 

where e – recognition error factor, which is numerically 
equal to the number of HFs in the BF (is inversely 
proportional to the logarithm of the probability of false 
positive, which is acceptable for a particular application 
of the Bloom filter); p – number of ports of block 
memory BRAM;  





 ⋅

=
2ln

log2
LeG δ  – bit width of the hash-function 

generators, 
where jδ  – pattern length distribution function; L – 
length of the patterns that are recognized by this BF. 

The estimation function for the ACBRAM scheme 
has such appearance as [34]: 

 
+





−
−

⋅+









++








+=

1
11

log2
CUACBRAM x

rw
x

r
rLR β  

( ) 







+








−





−
−

⋅++ wM
x
rwF /log1

1
1

BRAM2CUα , 

where LCU and FCU – number of LUTs and flip-flops 
required to create a control device for AC FA 
respectively, which can be found by a certain appro-
ximating technique; MBRAM – amount of memory (in 
Kbits) in one BRAM block of the given FPGA (exclu-

ding parity bits, if any); 
( ) 











=

wM
Br

/1024 BRAM

 – 

number of BRAM block required, where B – amount of 
block memory required for the ACBRAM scheme (in 
Mbits), which is the sum of the amounts of memory for 
direct, cross, failure and post-start transitions of the AC 
FA: psflcrdr BBBBB +++=  [30]; w –width (in bits) of 
data stored in BRAM (depending on the technique used 
to build the finite automaton). 

V. RESOURCE COSTS OPTIMIZATION 
Optimization task formulated in section IV has high 

complexity. To solve it for the appropriate time, some 
heuristic algorithms can be applied that allow us to find 
an approximate optimum, not global, but at moderate 
time costs. 

One of them is to sort all patterns in some order and 
split them into two subsets simply placing the first 
several items to one subset, and the rest – to another one. 
Obviously, such algorithm is applicable only when only 
two approaches are involved. 

Let us try to invent some heuristics to split patterns. 
By examining the table in section III, one can make 

such an observation. A significant drawback of CAM 
that negates its main advantage is the excessive 
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consumption of resources. While for BF it is a fixed 
length of patterns. That is, for patterns of different 
lengths you need to build a separate Bloom filter. On the 
other hand, the CAM-based approach has very poor 
scalability by the pattern set size whereas BF-based  
one – vice versa. 

Hence, if we split the pattern set so that the MU 
built on the BF will recognize as many patterns with the 
same length as possible, and the MU built on the CAM – 
as few patterns as possible, the advantages of both 
approaches will be mutually reinforcing. 

So, let us group all the patterns into packages of the 
same length and sort them by the number of patterns in 
the package. Firstly, we will give all patterns to the 
scheme on CAM, and then consequently take away the 
packages with the greatest numbers of repetitions to the 
BF-scheme: the biggest package, then the biggest and 
the second by size package (leaving the rest of them to 
the CAM-scheme), then – the first three packages, etc. In 
the end, all packages (i.e. all the patterns) will be 
recognized by the scheme on BF, while the CAM 
scheme will have nothing to process. At each step of the 
algorithm we calculate the hardware costs for each MU 
and the total value using the EFs. 

The Fig. 6 shows the resource costs calculated in 
conventional units according to the algorithm formulated 
above. The estimation function (12) of the BsCAM 
scheme was used for the CAM-based MU simulating, 
and the expression (13) of BFS scheme – for the BF-
based MU simulating. In this experiment, pattern set 
from the signature database community.rules of free 
NIDS Snort ver. 06/23/19 was used. The downward 
curve indicates resource costs of BsCAM scheme. The 
upward curve – of BFS scheme. 

 

 

Fig. 6. Resource costs of the combined scheme 

The leftmost point is the case when all the patterns 
are matched by BsCAM device. In the first step one 
package of 260 patterns of equal length are being 
recognized by BFS, the rest of patterns – by BsCAM. In 
the second step two packages of 260 and 259 equal 
patterns are processed by BFS, the rest – by BsCAM. In 
the third step three packages of 260, 259 and 243 
patterns are processed by BFS. In the fourth step – four 
packages of 260, 259, 243 and 209 patterns are 

processed by BFS, the rest of patterns are matched by 
BsCAM. And so on. 

The rightmost point corresponds to the situation 
when all patterns are matched by BFS device. 

The upper curve indicates resource costs of the 
whole MM including both BsCAM and BFS MUs. As it 
can be seen, the total value curve has a pronounced 
minimum near mark of 35th packet. This means that if 
we split the pattern set so that the BF-based MU process 
the first 35 packets (having majority patterns of the same 
length) and the CAM-based MU process the rest of set 
(predominantly different patterns), the combined 
Matching module will consume about 30% fewer 
resource costs than "pure" BsCAM scheme or about 50% 
fewer than the BFS one. Thus, combining two 
approaches together reduces the cost of resources 
compared to using one approach. 

VI. CONCLUSION AND FUTURE WORK 
The most well-known approaches to the 

construction of reconfigurable information protection 
tools are: content addressable memory based on digital 
comparators; Bloom filter based on hash-functions; the 
Aho-Corasick algorithm implemented in the form of a 
finite automaton. Numerous researchers have also 
considered a lot of modifications and improvements to 
the basic solutions. But none of these approaches has a 
significant advantage over others in terms of parameters 
of efficiency. 

The contributions of this work are as follows. 
Specific features of different approaches in terms of 

resource costs, speed/throughput parameters, functional 
characteristics, as well as scaling parameters are 
formulated and explored. The universal technique to 
increase the effectiveness of FPGA-based hardware by 
combining different multi-pattern string matching 
approaches and particular technical solutions was 
regarded. A method of combining in parallel several 
matching units based on different approaches was 
constructed. The speeding-up technique based on 
calculating estimation functions for every approach was 
considered and discovered. An example of patterns 
splitting algorithm was calculated. The obtained results 
show the significant benefits of the proposed method and 
allow developers to construct more effective signature-
based reconfigurable devices for security applications. 

In future it is planned to investigate another than 
parallel methods of combining different approaches to 
build reconfigurable pattern matching devices. 
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