
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 5, No.1, 2020

PARALLEL COMBINING DIFFERENT APPROACHES TO MULTI-
PATTERN MATCHING FOR FPGA-BASED SECURITY SYSTEMS

Sergii Hilgurt

Pukhov Institute for Modelling in Energy Engineering, Ukraine.
Authors’ e-mail: hilgurt@ukr.net

Submitted on 10.05.2020

© Hilgurt S., 2020

Abstract: The multi-pattern matching is a fundamental
technique found in applications like a network intrusion
detection system, anti-virus, anti-worms and other signature-
based information security tools. Due to rising traffic rates,
increasing number and sophistication of attacks and the
collapse of Moore's law, traditional software solutions can no
longer keep up. Therefore, hardware approaches are
frequently being used by developers to accelerate pattern
matching. Reconfigurable FPGA-based devices, providing
the flexibility of software and the near-ASIC performance,
have become increasingly popular for this purpose. Hence,
increasing the efficiency of reconfigurable information
security tools is a scientific issue now.

Many different approaches to constructing hardware
matching circuits on FPGAs are known. The most widely
used of them are based on discrete comparators, hash-
functions and finite automata. Each approach possesses its
own pros and cons. None of them still became the leading
one.

In this paper, a method to combine several different
approaches to enforce their advantages has been developed.
An analytical technique to quickly advance estimate the
resource costs of each matching scheme without need to
compile FPGA project has been proposed. It allows to
apply optimization procedures to near-optimally split the
set of pattern between different approaches in acceptable
time.

Index Terms: combining approaches, DPI, FPGA,
information security, multi-pattern matching, signature.

I. INTRODUCTION
The massive propagation of Internet and network

applications, coupled with the widespread availability of
system hacks and viruses, have made the importance of
network security more significant. Increasing number
and sophistication of attacks against the network
infrastructure necessitates more robust security solutions.
Despite the great progress that has been made, there is an
ever-widening performance gap between the processing
requirements of security tools and their software
implementations. The speed limitations of sequential
software execution and the increase in network throu-
ghput also contribute to the widening of this gap [1].

Field Programmable Gate Array (FPGA) devices
have commonly been proposed because they feature both
the flexibility of software and the high performance of
specialized hardware [2], [3]. So the reconfigurable
accelerators became a suitable and popular hardware

platform for many security applications, including
network intrusion detection systems (NIDS), anti-virus,
anti-worms and other signature-based information
security tools, which have to scan the incoming data in
real time. The computation-intensive multi-pattern string
matching task is a major performance bottleneck in such
systems, known from the beginning of millennium [4],
[5].

In fact, not only signature-based systems are used
for network security now. Anomaly detection, fuzzy
logic, machine learning, deep learning and many other
directions have been actively developing lately [6].
Nevertheless, all of them still suffer from respectively
high rate of false positive and, especially, false negative
mismatches.

So, in this paper, the state-of-the-art FPGA-based
multi-pattern string matching technical solutions have
been analyzed, experience of many developers has been
studied.

Each of known approaches to build an FPGA-based
scheme aimed to fulfill multi-pattern matching has its
own strengths and weaknesses. None of them
demonstrates key advantages over others, a solution
effective enough has not yet been found.

To resolve this contradiction a method to combine
several different approaches in one device to enforce
their advantages has been developed, the corresponding
hardware structure has been constructed. To implement
this it was necessary to investigate the features of every
approach in terms of resource costs, speed/throughput
parameters, functional characteristics and scaling
parameters, and also to formalize this knowledge.

II. FPGA-BASED NETWORK INTRUSION
DETECTION SYSTEMS

Historically the first and, consequently, the most
studied FPGA-based tools of information security were
intrusion detection systems (IDS) [7]. Therefore, without
losing the generality of reasoning, consider the typical
functions and efficiency parameters of reconfigurable
security systems on the example of IDS.

Depending on the protected object, there are IDS,
which protect individual computers and analyze network
traffic packets of the entire local network. As the use of
hardware solutions is more efficient for the second type
of tools – network intrusion detection systems (NIDS),
we consider just such systems.

Sergii Hilgurt 8

A. THE STRUCTURE OF RECONFIGURABLE NIDS
The generalized structure and the composition of

the FPGA-based network intrusion detection system,
composed as a result of analysis of related works, is
presented in Fig. 1.

Matching module

Packet
receiving
module

Delay Packet
filter

Packet
sending
module

Packet
analyzer

Classifier of headers

 patterns

signature set

 rules

Alarm
module

packet
headers

packet
bodies

FPGA

Fig. 1. The generalized structure of the FPGA-based network
intrusion detection system

The Matching module (MM) is the most important
component of NIDS, which characteristics essentially affect
on the performance parameters of the system as a whole [8],
This module solves a computationally complex problem of
multi-pattern string matching, i.e. checks the content of
network packets against certain sequences of symbols, so-
called patterns, which are parts of the signatures – the
descriptions of the known attacks.

Signature databases of modern security protection
tools contain from tens of thousands to hundreds of
thousands (for NIDS), even millions (for anti-virus) of
patterns that need to be detected simultaneously in the
input data at wire speed.

B. EFFICIENCY PARAMETERS
OF RECONFIGURABLE NIDS

The main parameters (or indicators) of the
effectiveness of reconfigurable NIDS which is a typical
signature-based security tool can be divided into three
groups [9]:

� cost parameters;
� parameters of speed, or performance parameters;
� functional parameters.
Cost indicators are as follows: the amount of

logical resources of programmable logic needed to create
a digital circuit, memory costs (external to the FPGA
chip, internal memory of FPGA – block memory
(BRAM) and distributed memory (flip-flops in logical
cells)), as well as other costs, which make up the total
cost of ownership, including the development,
manufacture and programming costs.

Performance parameters include: the volume of the
signature database (i.e. the number of pattern to be
recognized), the speed of the system (which is defines as
either the delay of data propagation from input to output
or as bandwidth), and the predictability of speed as well.

An important intermediate metric that links speed
and cost characteristics is scalability – the ability to

increase performance without excessive resource costs.
There are three types of scalability: by the bandwidth, by
the pattern set size, and by the pattern length.

Functional indicators include: the ability of NIDS
to work in the mode of network intrusion prevention
system (NIPS), the ability to dynamically update the
patterns without interrupting the matching process, the
ability to counter attacks targeted at the NIDS itself, and
others.

III. COMPARISON OF THE MAIN APPROACHES
TO THE BUILDING OF RECONFIGURING

MATCHING MODULES
The analysis of numerical developments of

researchers from all over the world shows that when
creating NIDS, the best abilities were demonstrated by
three approaches which use the following technical
solutions based on the corresponding technologies:

� content addressable memory (CAM) based on
discrete comparators (DC) [10], [11], [12], [13], [14],
[15];

� Bloom filter (BF) based on hash-functions (HF)
[16], [17], [18], [19], [20], [21];

� Aho-Corasick algorithm (AC) based on finite
automata (FA) [22], [23], [24], [25], [26], [27].

A detailed study of each approach, which was
conducted by the author in [28], [29] and [30]
respectively, allows to compare their features and
technical capabilities using the parameters discussed
above. The Table 1 shows the results of a comparative
analysis of these approaches.

As we can see, each of these approaches has its
own pros and cons. And none of them fully meet the
requirements for the reconfigurable signature-based
security systems.

For example, DC and based on them CAM
modifications provide maximum performance, but are
very expensive in comparison with other approaches in
terms of hardware resources and electricity consumption,
they also lose in scaling. The Bloom filter is more
effective by resources and scalable, but imposes
restrictions on the length of the patterns; it also requires
additional costs to check the obtained results due to its
not eliminable inherent percent of false positive
recognition errors. Finite automata are modest in terms
of logic consumption, provide stable but relatively low
bandwidth, are difficult to build, and lead to an
"explosive" increase in memory costs for large signature
databases.

The lack of a leading direction that would
outperform competitive solutions in all respects makes
the developers offer numerous modifications of the main
approaches, trying to overcome their shortcomings. But
these attempts predominantly are heuristic, unsystematic.
A lack of formalization and generalization does not
allow to shift the problem from engineering level to the
scientific one.

Parallel Combining Different Approaches To Multi-Pattern Matching For Fpga-Based Security Systems 9

Therefore, based on the study and systematization
of existing experience in the construction of
reconfigurable NIDS, a method of formalizing the idea
of combining different approaches in order to maximize
the effectiveness of each was proposed by author. Let us
consider this method.

IV. PARALLEL COMBINING METHOD
The essence of Parallel Combining Method (PCM)

is to split the pattern set, which should be analyzed by
the MM, into subsets when simultaneously synthesizing
the same number of matching units (MU). Each of the
latter most effectively matches patterns of the
corresponding subset, thereby maximizing the benefits
of its approach. The highest efficiency is being achieved
by covering both the splitting process and the choice of
technical solution modification for each MU with a
common optimization procedure.

C. THEORETICAL BACKGROUND
The background of the PCM method is in the fact

that the patterns included in the signature database differ
in length and self-similarity. Hence, the processing
efficiencies also differ and depend on the approach of
the corresponding scheme.

Another factor in favor of this method is a fixed set
of resources of reconfigurable devices, on which NIDS
is built. Using a single recognition method leads to the
situation that some resources (for example, logical) are
involved almost completely, while others (resources of
block or external memory) are not used at all. As a
result, efficiency is lost.

D. STRUCTURE OF THE METHOD
The Fig. 2 schematically presents the structure of

the PCM.

Fig. 2. The structure of the Parallel Combination Method.
Schematic representation

During synthesis, the pattern set P to be recognized
is divided into n pattern subsets Pi, by the splitting
procedure, i = 1 … n. When functioning, each MU in the
MM searches for the patterns of the corresponding
subset in the input data stream, which is fed
simultaneously to the inputs of all MUs. If a fact of
matching of input data fragment with some pattern is
detected, the corresponding signal is activated.

To achieve maximum efficiency, the process of
forming the MM structure is carried out under the
control of the general optimization procedure.

Variable parameters are the number of pattern
subsets n and a certain splitting combination of the
subsets Pi, as well as certain combination of units MUi,
which are selected from the library of components.

Table 1

The comparison of the main approaches to the construction
of the reconfigurable multi-pattern matching modules

Approach
№ Parameter

CAM Bloom Filter Aho-Corasick
1. Logic costs - - - + +++
2. distributed - - - + +++

3. BRAM +++ + - - -
4. M

em
or

y
co

st
s

external +++ +++ - - -
5. Speed +++ + -
6. Speed predictability +++ - - - +++
7. by bandwidth +++ + -
8. by pattern set size - - - +++ - - -
9. Sc

al
a-

bi

lit
y

by pattern length - +++ +++
10. Ability to use redundancy of pattern set + - - - +++
11. dynamic update - - - + +++
12. the ability to counter attacks targeted at the

defense system
+++ - - - +

13. Fu
nc

tio
na

l
pa

ra
m

et
er

s

ability to work in NIPS mode +++ + -
14. A significant drawback that negates the main

advantages of the approach
Excessive
resource costs

Fixed
pattern length

"Explosive"
memory growth

Notation: "+++" – significant advantage; "+" – medium advantage; "- - -" – significant drawback; "-" – medium drawback.

Sergii Hilgurt 10

The optimization criteria when using PCM can be
chosen depending on the needs of the user of NIDS. This
question is discussed in the next section.

E. OPTIMIZATION PROCEDURE
Different optimization criteria can be used

depending on the NIDS user's needs. In any case, the
goal of optimization is to minimize or maximize a
certain objective function, which is the numerical value
of a certain technical parameter: consumed resources,
performance, productivity, and so on.

To gain the goal of optimization the algorithm that
implements PCM varies the variable parameters,
calculating the resource and time characteristics of MUi
and entire MM at each step.

Of course, the characteristics of the reconfigurable
matching module can be found by synthesizing its digital
circuit using the design tool from FPGA developer. But
this process takes too much time [31] that it makes such
an approach unfeasible for PCM implementation.

Therefore, the author proposed a technique of the
accelerated calculation of the characteristics of MUi and
MM. Its essence is to create the so-called estimation
function (EF) for each library component. Such a
function, having a given set of patterns Pi at the input,
calculates the amount of resources (and/or time
characteristics) that the ith MU has to consume to be
able to recognize this pattern subset.

F. ESTIMATION FUNCTIONS
Due to the distinction of the nature of approaches,

estimation functions for them are being composed in
different manner. For example, because of transparent
and regular structure of CAM-based matching unit
circuits, the EF for it can be formed by direct calculation
of the required resources.

Let us consider in detail how such EF is formed
using the example of a basic scheme of pattern matching
BsCAM based on discrete comparators [28], clarifying
along the way some important points about building DC-
based CAM on FPGA.

The BsCAM scheme implements directly the function
of detecting the matching of the input word with the pattern
and consists of a set of discrete comparators working in
parallel, each of which compares the input byte with a
predefined symbol [12], [13]. The Fig. 3 shows such a circuit,
which contains a pipeline consisting of 8-bit registers RGi,
comparators CMP1 … CMP3, each of which performs the
function of comparison with a certain symbol, and a logical
circuit "AND", which aggregates their outputs. The set of
comparators corresponds to one pattern to be recognized. The
analyzed sequence of symbols is fed to the input of the
pipeline. In case a fragment of sequence matches the pattern
"ABC", the active signal appears on the output "Match".

A scheme in the Fig. 3 looks pretty simple. But
some difficulties rise in its practical implementing on
FPGA.

Since the signature database of modern security
systems can contain a large number of patterns [26] he
output load ability (fan-out) of registers RGi, which are
made from conventional FPGA components, becomes
insufficient. And a high length of the digital lines
connecting a large number of logic elements distributed
along the surface of the FPGA chip leads to delays in
signal propagation, which reduces the maximum
operation frequency of the entire digital circuit.

To solve the problem, a pipeline of several stages
can be created [32]. Each output signal is branched into a
plurality of inputs of D-latch of the next stage (Fig. 4).

This solution at the expense of moderate additional
hardware costs and acceptable increase in latency allows
to distribute the outputs of the RGi registers to any
number of comparators without reducing the clock
frequency.

Fig. 3. A basic scheme of direct matching
the "ABC" pattern by discrete comparators

Fig. 4. Solving the FAN-OUT problem

Another problem of comparators-based scheme is
related to the large number of inputs of logic circuit
"AND". The length of pattern can be of tens of
characters, whereas the number of inputs of lookup table
(LUT) of modern FPGAs, which implement this scheme,
does not exceed 8. This difficulty can also be solved by
pipelining (Fig. 5) [12], [32].

Parallel combining of different approaches to multi-pattern matching for FPGA-based security systems 11

We can now return to composing the estimation
function for the BsCAM scheme.

In general case, the resources required for synthesis
in the FPGA of any MU (as well as the whole MM in
general) can be calculated in conventional units which
are equivalent in terms of costs, for example, to one
LUT:

iiiii MBFLR γβα +++= , (1)

where Li – amount of resources of logics of FPGA,
which is required to synthesize ith unit (number of
LUTs); Fi – amount of resources of distributed memory
of FPGA (number of flip-flops), Bi – amount of
resources of block memory of FPGA (number of BRAM
blocks), Mi – amount of external memory resources –
on-board memory of reconfigurable accelerator (Mb),

γβα ,, – normalization coefficients of different type
resources in relation to logic resources (LUTs).

Fig. 5. Solving the problem of multi-input "AND" circuit

Because the logical cells of most modern FPGAs
have the same number of LUTs and flip-flops (α = 1),
and because the CAM-based matching schemes do not
require BRAM or external memory, the expression (1)
for the basic scheme on discrete comparators BsCAM is
simplified to:

BSCAMBSCAMBSCAM FLR += , (2)

where LBSCAM and FBSCAM – numbers of LUT and flip-
flops in this scheme respectively.

The lookup tables LUT are used in the scheme
BsCAM, firstly, for synthesizing comparators CMP
(Fig. 3), secondly – to create multi-input circuit "AND"
(Fig. 5), which is built as a pipeline [28]:

&CMPBSCAM LLL += . (3)

The feature of the BsCAM scheme is the fact that it
requires as many comparators Ω as there are characters
in all the patterns of the set to be recognized:

∑
=

⋅=Ω
max

min

m

mj
j jδ , (4)

where j – length of a pattern in the set; mmin – length of
the shortest pattern; mmax – length of the longest pattern;

jδ – pattern length distribution function.
The discrete comparator CMP, which recognizes

one character in byte encoding, requires two 4- or 6-
input LUTs, or one LUT having 8 (or more) inputs,
when constructing CAM schemes. Let us introduce the
qualifier function

()




<
≥

=Λ
8,2
8,1

x
x

x ,

where x – the number of inputs of the LUT for a given
FPGA. Then the number of LUTs required for creating
all comparators in BsCAM scheme will be equal to

() Ω⋅Λ= xLCMP . (5)

Taking into account the fact that the x-input LUT
can synthesize a logic circuit "AND" not more than for x
inputs, the number of LUTs required to join j inputs with
a cascade circuit "AND" (Fig. 5) for each pattern is equal
[33] to:







−
−

==
1
1)(

x
jjLL j . (6)

The number of LUTs to form all pipelines of all
patterns is calculated similarly to (4) take into account
(6):

∑
=







−
−

⋅=
max

min
1
1

&

m

mj
j x

jL δ . (7)

The number of flip-flops required to create a
BsCAM scheme consists of their number FRG required to
build the input pipeline, the number Ffan-out of flip-flops
to increase the FAN-OUT of the input pipeline registers
(Fig. 4) and the number F& of flip-flops in the pipeline,
which joins comparator outputs for all patterns by
function "AND" (Fig. 5):

&out-fanRGBSCAM FFFF ++= . (8)

The pipeline, on which the input stream of
characters moves, is not shorter than the length of the
longest pattern of subset mmax and has one byte width.
Therefore, the number of flip-flops required to build it is
as follows:

maxRG 8 mF ⋅= . (9)

Finding the number Ffan-out (Fig. 4) is more difficult
compared to the previous calculations. The load on the
output registers of the input pipeline (Fig. 3) is irregular.

The signals from its first mmin stages are used to
recognize all the patterns of the subset whereas the
signals from the last stage – only to recognize the longest
patterns. By performing all the necessary calculations
[28], we get:

Sergii Hilgurt 12

∑
∑

+=

=
−



















−

−
+








−
−

=
max

min

max

1
minoutfan 1

1

1
1 m

mi

m

ji
i

yy
mF

δ
σ , (10)

where σ – number of patterns in the subset; y – FAN-
OUT property of the given FPGA.

The number of flip-flops in the pipeline for
combining "AND" for each pattern is less for one than
the number of LUTs in this pipeline L& according to (7),
because a flip-flop is not required after the last stage of
the scheme "AND" (Fig. 5):

1
1
11

max

min

&& −





−
−

⋅=−= ∑
=

m

mj
j x

jLF δ . (11)

Substituting (5) and (7) into (3), as well as (9), (10)
and (11) into (8), and then – (3) and (8) into (2), and
taking into account that the flip-flops and LUTs, which
are involved in the synthesis of the pipeline circuit of the
multi-input circuit "AND", can be used together in the
same logical cell of FPGA, we obtain the total number of
computing resources of the DC-based CAM basic
scheme BsCAM:

() +













−
−

+Λ= ∑
=

max

min
1
1m

mj
jBSCAM x

jjxR δ

∑
∑

+=

=



















−

−
+








−
−

++
max

min

max

1
minmax 1

1

1
18

m

mi

m

ji
i

yy
mm

δ
σ . (12)

Let us analyze the result obtained. The function
(12) which estimates resources for Matching module
built using the basic BsCAM scheme on digital
comparators depends, on the one hand, on the parameters
of the pattern set: σ , mmin, mmax, δ , on the other – on
the characteristics of the FPGA chip used in the
reconfigurable accelerator: x and y. When performing the
optimization procedure (splitting into subsets), the
parameters of the pattern set are variables, while the
characteristics of the FPGA are constants.

The above example for the BsCAM scheme allows
to get a certain understanding of the process of estimate
function composition. Without extra details, let us look
at the EF representation for a simplified pattern matching
scheme BFS based on a Bloom filter [29], and for Aho-
Corasick finite automaton using block memory
ACBRAM [30]

The EF for the BFS scheme is as follows [34]:

+



















+























 −

++⋅⋅







= 4

2
1BFs x

GG
p
eR βα

()





















−

−








+





















−





















−

−





⋅++



⋅⋅+

1

1

1

18

18
x

p
e

x
x
L

x
LGe αα , (13)

where e – recognition error factor, which is numerically
equal to the number of HFs in the BF (is inversely
proportional to the logarithm of the probability of false
positive, which is acceptable for a particular application
of the Bloom filter); p – number of ports of block
memory BRAM;





 ⋅

=
2ln

log2
LeG δ – bit width of the hash-function

generators,
where jδ – pattern length distribution function; L –
length of the patterns that are recognized by this BF.

The estimation function for the ACBRAM scheme
has such appearance as [34]:

 
+





−
−

⋅+









++








+=

1
11

log2
CUACBRAM x

rw
x

r
rLR β

() 







+








−





−
−

⋅++ wM
x
rwF /log1

1
1

BRAM2CUα ,

where LCU and FCU – number of LUTs and flip-flops
required to create a control device for AC FA
respectively, which can be found by a certain appro-
ximating technique; MBRAM – amount of memory (in
Kbits) in one BRAM block of the given FPGA (exclu-

ding parity bits, if any);
() 











=

wM
Br

/1024 BRAM

 –

number of BRAM block required, where B – amount of
block memory required for the ACBRAM scheme (in
Mbits), which is the sum of the amounts of memory for
direct, cross, failure and post-start transitions of the AC
FA: psflcrdr BBBBB +++= [30]; w –width (in bits) of
data stored in BRAM (depending on the technique used
to build the finite automaton).

V. RESOURCE COSTS OPTIMIZATION
Optimization task formulated in section IV has high

complexity. To solve it for the appropriate time, some
heuristic algorithms can be applied that allow us to find
an approximate optimum, not global, but at moderate
time costs.

One of them is to sort all patterns in some order and
split them into two subsets simply placing the first
several items to one subset, and the rest – to another one.
Obviously, such algorithm is applicable only when only
two approaches are involved.

Let us try to invent some heuristics to split patterns.
By examining the table in section III, one can make

such an observation. A significant drawback of CAM
that negates its main advantage is the excessive

Parallel combining of different approaches to multi-pattern matching for FPGA-based security systems 13

consumption of resources. While for BF it is a fixed
length of patterns. That is, for patterns of different
lengths you need to build a separate Bloom filter. On the
other hand, the CAM-based approach has very poor
scalability by the pattern set size whereas BF-based
one – vice versa.

Hence, if we split the pattern set so that the MU
built on the BF will recognize as many patterns with the
same length as possible, and the MU built on the CAM –
as few patterns as possible, the advantages of both
approaches will be mutually reinforcing.

So, let us group all the patterns into packages of the
same length and sort them by the number of patterns in
the package. Firstly, we will give all patterns to the
scheme on CAM, and then consequently take away the
packages with the greatest numbers of repetitions to the
BF-scheme: the biggest package, then the biggest and
the second by size package (leaving the rest of them to
the CAM-scheme), then – the first three packages, etc. In
the end, all packages (i.e. all the patterns) will be
recognized by the scheme on BF, while the CAM
scheme will have nothing to process. At each step of the
algorithm we calculate the hardware costs for each MU
and the total value using the EFs.

The Fig. 6 shows the resource costs calculated in
conventional units according to the algorithm formulated
above. The estimation function (12) of the BsCAM
scheme was used for the CAM-based MU simulating,
and the expression (13) of BFS scheme – for the BF-
based MU simulating. In this experiment, pattern set
from the signature database community.rules of free
NIDS Snort ver. 06/23/19 was used. The downward
curve indicates resource costs of BsCAM scheme. The
upward curve – of BFS scheme.

Fig. 6. Resource costs of the combined scheme

The leftmost point is the case when all the patterns
are matched by BsCAM device. In the first step one
package of 260 patterns of equal length are being
recognized by BFS, the rest of patterns – by BsCAM. In
the second step two packages of 260 and 259 equal
patterns are processed by BFS, the rest – by BsCAM. In
the third step three packages of 260, 259 and 243
patterns are processed by BFS. In the fourth step – four
packages of 260, 259, 243 and 209 patterns are

processed by BFS, the rest of patterns are matched by
BsCAM. And so on.

The rightmost point corresponds to the situation
when all patterns are matched by BFS device.

The upper curve indicates resource costs of the
whole MM including both BsCAM and BFS MUs. As it
can be seen, the total value curve has a pronounced
minimum near mark of 35th packet. This means that if
we split the pattern set so that the BF-based MU process
the first 35 packets (having majority patterns of the same
length) and the CAM-based MU process the rest of set
(predominantly different patterns), the combined
Matching module will consume about 30% fewer
resource costs than "pure" BsCAM scheme or about 50%
fewer than the BFS one. Thus, combining two
approaches together reduces the cost of resources
compared to using one approach.

VI. CONCLUSION AND FUTURE WORK
The most well-known approaches to the

construction of reconfigurable information protection
tools are: content addressable memory based on digital
comparators; Bloom filter based on hash-functions; the
Aho-Corasick algorithm implemented in the form of a
finite automaton. Numerous researchers have also
considered a lot of modifications and improvements to
the basic solutions. But none of these approaches has a
significant advantage over others in terms of parameters
of efficiency.

The contributions of this work are as follows.
Specific features of different approaches in terms of

resource costs, speed/throughput parameters, functional
characteristics, as well as scaling parameters are
formulated and explored. The universal technique to
increase the effectiveness of FPGA-based hardware by
combining different multi-pattern string matching
approaches and particular technical solutions was
regarded. A method of combining in parallel several
matching units based on different approaches was
constructed. The speeding-up technique based on
calculating estimation functions for every approach was
considered and discovered. An example of patterns
splitting algorithm was calculated. The obtained results
show the significant benefits of the proposed method and
allow developers to construct more effective signature-
based reconfigurable devices for security applications.

In future it is planned to investigate another than
parallel methods of combining different approaches to
build reconfigurable pattern matching devices.

VII. ACKNOWLEDGMENTS
This work was partially supported by the Program

of Informatization of the NAS of Ukraine for 2015-2019.

REFERENCES
[1] H. Chen, Y. Chen, and D. H. Summerville, "A Survey on

the Application of FPGAs for Network Infrastructure
Security," IEEE Communications Surveys and Tutorials,

Sergii Hilgurt 14

Article vol. 13, no. 4, pp. 541-561, 2011, doi:
10.1109/surv.2011.072210. 00075.

[2] S. Y. Hilhurt, "Application of FPGA-based reconfigurable
accelerators for network security tasks," Modeling and
information technologies. Collection of scientific works of
PIMEE NAS of Ukraine, no. 73, pp. 17-26, 2014.

[3] V. Paxson et al., "Rethinking hardware support for
network analysis and intrusion prevention," presented at
the USENIX First Workshop on Hot Topics in Security
(HotSec), Vancouver, July 31, 2006.

[4] B. Smyth, Computing Patterns in Strings. Essex: Pearson
Addison Wesley, 2003.

[5] H. R. Lewis and C. H. Papadimitriou, Elements of the
Theory of the Computations, 2nd ed. Prentice-Hall, 1998.

[6] S. Kazmirchuk, A. Korchenko, and T. Paraschuk,
"Analysis of intrusion detection systems," Ukrainian
Information Security Research Journal, vol. 20, no. 4, pp.
259-276, 2018, (in Ukrainian), doi: 10.18372/2410-
7840.20.13425.

[7] J. M. Korostil and S. Y. Hilgurt, "Principles of building
FPGA-based network intrusion detection systems,"
Modeling and information technologies. Collection of
scientific works of PIMEE NAS of Ukraine, no. 57, pp.
87-94, 2010, (in Russian).

[8] T. Katashita, Y. Yamaguchi, A. Maeda, and K. Toda,
"FPGA-based intrusion detection system for 10 Gigabit
Ethernet," IEICE Transactions on Information and
Systems, Article vol. E90D, no. 12, pp. 1923-1931, Dec
2007, doi: 10.1093/ietisy/e90-d.12.1923.

[9] S. Hilgurt, "Constructing optimal reconfigurable pattern
matching tools for information security," Ukrainian
Scientific Journal of Information Security, vol. 25, no. 2,
pp. 74-81, 2019, (in Ukrainian), doi: 10.18372/2225-
5036.25.13824.

[10] S. A. Guccione, D. Levi, and D. Downs, "A reconfi-
gurable content addressable memory," Parallel and
Distributed Processing, Proceedings, Article;
Proceedings Paper vol. 1800, pp. 882-889, 2000.

[11] Y. H. Cho, S. Navab, and W. H. Mangione-Smith,
"Specialized hardware for deep network packet filtering,"
Field-Programmable Logic and Applications, Procee-
dings: Reconfigurable Computing Is Going Mainstream,
Article; Proceedings Paper vol. 2438, pp. 452-461, 2002.

[12] I. Sourdis and D. Pnevmatikatos, "Fast, large-scale string
match for a 10Gbps FPGA-based network Intrusion
Detection System," Field-Programmable Logic and
Applications, Proceedings, Article; Proceedings Paper
vol. 2778, pp. 880-889, 2003.

[13] Y. H. Cho and W. H. Mangione-Smith, "Deep packet
filter with dedicated logic and read only memories," 12th
Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, Proceedings, Proceedings
Paper pp. 125-134, 2004, doi: 10.1109/fccm.2004.25.

[14] I. Sourdis and D. Pnevmatikatos, "Pre-decoded CAMs for
efficient and high-speed NIDS pattern matching," 12th
Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, Proceedings, Proceedings
Paper pp. 258-267, 2004, doi: 10.1109/fccm.2004.46.

[15] I. Sourdis, D. N. Pnevmatikatos, and S. Vassiliadis,
"Scalable multigigabit pattern matching for packet
inspection," IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Article vol. 16, no. 2, pp.
156-166, Feb 2008, doi: 10.1109/tvls1.2007.912036.

[16] B. H. Bloom, "Space/Time Trade-offs in Hash Coding
with Allowable Errors," Communications of the ACM,

Article vol. 13, no. 7, pp. 422-426, 1970, doi:
10.1145/362686.362692.

[17] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, "Summary
cache: A scalable wide-area Web cache sharing
protocol," IEEE - ACM Transactions on Networking,
Article vol. 8, no. 3, pp. 281-293, Jun 2000, doi:
10.1109/90.851975.

[18] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J.
W. Lockwood, "Deep packet inspection using parallel
bloom filters," IEEE Micro, Article; Proceedings Paper
vol. 24, no. 1, pp. 52-61, Jan-Feb 2004, doi:
10.1109/mm.2004.1268997.

[19] S. Dharmapurikar, M. Attig, and J. Lockwood, "Design
and Implementation of a String Matching System for
Network Intrusion Detection using FPGA-based Bloom
Filters," in All Computer Science and Engineering
Research, Washington University in St. Louis, WUCSE-
2004-12, 2004-03-25 2004.

[20] J. Harwayne-Gidansky, D. Stefan, and I. Dalal, "FPGA-
based SoC for Real-Time Network Intrusion Detection
using Counting Bloom Filters," presented at the
Proceedings of the IEEE SoutheastCon 2009, Technical
Proceedings, 2009, Proceedings Paper.

[21] S. Geravand and M. Ahmadi, "Bloom filter applications
in network security: A state-of-the-art survey," Computer
Networks, Article vol. 57, no. 18, pp. 4047-4064, Dec
2013, doi: 10.1016/j.comnet.2013.09.003.

[22] A. V. Aho and M. J. Corasick, "Efficient String
Matching: An Aid to Bibliographic Search," Commu-
nications of the ACM, vol. 18, no. 6, pp. 333-340, 1975,
doi: 10.1145/360825.360855.

[23] J. Lunteren, "High-performance pattern-matching for
intrusion detection," 25th IEEE International Conference on
Computer Communications, Vols 1-7, Proceedings IEEE
Infocom 2006, Proceedings Paper pp. 1409-1421, 2006.

[24] C. Lin, Y. Tai, and S. Chang, "Optimization of pattern
matching algorithm for memory based architecture,"
presented at the Proceedings of the 3rd ACM/IEEE
Symposium on Architecture for networking and
communications systems, Orlando, Florida, USA, 2007.

[25] D. Pao, W. Lin, and B. Liu, "Pipelined architecture for
multi-string matching," IEEE Computer Architecture
Letters, vol. 7, no. 2, pp. 33-36, 2008, doi: 10.1109/L-
CA.2008.5.

[26] W. Jiang, Y. H. E. Yang, and V. K. Prasanna, "Scalable
multi-pipeline architecture for high performance multi-
pattern string matching," in 24th IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2010,
Atlanta, GA, 2010, doi: 10.1109/IPDPS.2010.5470374.

[27] C. H. Lin and S. C. Chang, "Efficient Pattern Matching
Algorithm for Memory Architecture," IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, Article
vol. 19, no. 1, pp. 33-41, Jan 2011, doi:
10.1109/tvlsi.2009. 2028346.

[28] S. Y. Hilgurt, "Constructing CAM on discrete comparators
by reconfigurable means for solving information security
tasks," Electronic Modeling, vol. 41, no. 3, pp. 59-80, 2019,
(in Ukrainian), doi: 10.15407/emodel.41.03.059.

[29] S. Hilgurt, "Constructing Bloom filters by reconfigurable
means for solving information security tasks," Ukrainian
Scientific Journal of Information Security, vol. 35, no. 1,
pp. 53-58, 2019, (in Ukrainian), doi: 10.18372/2225-
5036.25.13594.

[30] S. Hilgurt, "Constructing deterministic finite automata by
reconfigurable means for solving information security

Parallel combining of different approaches to multi-pattern matching for FPGA-based security systems 15

tasks," Ukrainian Information Security Research Journal,
vol. 21, no. 2, pp. 111-120, 2019, (in Ukrainian), doi:
10.18372/2410-7840.21.13768.

[31] V. F. Evdokimov, A. M. Davydenko, and S. Y. Hilgurt, "Or-
ganization of centralized generation of bitstreams for hardware
accelerators for information security tasks," Modeling and
information technologies. Collection of scientific works of
PIMEE NAS of Ukraine, no. 81, pp. 3-11, 2017, (in Russian).

[32] J. Huang, Z. K. Yang, X. Du, and W. Liu, "FPGA based high
speed and low area cost pattern matching," in IEEE Region 10
Conference (TENCON 2005), Melbourne, AUSTRALIA,
Nov 21-24 2005, NEW YORK: IEEE, 2006, pp. 2693-2697.

[33] S. Y. Hilgurt, O. G. Kislov, V. M. Popova, and I. M. Liakh
"Accelerated calculation of characteristics of reconfigurable
matching schemes based on CAM and digital comparators,"
Modeling and information technologies. Collection of
scientific works of PIMEE NAS of Ukraine, no. 89, pp. 3-16,
2019, (in Ukrainian).

[34] V. F. Evdokimov, A. M. Davydenko, S. Y. Hilgurt, and
O. R. Yarema, "Hardware platform for reconfigurable
information security tools," Modeling and information
technologies. Collection of scientific works of PIMEE NAS
of Ukraine, no. 86, pp. 3-11, 2019, (in Ukrainian), doi:
10.5281/zenodo.610626.

Sergii Hilgurt, a Senior
Researcher of Pukhov Institute for
Modelling in Energy Engineering
(PIMEE), NAS of Ukraine, since 1992.
He received the scientific degree PhD
in "Computing machines, complexes,
systems and networks" from the
graduate school of the Institute for
Modelling in Energy Engineering,
Kyiv, Ukraine, in 1990.

From 1994 to 2008, he worked part-time at oil-pipelines
automation company GERAX.

From 2000 to 2004, he studied at the Doctorate of PIMEE.
He was awarded the scientific title of Senior Researcher in
"Computer systems and parts", in 2015. He is the author of two
books, two preprints, five inventions, and more than 80
articles. His research interests include: factory automation,
computing hardware, HPC, reconfigurable acceleration, DPI,
multi-pattern string matching, FPGA-based network security
systems and information security of critical cyber-physical
systems.

Mr. Hilgurt has been the Administrator of the GRID-site
UA-PIMEE (UNG/EGI) and MatModEn Virtual Organization,
since 2008.

