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Abstract: The problem of the elastic SH-wave diffraction 
from the semi-infinite interface defect in the rigid junction 
of the elastic layer and the half-space is solved. The defect is 
modeled by the impedance surface. The solution is obtained 
by the Wiener-Hopf method. The dependences of the 
scattered field on the structure parameters are presented in 
analytical form. Verifica¬tion of the obtained solution is 
presented.  

Index Terms: Elastic layer, impedance, rigid junction, 
defect, diffraction, normal wave, Wiener-Hopf technique. 

I. INTRODUCTION 
Prediction of the reliable work of the engineering 

constructions using layered junctions leads to the 
developing of the diagnostic methods. Information 
signals formed by the interaction of the elastic fields 
with material’s inhomogeneity to define interface defects 
are used. They have the complex dependencies on 
constructive, physical and mechanical parameters. It 
takes a lot of time and effort to carry out the natural 
experiments. In this case the mathematical modelling is 
an important stage of planning new technological means 
of diagnostic that elastic waves use. The theoretical basis 
of this modelling are the solutions of the diffraction 
problems of elastic waves from the defects in layers and 
its junctions. For simplifying, the materials layers are 
defined as elastic waveguides and the defects/cracks are 
modeled by the free stress surface [1–9]. General theory 
of wave propagation in the waveguide is given in [10–
16]. It is based on using integral equation methods and 
direct numerical analysis of the boundary value 
problems [17–19]. But the analytical methods are crucial 
in this investigation as it allows to understand better the 
physical features of waves and defects interaction. One 
of the most important analytical approaches to this 
analysis is based on the usage of functional Wiener-Hopf 
equation [7, 11, 20]. It allows to obtain the solutions of 
the mixed boundary value problems in the wide 
frequency domain that are controlling to check the 
results given by the general approximate methods. 

One of the modern key diagnostic problem is a 
developing of the methods of collecting and data 
analysis to define the features that prevent the possible 
defects. The aim of the problem is to define the changing 
properties of the material that lead to the defect. The 
solutions of the mixed boundary value problems with 
impedance boundary conditions are used to describe the 

damage [21–24]. There was little research into these 
models. Therefore, the developing of the analytical 
methods of their analysis that give reliable results are 
important [6, 25‒28]. In this paper the diffraction 
problem of the elastic SH-wave from the semi-infinite 
impedance surface formed on the rigid junction of a 
layer with a half-space is solved exactly by the Wiener-
Hopf technique. 

 

 

Fig. 1. Geometry of the problem 

The solution can be used for the estimation of 
changed condition of junctions by its changed 
impedance. 

II. STATEMENT OF THE PROBLEM 
Let us consider the elastic layer in the Cartesian 

coordinate system xOy as 

:{ ( , ), ( ,0), ( , )}P x y d z∈ −∞ ∞ ∈ − ∈ −∞ ∞  

that is joined with a half-space 0y > . 
Impedance half-plane  

:{ ( ,0), 0, ( , )}x y zΓ ∈ −∞ = ∈ −∞ ∞  

is a model of junction defect (Fig. 1). 
Let this structure is irradiated by the normal SH-

mode of layer P  that propagates in the negative 
direction of the axis x . The time factor is assumed to 
have harmonic variation i te ω−  and is suppressed through 
this paper. The problem is formulated in terms of the 
scalar-valued function ( , )u u x y=  which is the nonzero 
component of the displacement vector ( , )ze u x y≡u r , 
satisfies the Helmholtz equation 

 2 2 2( , ) ( , ) ( , ) 0x yu x y u x y k u x y∂ + ∂ + = , ( , )x y P∈ ,  (1) 

and boundary impedance condition type on Γ  
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 ( , ) ( , ) 0tot tot
yu x y u x yη∂ + = , ( , )x y Γ∈ ,     (2) 

where η  is an impedance ( Im 0η ≤  [24]), and describes 
the connection on the plane Γ  between the stress and 
displacement. The unknown function u  has to satisfy 
the stress-free boundary condition on the surface layer 

 ( , ) 0, , ( , )tot
zy yu x y y d xτ µ= ∂ = = − ∈ −∞ ∞      (3) 

and condition of the rigid junction with a half-space  

0, 0; (0, )totu y x= = ∈ ∞ .                     (4) 

Here tot incu u u= + , u  is the unknown diffracted field, 
incu  is the incident wave, 

( , ) sin( )j xinc
ju x y e yγ β= ,                         (5) 

(2 1) / 2j j dβ π= − , 1, 2,3...j = ; 2 2
j j kγ β= − , Re 0jγ > ; 

k k ik′ ′′= +  is the wave number ( , 0k k′ ′′ > , k k′ ′′>> ). 
It is necessary to find the solution of the diffraction 

problem (1)–(4) in the class of functions that satisfy the 
boundary absorption condition at infinity, if | |x → ∞  
and the Meixner condition as 

u δρ∼ , (1 )/u y δρ − −∂ ∂ ∼ , 

when 2 2 1/2[ ] 0x yρ = + → ,                  (6) 

where ρ  is the distance to the edge of the defect in the 
local coordinate system; 0 1/ 2δ< < . 

Note, the impedance η  in the boundary condition 
(2) is defined as a parameter, where the inverse value 

1/q η=  (admittance) defines the level of damage; its 
limit value shows the absence of damaging when 0q →  
and, if q → ∞  the crack is formed.  

III. THE PROBLEM SOLUTION 
Let introduce the unknown field by the Fourier 

integral  
1( , ) ( , )
2

i xu x y U y e d
+∞

−

−∞

= ∫ αα α
π

,                (7) 

where ( , ) ( ) ( )y yU y B e C eγ γα α α −= + , 2 2 1/2( )kγ α= − =  
2 2 1/2( )i k α= − − , Re 0γ ≥ ; function ( , )U yα  is regular 

in the stripe 0 0:α Π τ τ τ∈ − < <{ } , where 

0 1min Im , Re )kτ γ≤ { } , 1Re Re jγ γ< , if 1j > ; ( )B α , 

( )C α  are unknown functions. Applying the Jones’s 
method [11], we transform the boundary value problem 
(1)–(4) to the Wiener-Hopf equation as 

( )
( ) ( ,0) ( ,0) 0,

2 ( )
j

j

i M
M U U    

i
β α

α α α
π α γ

+ −′ + − =
−

 

α Π∈  (8) 

Here, 
01

( ,0) ( ,0)
2

i xdU u x e dxαα
π

−
−

−∞

= ∫                (9) 

0

1( ,0) ( ,0)
2

i x
yU u x e dxαα

π

∞
+′ = ∂∫ .       (10) 

The kernel function 

ch ( )( )
sh ( ) ch ( )

dM
d d d

γ
α

γ γ η γ
=

+
                    (11) 

is even and meromorphic; in the stripe Π  the function 
( )M α  is regular and outside Π  has simple zeros and 

poles. If | |α → ∞ , the asymptotic evaluation 
1( ) ( )M Oα α −=  is correct; ( ,0)U α−  and ( ,0)U α+′  are 

unknown Fourier integrals of the displacement and stress 
fields on the surfaces Γ  and { 0, 0, ( , )}x y z> = ∈ −∞ ∞  
respectively, dη η= . 

The asymptotic behavior of the unknown functions 
( ,0)U α+′  and ( ),0U α− , if | |α → ∞  in the regularity 

regions 0Reα τ> − , 0Reα τ<  respectively are defined 
according to the conditions (6) [20] as 

1 2( ,0) (| | )U Oα α+ −′ = / , | |α → ∞ , when 0α τ> − ; 
3 2( ,0) (| | )U Oα α− −= / , | |α → ∞ , when 0α τ< . 

Let us represent the Fourier transform of the 
displacement field (7) as 

1/2(2 )
( , ) ( ,0) ( ,0)

( )

ch( ( )) .
sh ( )

j

j

i
U y U U

i

y d
d

π β
α α η α

α γ

γ
γ γ

−
+ −

×

×

 
′= − + − 

+
 (12) 

The even function (11) admits the factorization 
[11,20]: 

( ) ( ) ( )M M Mα α α+ −= ,                         (13) 

where the functions ( )M α+  and ( )M α−  are regular and 
do not have zeros and poles in the upper ( 0τ τ> − ) and 
lower ( 0τ τ< ) half-planes of the complex variable α  
respectively. Let us indicate nciγ±  and nsiγ±  the zeros 
and poles of the function ( )M α  as 

1 1 2 2 2 24 (2 1)nc d n k dγ π− −= − − , 1,2,...n = ,         (14) 

1 2 2 2( )ns ns nd z k dγ γ η −= = − , 1,2,...n = .       (15) 

Here nz  are the roots of the transcendental 
equation 

sin( ) cos( ) 0z z zη− = .                    (16) 
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Let us represent the numerator and denominator of the 
function (11) in the form of the infinite product [11] as 

1

1

1
( )

tg( ) 1

di
n

ncn
di
n

nsn

e
i

M

kd kd e
i

α
π

α
π

α
γ

α
αη
γ

∞ ±

=
± ∞ ±

=

 
± 

 =
 

− ± 
 

∏

∏
.         (17) 

Taking into account the asymptotic behavior of 
zeroes and poles of the function (11), we arrive at the 
asymptotic estimates of the functions (17) in the 
regularity regions as 1 2( ) (| | )M Oα α −

± = / , if | |α → ∞ . 
Applying the procedures of factorization and 

decomposition [20] to the Wiener-Hopf equation (8), its 
solution is written as follows 

( )
( ,0) 1

( )2 ( )
j j

j

i M i
U

Mi

β γ
α

απ α γ
++

+

 
′ = − −  −  

,     (18) 

( ) ( )
( ,0)

2 ( )
j j

j

i M i M
U

i

β γ α
α

π α γ
+ −− =

−
.                  (19) 

IV.  FIELDS REPRESENTATION  
Substituting the expressions (18) and (19) in (12), 

we obtain the Fourier transform of the displacement 
field. In order to transform into coordinate area, we 
apply the inverse Fourier transformation. For this 
purpose we close the integration path into the upper and 
lower complex half-planes for 0x <  and for 0x >  
respectively, where Jordan’s lemma is satisfied. The 
scattered field for each of the regions is written as 
follows: 

1

2

( , ), 0,
( , )

( , ), 0.
u x y x

u x y
u x y x

>
=  <

                     (20) 

Here, 

1 1
1

(2 1)( , ) sin ,
2

qc x
jq

q

qu u x y R e y
d

γ π∞
−

=

 −
= =  

 
∑      (21) 

 

inc
2 2

1

( , ) ( , )

( )
cosqsx q

jq
q

u u x y u x y

y d
T e

d
γ ϕ∞

=

= = − +

+ 
+  

 
∑

,                   (22) 

where jqR , jqT  are coefficients of mode transformations 
on the defect tip in the domains 0x >  and 0x <  
respectively;  

( ) (2 1) ( )
,

2 ( )
j j qc

jq
qc j qc

M i q M i
R

d
πβ γ γ

γ γ γ
+ +−

=
+

1, 2, ,

1,2, .

q

j

= …

= …
    (23) 

1

cos

( )

( )
,

)( (1 )( tg( ))( )

j j
jq

q qs

qs q q q qs j

M i
T

d

i M i

β γ

ϕ γ

γ ϕ ϕ η ϕ γ γ

+

−
+

= ×

×
+ + −%

 
1,2, ,

1,2, .

q

j

= …

= …
.(24) 

Then applying the asymptomatic analysis we obtain 
that 3 2, ( )jq jqR T O q−= / , if q → ∞ ; therefore, if 0y =  

we arrive at 1 2( )u O x= /  and 1 2( )yu O x−∂ = / , when 
0x → . These estimations guarantee the uniform 

convergence of the series (21), (22) and their derivatives 
in the domain { 0 0 ,x x−∞ < < < < +∞∪  0}d y− ≤ ≤ . If 

0x →  our field representation formulas (21), (22) 
satisfy the Meixner condition (6) and the boundary 
conditions on the layer faces y d= −  and 0y = . 

The formulas (21), (22) give the exact solution of the 
problem that satisfies all the necessary conditions. They can 
be used to determinate the diffracted displacement field for 
the arbitrary values of geometrical parameters of our 
structure and frequency. If 0η →  the expressions (21), 
(22) are transformed into the previous results in [7]. 

V. EIGEN MODES IN THE SURFACE 
IMPEDANCE AREA 

In order to analyse the wave propagation in our 
impedance waveguide let us determine the complex 
value roots of transcendental equation (16). There are 
several approaches to the solution of nonlinear trans-
cendental equations. These methods have local conver-
gences to the roots and the incorrect choice of the initial 
approximation leads to the divergences of the algorithm. 
In order to omit this limitation, we propose the algorithm 
which needs the additional information concerning the 
roots position on the complex area. 

For further convenience, we will introduce new 
notations for functions and domains as 

( ) sin( )f z z z= , ( ) cos( )g z zη= − , z x iy= + ,    (25) 

:{( 1/ 2)

( 1/ 2) },

K
n z n x

n y K

Ω π

π

= − ≤ ≤

≤ + ∧ ≤
 1,2,...,n = ∞ .   (26) 

The constant K  to be defined. Using the notations 
(25), let us rewrite the equation (16) as follows  

( ) ( ) 0f z g z+ = .     (27) 
Obviously, the function ( )f z  has a single root in 

each domain K
nΩ . As follows from the Rushe’s theorem 

[29], the condition | ( ) | | ( ) |f z g z>  on the boundary 
K
nΩ∂  is sufficient for existence of the single root of the 

equation (16) in K
nΩ . The following example illustrates 

how it is satisfied. 
On the segments { ( 1/ 2) }x n y Kπ= ± ∧ ≤  is 

valid that 
1 2 2 2| ( ) | 2 (1 2 ) 4 ch( )f z n y yπ−= ± + , 

| ( ) | | || sh( ) |g z yη= . 
If | |K η≥ and | sch h ) |( ) (y y≥ , then  

| ( ) | ch( ) | | ch( ) | | sh( ) | ( ) |f z K y y y g zη η =≥ ≥ ≥ . 
Let us consider the inequality as  

cth( ) 0a x x− < .        (28) 
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Let us show that the constant 0C  exists for which 
the inequality (28) is valid for any 0a > , if 0x C> . 

Let us consider the function ( ) cth( )x a x xν = − . 
Then we obtain that 

0
lim ( )
x

xν
→

= +∞  and 

lim ( )
x

xν
→+∞

= −∞ , thus there  is at least one root of the 

equation ( ) 0xν =  on the interval (0, )+∞ . The function 
( )xν  is the straightly monotonically decreases on the 

interval (0, )+∞  because 2( ) / sh ( ) 1 0d x dx a xν −= − − < . 
This guarantees the existence of a single root 0x x= . If 

0x x>  inequality (28) is satisfied. It is sufficient to use 

0 0C x= . In our segments (26) the following equalities 
are correct 

1/2 2 2| ( ) | 2 ( ) ch(2 ) cos(2 )f z K x K x−= + − , 
1/2| ( ) | 2 | | ch(2 ) cos(2 )K xg z η− +=  

Let K ′  is the root of the equation 
| | cth( ) 0x xη − = . Then, if ( )0 max | |,K K Kη ′> =  the 
inequalities  

1 2 2

1/2

2 ( ch(2 ) cos(2 )

2 ch(2 ) 1 sh( ) ch

| ( ) | )

| | | ( ) |,( )

K x K x

K K K K K

f z

g zη

−

−

+ − ≥

≥ − ≥ > ≥

=
 

are valid.  
Thus, the equation (27) has a single root in any 

K
n nΩ Ω⊂ , where lim K

n nK
Ω Ω

→∞
= . Therefore, in the 

complex half-plane Im 0z >  the equation (27) has an 

infinite number of roots { } 1n nz ∞
=

. The approximate 
expressions to determine the roots of the transcendental 
equation (16) , if | | 1η << are as  

1z η≈ , ( 1) / ( 1)nz n nπ η π≈ − + − , 1.n >      (29) 
We apply the Newton method for determine the 

roots of the equation (16) in the general case. The first 
10 roots for different values of the parameter η  are 
presented in Table 1. 

VI.  NUMERICAL ANALYSIS 
To verify the obtained results we check the 

satisfying the continuity conditions of the displacement 
and stress fields at the surface { 0, 0}x d y= − < <  In 
Fig. 2 dependencies of 1 2| | | (0 , ) (0 , ) |u u y u y∆ = + − −  and 

1| | | (0 , )x xu u y∆∂ = ∂ + − 2 (0 , ) |xu y∂ −  on dimensionless 
parameter /y d  are given. 

These dependencies for different impedance para-
meters η  and the dimensionless thickness/ frequencies 
kd  of the layers are shown in Fig. 2. The curves in 
Fig. 2а,b and in Fig. 2c,d correspond to the different 
impedance values 1.5η =  and 5η =  respectively with 

2kd =  (curves 1) and 4kd =  (curves 2). The five 

hundred terms of the series (21), (22) were used for 
calculation. 

 

 

 

 

 

 
 

Fig. 2. Verification of the continuity conditions 

a 
 

b 
 

c 
 

d 
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The behavior of the curves in the figure show the 
excellent satisfaction of conditions of continuity of the 
displacement and stress fields in the internal domain 
{ 0, 0}x d y= − < < , except of the tip of the defect 
( 0, 0)x y= = , where the stress has the singularity (6). 

Table 1 

Values of the first ten roots  
of the characteristic equation 

0η =  1.5η =  5η =  0.1η = −  

0.000 0.988 1.313 -0.322i 
3.141 3.542 4.033 3.109 
6.283 6.509 6.909 6.267 
9.424 9.580 9.892 9.414 
12.566 12.684 12.935 12.558 
15.707 15.802 16.010 15.702 
18.849 18.929 19.105 18.844 
21.991 22.059 22.212 21.987 
25.132 25.192 25.327 25.129 
28.274 28.327 28.448 28.271 

 

1.5η = −  5η = −  0.15iη = −  3 0.15iη = −  

-1.622i -5.000i 0.281-0.267i 1.193-0.013i  
2.622 1.941 3.142-0.048i  3.809-0.022i  
6.0409 5.550 6.283-0.024i  6.704-0.018i  
9.264 8.914 9.425-0.016i  9.724-0.014i  
12.446 12.177 12.566-0.012i  12.797-0.011i  
15.612 15.394 15.708- 0.010i  15.895-0.009i  
18.770 18.587 18.850-0.010i  19.006-0.008i  
21.923 21.765 21.991-0.007i  22.126-0.007i  
25.073 24.935 25.133-0.006i  25.251-0.006i  
28.221 28.098 28.274-0.005i  28.380-0.005i  

VII. CONCLUSION 
The solution of the diffraction problem of the 

elastic normal SH-wave from the tip of the defect in the 
rigid junction of a layer and a half-space is obtained. The 
elastic waveguide mode spectrum for domains with ideal 
(21) and impedance (22) boundaries is formed. 
Verification of the obtained solution for different values 
of the frequency and impedance parameter is made. 
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