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In this paper, the regularities of convolution of sequences ¢ of Fibonacci numbers {F,} generated
by metallic means and the sum of products of two statistically independent sequences {F} and
Jn=j-sin(0.5z(n-j)) are investigated. It is shown that the known closed forms of sums for convolution

5 5 (n-j-Yp . : _
aFF,_, andproduct ij COS# are similar. Attention to the study of the convolution of
j=1

j=1
two sequences of discrete data is associated with the use of this method for statistical signal processing.
This problem involves calculating finite sums as discrete analogs of definite integrals. Such a problem is
considered solved if the formula for the sum is expressed in a closed form as a function of its members
and their number.
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Introduction

Attention to the study of the convolution of two sequences of discrete data is associated with the use
of this method for statistical signal processing [1-2]. This problem involves calculating finite sums as
discrete analogs of definite integrals. Such a problem is considered solved if the formula for the sum is
expressed in a closed form as a function of its members and their number. The convolution of two FiF,;
recurrent Fibonacci-Luca sequences was studied in [3-5].

Problem statement

In this paper, the regularities of convolution of sequences c¢ of Fibonacci numbers {F.}
generated by metallic means [6] and the sum of products of two statistically independent sequences

{F.} and J,=j-sin(0.5n(n-j)) J, = szin% [7] are investigated. It is shown that the known

w are similar.

n n-1
closed forms of sums for convolution é_ F.F,_, and product é JF; cos
i=0 =1
Theoretical results

Let be a two-dimensional system of Cartesian rectangular coordinates p0q divided into four
guadrants p>0, q>0 (first), p>0, q<0 (second), p<0, g<0 (third) i p<0,g>0 (fourth). In the third
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guadrant, there is a phase direction of points with coordinates p>1, q= -1, which has the following

positive solutions:
_pt+ypi+4

p > 1)

for the following quadratic equation
i, -pi,-1=0, )
known as the (quadratic) metallic means. So J pm2 =1 \/E is known as the silver mean,
L %(1+ \/5) is called the bronze means.
Consider the decomposition of a square trinomial (2) in the form
3, =a,,+b, (3)
for positive roots f (+p, q=-1)>0 insecond (J ) and the third (J ,,) quadrants:
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1:11,1113 = (pz +1)f11,111 mp, If nl: ma ';: mb
f”’”l4 — mp(pZ + 2).[:”'”[ + (pZ +1)’ 1° 1,11 n" 1,111 n
. f11,1115 = [p2 ( pz +2)+( p2 +1)]f11,111 m p( p2 +2),
':'fll,mG = m[p(pz +3)(p2 +1)]f11,111 + pz(pz +2)+ (p2 +1),
T
For the points p =*2,q = -1 the sequences {an} have the following form:
in 01 2 3 4 5 6 7
fa, 01 m2 +5 ml2 +29lm70, +169... (5)

+b, 10, +1, m2 +5 mi2 +29, m70, ,.

Discussion

In the second quadrant, the sequence {an = a2n} is alternating, it oscillates with the increasing
amplitude around the equilibrium value a = 0 (Fig.1a). The Members of the sequence {an} are calculated
by a recurrent formula

a,=prxa,,+ta,,, n32. (6)
In the third quadrant, the sequence {an = a3n} changes monotonically as the envelope of oscillations
{an =—a 2n} (Fig..1). The limit value for members of both neighboring sequences varies and goes to the
root values (Fig.1)
an

n®¥ an 1

@ m2.414. )
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a a . . .
In general, i —— adjacent sequence values {an(ao,al; p,q)} in points p,q along the

n-1 an—2

first root lines are expressed employing chain fractions with the corresponding limits
ia, _ q _ q _ q a
= p+ =p+ =p+ P lim—" = max(x, ),
':'an—l a'n—l /an—z p + 7(:' p + q ne¥ a'n—l
| a,, /an—S p +ﬂ
v (8)
T _ p _ P _ P T 2
I —qg+ =g+ =q+ P lim—= = max(x,)",
o, q a_la, q o q o N (x.)
T q +7/ q+
I an—z an—3 q +B
]

oscillating or changing monotonically in the second quadrant under arbitrary initial conditions. The
sequence {a, = a3, } refers to the classical Fibonacci sequence

F,=pF_,+F_, n32, F =0F=1p=2q9=1. (9)
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Fig. 1 Dynamics of changes in the recurrent sequence (9)
and the relations of its neighboring members

Consider the convolution of two sequences (9) generated in the second (an*a,) and the third (F,*F,)

n n
quadrants, which are calculated as the sums éai xa, ; (table 1) and é F, xF, . (table 2') products of
i=0 i=0
statistically dependent multipliers by the algorithm [9]. As follows from tables 1 i 2, the convolutions
differ only in the sign of the summation result.

o a, a,; F  F. -
The Regularities of products a,xa,; , —*——— and FtF ., ——x—""— are similar to
an—i+1 i+l n-i+l

n
each other, taking into account the sign. The Regularities of the formation of sums éai xa,; and
i=0
g
aF rF,_; statistically dependent multipliers of products are shown in Figure 2.
i=0
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Table 1
Convolution the two sequences {an} for n=7
j 0 1 2 3 4 5 6 7 Sum
a, 0 1 -2 5 -12 29 -70 169
a,_; 169 -70 29 -12 5 -2 1 0
éai a, 0 -70 -58 -60 -60 -58 -70 0 -376
Table 2
Convolution the two sequences {Fn} for n=7
j 0 1 2 3 4 5 6 7 Sum
F 0 1 2 5 12 29 70 169
F,.. 169 70 29 12 5 2 1 0
éﬁ i 0 70 58 60 60 58 70 0 376

n
For the recurrent sequences (9), a closed-form of the sum éF.F . with arbitrary values of the

i=0 B
coefficients p,q was first found in [7].
5 _(n-YpF, +2ngF,, (n-1)pF, +2nF,

o
FF =S(n, p,q,F). 10
gln—l p2+4q p2+4 ( pq ) ()
For p=1q=1and F,=0,F =1 formula (13) has the form
5 +
aFF,. :M. (11)

i=1
As can be seen from Fig. 2, the formula for the sum in closed form (10) for the sequence {an} does

not come true but comes true only at the vertices of oscillations.
The following formula was found for the sum [7]

n-1 n-1 n
aF*F_; = QF,"J, = F,jrcos
=1 j=1

i= i=0

2
n61
In the formula (12), a multipliers F; i J; are statistically independent, so the sum QF;xJ; is
j=1

valid only for the sequence {Fn}(Fig.Z). Finally, we present other formulations of the formula (12) :

ip_ 8 (n-j)p
— (13)

aFF,. =aF - jsin->=aF,;jsin
i=0 j=0 2 j=0
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Fig. 2. Comparative analysis of convolution of the sequence terms and (12) — (13)

We formulate the next two propositionS'

Proposition 1.~ g F.F, . aF x(n- j)sin 7p aFr..’ jsin% (14)
i=0 j=0
é(n - j)Fn—j Cosw = né Fn—j Cosﬂ - é.jl:n—j Cosw =
. i=0 2 i=0 2 i=0 2
Proposition 2. ] ) (15)
= néFn_j sin jB— éan_j sin jB
i=0 2 i 2
Since for initial condition F; =0, F, =1 satisfy equal -
Am-pF,sinj2 =g jFsinjB (16)
i=0 2 i 2
then
An-iF, sinjP =4 iF cosNTIDP - & i g P (17)
i=0 2 i 2 i=0 2

Conclusion and future work

In this paper, the regularities of convolution of sequences ¢ of Fibonacci numbers {F,} generated by
metallic means and the sum of products of two statistically independent sequences {F} and
J.=j-sin(0.5n(n-j)) are investigated It is shown that the known closed forms of sums for convolution
éFi . and product a JF, cos%

i=0 j=1

are similar.
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To further our developing we are planning to expand the idea of using explored parameters in the
algorithm of modeling systems with the different parameters
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I1. KocoOyubkuii, H. Hecrop
Hamionansawuii yHiBepcutet “JIbBiBChKa mosiTexHika”

®OPMYJIM CYM JOBYTKIB IIOCJIIJIOBHOCTEIM,
3B’SI3AHUX 3 METAJITYHUMMU CEPE/THIMHA

© Kocobyywkuii I1., Hecmop H., 2020

Y wiii po6oTi 10CaiMKYIOThCS 3aKOHOMIPHOCTI 3rOpPTKHM MOCTiT0BHOCTEH cym yucesa PidoHaqyi
{F.}, mopomxenux MerajeBUMH cepeIHiMH, TAa CyMH JAOOYTKIiB JBOX CTATHCTHYHO HE3AJIEKHUX
nocaigouocreii {F,} Ta J,=j-sin(0.5xw(n-j)). lloka3ano, mo Bigomi 3akpuri GopmMu cym s 3ropTKH

él:i |:n_i Ta J00yTKiB gj[:j Cosw € noaionnmu. Taka yBara 10 BHMBYEHHS 3rOPTKHU JABOX
j=1 = 2
MOCTITOBHOCTEl JANMCKPETHHX JAaHUX MOB'A3aHAa i3 3aCTOCYBAHHSIM IBOT0 METOAY AJS CTATHCTHYHOI
00poOku cur”auiB. g 3agaya nepegdauyae o0uMcIeHHSA CKiHYEHHHUX CYM SIK JUCKPETHHX aHAJOrIB
neBHUX iHTerpajiB. Taka mpodJieMa BBaxKaeTbecsl BUPiLIEHOIO0, SIKIIO GopMyJia CyMH BHPAKAETHCH Y
3aKpUTOMY BULJIAAL 1K GYHKUiA il YieHiB Ta iX KIIBKOCTI.

KirouoBi cioBa: 3oJioTe cideHHsl, MeTajeBi cepenHi, mocjigoBHocti Pidonayui, kopeHi
KBQJIPATHOIO PiBHSIHHS
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