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Abstract. Modern measuring instruments as highly technological, precise, multi-functional tools today are complex 
systems, and estimation of their uncertainty turns into a non-trivial task of science. To provide information about the probability of 
results, their convergence, and reproducibility, it is necessary to analyze the task-oriented measurement uncertainty. As an 
approach to determining the uncertainty of complex systems, to avoid the need for professionally experienced personnel and 
expensive “artifacts” used for evaluation, there is a method of a so-called virtual measuring instrument. In this method, the 
measurement process is simulated, taking into account the influence of the main disturbance parameters and conducting statistical 
analysis using the Monte Carlo approach. All characteristics of virtual modules repeat the properties of real devices but allow 
quick and qualitative evaluation of environmental parameters' effect on the accuracy, as well as the uncertainty of measurement. It 
allows us to evaluate the correctness of the result under the present conditions. The measurement uncertainty is usually caused by 
several major sources. Uncertainty depends on the method of measurement, but there are still common factors, i.e. uncertainty 
caused by measuring instruments, methods, operators, and environment. Among environmental influences, it is important to 
highlight – the change of light and temperature, which can vary widely variate at the production process, and at the same time have 
a crucial impact on the uncertainty of measurement. The paper presents a virtual measurement instrument method and its known 
implementations. 
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1. Introduction 

Measurement uncertainty evaluation is a basic 
requirement for a high-quality and cost-effective produc-
tion process and includes a certain technological ap-
proach. However, in coordinate metrology, the esti-
mation of measurement uncertainty is a complex 
process. It requires a specialist performing the analysis 
to make certain adjustments for each case. Features of 
size, shape, shape deviation and the aspect of acces-
sibility when a measure is made without changes made 
from the outside have a significant impact. Thus, the big 
range of parts types with several variations of shape and 
at the same time the presence of small tolerances require 
the use of simple but effective and at the same time quite 
universal methods. According to [1-3], there are three 
different approaches to estimating the uncertainty of 
measurement results – analytical uncertainty budgets, 
experimental determination, and computational mode-
ling. All these approaches require an adequate 
mathematical model and an appropriate description of 
the quantitative estimates of the uncertainty components. 

Estimation of measurement uncertainty using an 
analytical approach (or uncertainty budget) is based on a 
detailed description of the error components. The 
calculations are made according to the method described 
in the guidelines for measurement uncertainty [1, 4]. The 
experimental procedure complies with ISO 15530-3 [2], 

according to which it is necessary to perform multiple 
measurements of the calibration body. ISO / TS 15530-4 
[3] describes general requirements for modeling me-
thods. Numerical modeling is an effective and flexible 
way to estimate measurement uncertainty in coordinate 
metrology. This approach is described in the appendix to 
the guidelines for the measurement uncertainty [5]. 

It should be emphasized that there is a difference 
in the understanding of the term “virtual measuring 
instruments” in Ukraine and abroad. Ukrainian scientists 
call a computerized tool “virtual” [6, 7]. On the contrary, 
the developers of the virtual CMM from the National 
Metrology Institute of Germany, PTB call a computer 
program for the measurement result in uncertainty 
determining – a virtual measuring instrument (VMI) [8]. 

Unlike a computerized instrument, in which a real 
measurement takes place, VMI simulates the measu-
rement process itself to predict the influence of error 
factors using multiple measurements. The output is 
similar to the output data of the real measuring instru-
ment, and the input data reproduce the characteristics of 
the measured object as if they were measured by a real 
measuring instrument (MI). The VMI measurement 
process replicates the MI process (Fig. 1). 

The real and virtual branches are connected by 
three aspects. First, the output data of the real measu-
rement is the input data for the virtual measurement. 
Second, in real and virtual measurement branches, the 
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inverse problem is solved using the same methods, the 
parameters of which are equally applicable to both 
branches. Third, the measurement correctness is verified 
by comparing the real measured object and the virtual 
object model.  

A real MI evaluates and registers specific object 
characteristics. Their parameters are obtained from the 
solution of the inverse problem. As a result of this process, 
we obtain a model of the measured object and its 
characteristics. Since the object model is obtained with a 
certain uncertainty, it is then necessary to calculate this 
uncertainty. This uncertainty can be obtained using the 
VMI. The creation of the object model provides the ability 
to create a virtual model, which in turn serves to form a 
virtual object. The virtual object is then used to generate 

virtual measurement data and solve the inverse problem. 
The next step is to compare the real and virtual model 
measurement and estimate the uncertainty. In case of 
divergence between the models, the inverse problem is 
solved using other parameters or another computer 
method. A new real re-measured and recreated virtual 
measurement model is created.  

Note that the agreement of real and virtual models 
must be guaranteed at the first stage of VMI creation. 
Further, the model can be adjusted by other influential 
factors, but the first validation guarantees the agreement 
of the model and real measurement. With unknown input 
parameters, the use of verified VMI guarantees the 
correctness and repeatability of the MI measurement 
process in general [9]. 

 

 
Fig. 1. A general characteristic diagram that describes the real and virtual MI [9] 

2. Goal of work 

The aim is to create a virtual measuring instru-
ment basing on the existing  approaches and identify its 
structure for the uncertainty evaluation. 

3. VMI creation approaches 

To date, there are two approaches to the creation 
of VMI – imitation, and simulation [10]. The imitation is 
based on the modeling of certain basic processes that 
occur in the real MI in the measurement process. In other 
words, imitation is MI operations modeling. The 
simulation is based on information modeling, i.e. the 
signal obtained in the process of measuring MI. Unlike 
imitation, the simulation does not model the MI. The 
VMI program is based on static modeling using the 
Monte Carlo method [11]. Due to [9] it is necessary to 

fulfill three prerequisites for simulation, as more 
complex in terms of modeling, namely: 

1) With the use of modern personal computers, 
the duration of information generation should not be too 
long, it should take no more time than the actual MI. 

2) The number of independent random numbers 
generated by the generator must be sufficient to achieve 
the goal. 

3) The method that uses the Monte Carlo 
approach must correctly reproduce the work of the MI. 

Where one of these requirements is not met or are 
not fully satisfied, then the simulation method can not be 
used to create VMI. These requirements would be 
discussed in detail further. 

The data set generation duration. Simulations 
using the Monte Carlo method are traditionally used to 
simulate MI measurement processes. But it should be 
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noted that the Monte Carlo method is one of the slowest 
computer methods. Today, due to the demand of the 
crypto industry for powerful computers and the random 
numbers algorithms modernization, assist in model 
engineering problems. Analysis of modern pseudo-
random numbers generators [12], implemented on a 
laptop Ivy Bridge i7 with a frequency of 2.6 GHz, 
showed a large generation speed increase for 109 num-
bers by the modern algorithm Xoshiro256 + when 
compared to the classic Mersenne Twister. Generation of 
this amount of pseudo-random numbers took 1,279 
seconds compared to 4,522 seconds with the classic 
Mersenne Twister. Therefore, the speed of random 
number generation algorithms increases, which improves 
the applicability of the simulation. 

The number of random numbers. Periodicity. 
The Monte Carlo method involves the use of a large 
array of random mutually independent numbers. One of 
the disadvantages of previously developed algorithms is 
the presence of so-called periodicity. The periodicity as 
the repeatability of the results of the random number 
generator is about 30 million [9]. In the case of the 
simulation of the work of, for example, a scanning 
electron microscope (SEM), the required number of 
independent numbers can be 600 billion [13]. Today, the 
frequency of the most used and fastest generators starts 
from 264 and reaches 232830 [14]. Thus, it can be 
argued that the frequency of the generator is satisfactory 
for the simulation of SEM. 

The application of the Monte Carlo method 
depends on the fulfillment of previously established 
conditions and does not always require MI modeling. 
You need a computer program that will provide data 
identical to the data obtained by the actual MI. The 
uncertainty estimation program (UEP is an analog of the 
VMI) is based on computerized mathematical models of 
the measurement process. In this model, the 
measurement process is presented completely, from 
measurement to record the result, taking into account all 
influencing factors. In the simulation, these factors vary 
within acceptable values (described by their respective 
distributions), and the process of a virtual measurement 
is repeated many times, using different combinations of 
influencing factors. Uncertainty is determined as a 
variation of the virtual measurement final result [3]. 

Reasons for numerical simulation using 
One of the reasons for using numerical simulation 

instead of the classical approach is the number of 
sources of uncertainty. For example, when using a 
coordinate measuring machine (CMM), experts from the 
National Metrology Institute of the United Kingdom – 
NPL especially highlight the spatial and computational 
sources of uncertainty [15].  

Spatial error is the error in measuring the 
coordinates of a point on the surface of the measured 
body and is determined by the following components: 

• accuracy of manufacturing CMM components – 
guides, scales, probe system, and reference sphere used 
for metrological verification; 

• the environment in which CMM operates, 
namely: temperature values, its gradients, humidity, and 
vibrations; 

• measurement strategy – sampling value and 
direction, probe stylus type and measurement speed; 

• measured object characteristics – elasticity, 
surface roughness, hardness, and weight of the component.  

The calculation error is the error of estimation the 
shape deviation and measured object size, which is 
determined by: 

• CMM software that estimates the geometry of 
the object; 

• numerical accuracy of the CMM computer; 
• the number and positioning of measured points; 
• the extent of geometric shape deviation from 

the ideal. 
Geometric deviations of CMM are usually measured 

directly using laser interferometers and specialized optics or 
indirectly using sequential multi-position laser 
measurement [15]. Having determined these deviations, we 
then use them to adjust the measurement, the so-called 
computer-aided accuracy. According to [15], 21 kinematic 
error sources are taken into account for CMM. Kinematic 
errors occur due to parts manufacturing imperfections or 
due to the adjustment of machine elements. 

Each of these errors is carefully identified and 
forms the corresponding part of the CMM error map 
following the measurement scheme and sources of 
uncertainty of the machine (Fig. 2). Unfortunately, there 
is also uncertainty in measuring these geometric 
deviations. This means that the coordinate axes are also 
entered with uncertainty. Measurements using CMM 
involve the presence of many contact points and several 
calculations. Uncertainty in the coordinates of each 
measured point affects subsequent measurements and the 
uncertainty of measuring the part as a whole. 

International standard and regulations for VMI 
The evaluation of uncertainty when using a virtual 

measuring instrument is based on ISO/TS 15530-4:2008 
Geometrical Product Specifications (GPS) — Coordinate 
measuring machines (CMM): Technique for determining 
the uncertainty of measurement — Part 4: Evaluating 
task-specific measurement uncertainty. It suggests using 
simulation as a basis (both for the user of CMM, and the 
manufacturer) for measurement uncertainty estimation 
applications (simulations) using CMM. The standard 
also offers methods for testing such applications, descri-
bing the advantages and disadvantages of these methods. 
Finally, various test methods to determine the uncer-
tainty for specialized measurements (uncertainty related 
to specific measurements and specific measurement 
methods), using modeling for CMM measurements, 
taking into account the measuring device, environment, 
measurement method, and object of measurement are 
described. This document describes the general functions 
without limiting possible technical implementations.  



Measuring equipment and metrology. Vol. 81, No. 3, 2020 6 

 
Fig. 2. Block diagram of the CMM measurement process (Adapted diagram B.1 ISO 15530-4) [3]. 

 
Guidelines for verification and evaluation of 

developed packages are included in the standard. 
The uncertainty estimation program repeats 

hundred of times the virtual measurement of an object 
(Monte Carlo method), each time changing the influence 
factors and characteristics, and a variable set of input 
data. The input data largely depends on the uncertainty 
of the CMM geometry and its effect on the error map. 
Two types of virtual CMM have been defined: online 
and offline. If the estimation is performed similarly to 
the processing of real data, using the same software 
package as the real CMM, the same sequence of 
estimation operations as in the real measurement 
(including the same system for detecting the stylus and 
its size, including the object orientation system), then the 
virtual CMM is defined as online. If third-party software 
is used that is not used in the actual measurement 
process and the measurement simulation processing 
sequence is only similar to the real one, such virtual 
CMM is defined as offline. Thus, summarizing the 
standard for VCMM for all VMI, the tool imitation can 
be called offline VMI, and the simulation model based 

on the data obtained by real MI in its process an online 
VMI. We will also use the explanation of the virtual 
CMM proposed by the German National Metrological 
Institute PTB, namely part 2 (Traceability of Coordinate 
Measurements for virtual measuring machines) [16], 
namely: 

1) Virtual CMM uses a coordinate measurement 
sequential simulation with accurate simulation of ele-
mentary contributions to the uncertainty for each of the 
test points. 

2) There are three main types of contributions, 
namely: known systematic (which may not always be 
known to the user), unknown systematic (reproducible 
only in a short period), and random contributions. 

3) The estimation of the coordinates obtained in 
the simulation process should be as close as possible to 
the estimate of the real coordinates. 

4) The simulation is repeated a statistically 
significant number of times. 

All known systematic contributions remain 
unchanged, all unknown systematic contributions change 
in each simulation, taking into account the assumptions 
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about their distribution and limits. After each simulation, 
the difference between the actual measurement and the 
values obtained during the simulation is calculated. After 
the required number of virtual experiments, a statistical 
evaluation of the results is performed. Finally, the 
extended uncertainty U for (k = 2) is included in the 
measurement report [15]. Modeling using the Monte 
Carlo method, the mathematical basis of uncertainty 
estimation programs, is described in the Appendix to the 
Representation of Uncertainty in GUM Measurements 
[5]. It suggests using contribution distributions and a 
mathematical measurement uncertainty estimation model 
and its implementation by the Monte Carlo method. This 
method assumes an arbitrary number of input values, but 
the output is only one value. The described method is a 
practical and effective alternative to the approach to 
uncertainty proposed in GUM. 

Examples of VMI implementation 
Consider the implementation of VMI on the 

example of a typical CMM. The primary task is to 
estimate the residue field, usually performed by the 
manufacturer. This requires an artifact, for example, a 
plate with round holes, ideally made of a material with a 
low coefficient of thermal expansion. This plate, in turn, 
is measured in six configurations. Typical measurement 
directions are parallel to the XY plane (two heights), the 
XZ plane (measurement on both sides), and the YZ plane 
(measurement on both sides). The next step is to measure 
the temperature gradients around the CMM. Finally, it is 
important to describe the kinematic chain, i.e. the 
sequence of moving axes. With this information, the 
VMI program simulates a real CMM. In practice, it is 
necessary to provide data on the test system calibration, 
and the measured object thermal changes uncertainty. 
Then the program simulates (100 – 200 times) on VMI, 
changing each time the input data, the contributions of 
the machine, the environment. 

Today, the commercially available MegaKal 
virtual CMM package can be integrated into the Zeiss 
CMM software environment from Leiss and Quindos 
from Leitz [15]. The program is installed on the CMM 
computer and works simultaneously with the 
measurement (online). The input parameters for the 
program are geometric errors, probe errors, measurement 
strategy, and test points. Geometric errors and probe 
errors are determined experimentally using the Kalkom 
program [15]. Measurement strategy and test points are 
imported from the CMM program. The advantage of this 
approach to modeling using the Monte Carlo method is 
its one-time execution, as long as the measuring 
conditions for the part do not change. An important 
advantage of this method of estimating uncertainty is the 
possibility of its implementation without a real 
experiment. In this way, you can choose the number of 

measurement points, the configuration of the stylus to 
ensure the best measurement. Virtual measuring 
instruments have come a long way to ensure traceability 
of measurement and today's work to add scanning and 
rotary tables is going [15]. 

There were attempts to create VMI not only for 
CMM but also for other means, such as the scanning 
electron microscope [10, 13, 17-19]. In the process of 
virtual SEM development, it was found that it is 
impossible to create a program based on the simulator 
due to the complexity of the calculations, but a program 
based on the simulator was created and experiments 
were conducted on its application. The development of 
VMI is envisaged for other branches of science and 
technology [20]. The importance of creating virtual tools 
is also indicated by the opening of a center for the study 
and training in the field of VMI at the National 
Metrological Institute PTB (Germany). 

5. Conclusions 

Nowadays, the virtual measuring instruments 
form the underpinning pillars for the estimation of the 
uncertainty of coordinate measuring machines. Rapid 
determination of measurement uncertainty makes it 
possible to qualitatively train specialists in this field, 
clearly showing the advantages and disadvantages of 
different measurement strategies. It provides an 
opportunity for qualitative estimation of measurement 
uncertainty under various conditions, using a different 
number of points, stylus configuration, and measurement 
speed. Research and implementation of virtual 
measuring instruments for the digital microscope is our 
permanent issue. After the analysis of the VMI creation 
regulations, the decision had been made to apply the 
ISO/TS 15530-4: 2008. This standard provides a 
measurement uncertainty estimation methodology using 
models based on instrumental component, environment, 
measurement methodology, and measuring object. It was 
decided to apply the simulation approach for the creation 
of the VMI. To estimate an environmental impact, it 
needs within the current model to consider the impact of 
light, humidity, dust, and vibration factors. 
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