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Abstract: The notions of angles between matrices 

and between polynomials of fractional linear systems 
and electrical circuits are proposed. In analysis of  angles 
between state matrices of fractional linear systems the 
Hadamard product of two matrices  is applied. The 
angles between matrices and their functions are also 
addressed. The angles between symmetrical and 
asymmetrical part of matrices are investigated. The 
angles between polynomials of transfer matrices of 
fractional linear systems are analyzed and some new 
properties are established. 
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1. Introduction 
A dynamical system is called positive if its trajectory 

starting from any nonnegative initial state remains 
forever in the positive orthant for all nonnegative inputs. 
An overview of state of the art in positive theory is given 
in [1, 3, 8, 12]. Variety of models having positive 
behavior can be found in engineering, especially in 
electrical circuits [15], economics, social sciences, 
biology and medicine, etc. [3, 12]. 

The positive electrical circuits have been analyzed in 
[5–7, 9–11, 15]. A new class of normal positive linear 
electrical circuits has been introduced in [7]. Positive 
fractional linear electrical circuits have been investigated 
in [10, 15]. Stability of continuous-time and discrete-
time linear systems with inverse state matrices has been 
analyzed in [14] and the transfer matrices with positive 
coefficients of standard and fractional positive systems 
in [11, 16]. The angles between state matrices and 
between polynomials of transfer matrices of linear 
electrical circuits have been investigated in [6]. Some 
recent results in fractional systems theory have been 
given in [2, 17–19]. 

In this paper the notions of angles between 
matrices and polynomials of fractional linear 
systems will be introduced and their basic properties 
will be investigated. 

The paper is organized as follows. In section 2 the 
basic definitions and properties of fractional positive 

linear systems are recalled. The angles between matrices 
of fractional linear systems and electrical circuits are 
introduced and their properties are analyzed in section 3. 
The angles between matrices and their functions are 
addressed in section 4. The angles between two 
polynomials are introduced and their properties are 
investigated in section 5. Concluding remarks are given 
in section 6. 

The following notation will be used:   - the set of 

real numbers, mn  - the set of n m  real matrices, 
n m
  - the set of n m  real matrices with nonnegative 

entries and 1n n
    , nM  - the set of nn  Metzler 

matrices (real matrices with nonnegative off-diagonal 

entries), nI  - the nn  identity matrix. 

2. Positive fractional linear systems 
Consider the fractional linear continuous-time 

system described by the state equations 

)()(
)(

tButAx
dt

txd




,               (2.1a) 

( ) ( ) ( )y t Cx t Du t  ,                  (2.1b) 

where ( ) nx t  , mtu )( , pty )(  are the 

state, input and output vectors and n nA  , n mB  , 
p nC  , p mD  , 

0
0
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,    (2.1c) 

where 
( )

( )
df

f
d




  and 1

0

( ) x tx t e dt


    , Re( ) 0x   

is the Euler gamma function. 
It is well-known [15] that in fractional electrical 

circuits as the state variables 1( )x t ,…, ( )nx t  (the 

components of the state vector ( )x t ) the currents in the 

coils and voltages on the capacitors are chosen. 
Definition 2.1. [3, 8] The fractional linear system 

(2.1) is called (internally) positive if ( ) nx t   and 
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( ) py y t   , [0, ]t   for any 0 (0) nx x    

and every ( ) mu t  , [0, ]t  . 

Theorem 2.1. [3, 8] The fractional linear system 
(2.1) is positive if and only if 

nMA , mnB 
 , npC 

 , mpD 
 .   (2.2) 

Definition 2.2. [3, 8] The positive fractional linear 
system is called asymptotically stable if 

lim ( ) 0
t

x t


  for any 0
nx  .             (2.3) 

Theorem 2.2. [3, 8] The positive fractional linear 
system is asymptotically stable if and only if: 

1) All coefficients of the characteristic polynomial 

1
1 1 0det[ ] ...n n

n nI s A s a s a s a
          (2.4) 

are positive, i.e. 0ka   for 0,1,..., 1k n  . 

2) There exists strictly positive vector 

1[ ]T
n    , 0k  , 1,...,k n  such that 

0A                                  (2.5) 

3. Angles between state matrices of fractional 
linear systems 

In this section the angle between two matrices will 
be defined.  

To any given matrix mn
ij RaA  ][  the following 

two corresponding vectors can be defined  

11 1 21 2 31[ ]T nm
m m nmA a a a a a a        (3.1a) 

and 

11 1 21 2 31
ˆ [ ]T nm

n n nnA a a a a a a       (3.1b) 

T denotes the transpose. 

Using the vectors of the matrices mnA   and 
mn

ijbB  ][  we may defined the following scalar 

product of the two matrices. 
Definition 3.1. The scalar 

1 1

ˆ ˆ( , ) ( , )
n m

ij ij
i j

A B A B a b
 

                     (3.2) 

is called the scalar product of the matrices A and B. 
In particular case if A = B then 

22 2

1 1

ˆ ˆ ˆ( , ) ( , ) 0
n m

ij
i j

A A A A A A a
 

            (3.3) 

for any nonzero matrix n mA  .   

Using (3.2) and (3.3) we may define the angle   

between two given matrices A and B of the same 
dimensions.   

Definition 3.2. The angle defined by  

,

ˆ ˆ( , ) ( , )
arccos arccos ,

ˆ ˆ

0 ,

A B

A B A B

A B A B
 

 

  

 

      (3.4a) 

is called the angle   between the matrices A and B. 
The relation (3.4a) can be equivalently written in the 

form 

,

ˆ ˆ( , ) ( , )
cos cos

ˆ ˆA B

A B A B

A B A B
    .           (3.4b) 

From (3.4b) it follows  the following conclusion. 

Conclusion 3.1. 

, ,cos cosA B B A   and , ,cos cosA B B A    .    (3.5) 

In particular case if B A then from (3.4b) we have 
cos 1   and 0  . 

Example 3.1. Find the cos  between the following 

matrices  

1 2

0 1

2 3

A

 
   
  

,  

0 2

1 0

1 1

B

 
   
  

.                 (3.6) 

In this case 

[1 2 0 1 2 3]TA   , [0 2 1 0 1 1]TB      (3.7a) 

and 

ˆ [1 0 2 2 1 3]TA   , ˆ [0 1 1 2 0 1]TB   .  (3.7b) 

Using (3.2), (3.3), (3.4b) and (3.7) we obtain 

22

22

ˆ ˆˆ( , ) ( , ) 3, 19,

ˆ 7

A B A B A A

B B

    

 
      (3.8a) 

and  

,cos cos

ˆ ˆ( , ) ( , ) 3
0.260

ˆ ˆ 19 7

A B

A B A B

A B A B

  

      .     (3.8b) 

Consider the following two matrices of the same 
dimensions 

[ ] n m
ijA a   ,  [ ] n m

ijB b              (3.9) 

Definition 3.3. The matrix defined by  

11 11 1 1

1 1

m m
n m

n n nm nm

a b a b

A B

a b a b


 
   
  



   



       (3.10) 

is called the Hadamard product of the matrices (3.9) 
[13]. 
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Theorem 3.1. If the Hadamard product (3.10) of the 
matrices (3.9) is zero matrix then the angle φ between 

the matrices (3.9) is equal to 
2


. 

Proof. From Definitions 3.1 and 3.3 it follows that 
0A B   implies  

1 1
( , ) 0

n m

ij ij
i j

A B a b
 

    .                  (3.11) 

In this case from (3.4b) we obtain 0cos   and 

2

  . □ 

Example 3.2. Using (3.10) for the matrices  














310

201
A , 










002

010
B           (3.12) 

we obtain   











000

000
BA                          (3.13) 

and  
2 3

1 1
( , ) 0ij ij

i j
A B a b

 
    .                   (3.14) 

Therefore, by Theorem 3.1 the angle between the 

matrices (3.12) is equal 
2


. 

Theorem 3.2. The angle   between the matrices 

[ ] n m
ijA a   , [ ] n m

ijB b    satisfies the condition 

0cos   if and only if  

1 1
( , ) 0

n m

ij ij
i j

A B a b
 

                     (3.15a) 

and 0cos   if and only if  

1 1
( , ) 0

n m

ij ij
i j

A B a b
 

    .                 (3.15b) 

Proof. Note that if (3.15a) is satisfied then from (3.4b) it 

follows that 0cos   since 0A   and 0B  . 

Proof of (3.15b) is similar. □ 
By Theorem 2.2 the Metzler matrix is asymptotically 

stable (Hurwitz) if and only if there exists a strictly 
positive vector ],...,[ 1 n  , nkk ...,1,0   such 

that the condition (2.5) is satisfied. 
Examples of electrical circuits with Metzler state 

matrix A are given in [15]. 
Theorem 3.3. The angle   between two asymptotically 

stable Metzler matrices nij MaA  ][ , nij MbB  ][  

satisfies the condition 
2

0
  .  

Proof. From (2.5) it follows that the diagonal entries 

iia and iib  for ni ...,1  of asymptotically stable Metzler 

matrices A and B are negative. In this case the condition 

(3.15a) is satisfied and 
2

0
  . □ 

Example 3.3. Consider the following two 
asymptotically stable Metzler matrices   

2 1

0 3
A

 
   

,  
1 1

0 1
B

 
   

.            (3.16) 

Using (3.2), (3.4b) and (3.16) we obtain 

2 2

2 1

1 1
, ,( , ) 6,

0 0

3 1

14, 3

A B A B

A B

    
   
     
   
       

 

        (3.17) 

and 

( , ) 6
cos 0.926

14 3

A B

A B
             (3.18) 

This confirms the thesis of Theorem 3.3 
Example 3.4. Find the cos  between asymptotically 

stable Metzler matrix A given by (3.16) and the unstable 
Metzler matrix    

1 1

0 2
B

 
  
 

                             (3.19) 

In this case we obtain 

2 2

2 1

1 1
, , ( , ) 7,

0 0

3 2

14, 6

A B A B

A B

   
   
      
   
      

 

         (3.20) 

and 

( , ) 7
cos 0.764

14 6

A B

A B
 
    , 

2

     (3.21) 

The angles between two state matrices corresponding 
to different choice of the state vectors in linear electrical 
circuits have been investigated in [6]. 

Theorem 3.4 

Let nnA 
  and nnB 

  be nn  real matrices 

with nonnegative entries and at least one positive entry: 
1) The angle BA,  between the matrices A and B 

satisfies the condition  

,0
2A B

                          (3.22a) 
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2) The angle kAA,
   between the matrices A , kA , 

,...2,1k  satisfies the condition  

,
0

2
kA A

   for 0,1,...k               (3.22b) 

Proof. Note that the Hadamard product of the 

matrices [ ] n n
ijA a 

    and [ ] n n
ijB b 

   is 

positive 

1 1
0

n m

ij ij
i j

A B a b
 

                    (3.23) 

and from (3.4) we have  

0cos , BA  and 
2

0 ,
  BA                (3.24)   

since 0BA . 

The proof of (3.22b) is similar since nnkA 
 for 

,...1,0k □ 

Remark 3.1. If nnAB 
 then 0, AA . 

Theorem 3.5. The angle   between the Metzler 

Hurwitz matrix nMA  and its inverse 1A satisfies the 

condition 

0
2

                             (3.25) 

Proof. From (3.4b) we have 

1

1

( , )
cos .

A A

A A





                         (3.26)   

By assumption the matrix nMA is Hurwitz and it 

satisfies the condition (2.5). The strictly positive vector 

  can be chosen as cA 1  for nc   strictly 

positive. Taking into account that for the Metzler 

Hurwitz matrix A we have nnA 


  1  and from (3.26) 

and (2.5) we obtain (3.25) since 0cos  . □ 

Example 3.5. Consider the Metzler matrix 

2 1 0

2 3 1

0 1 3

A

 
   
  

                      (3.27) 

which is Hutwitz since the condition (3.25) is satisfied for  

 

1

8 3 1 1 6
1 1

6 6 2 1 7 ,
10 5

2 2 4 1 4

1 1 1 .
T

A c

c

 
     
            
          



       (3.28) 

Using (3.27), (3.26) and (3.28) we obtain 

1

1

[ 2 1 0 2 3 1 0 1 3]

1
[8 3 1 6 6 2 2 2 4]

10
1

( , )
10

25
( 16 3 12 18 2 2 12) 0

10

T

T

A

A

A A





   

 

  

         

,   (3.29) 

and from (3.29) 0cos   and 
2

0
  since 

01 AA . 

Example 3.6.Consider the fractional linear electrical 
circuit shown in Fig. 3.3 with given resistances R1, R2, 

R3, inductances 1L , 2L  and source voltages 1e , 2e .  

 

Fig. 3.3. Electrical circuit. 

Using the Kirchhoff’s laws we may write the 
equations 

1
1 1 3 1 3 2 1

2
2 2 3 2 3 1 2

( )

( )

d i
e R R i R i L

dt

d i
e R R i R i L

dt









   

   

         (3.30)  

The equations (3.30) can be written in the form  

1 1 1

2 2 2

i i ed
A B

i i edt





     
      

     
              (3.31a)  

where 

1 3 3

1 1

3 2 3

2 2

R R R

L L
A

R R R

L L

  
 
 

 
 

, 1

2

1
0

1
0

L
B

L

 
 
 
 
 
 

 (3.31b) 

For 0kR , k =1,2 and 0iL , i =1,2 the matrix A 

is Metzler Hurwitz matrix and its inverse has the form   

2 3 1 3 21

3 1 1 3 2

1 2 3 2 3

( )1
,

( )

( ) .

R R L R L
A

R L R R LR

R R R R R R

  
    

  

     (3.32) 
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The angle 1,A A
  between the matrices A  and 1A is 

given by 

1

1

, 1

1 3 2 3

2
3 1 2

1
2 1

( , )
arccos

( )( )
arccos 2

1

A A

A A

A A

R R R R

R

R L L

R L L A A

 







 

   
      

   

       (3.33a) 

where 

2 2 2
2 1 3 3 3 2 3

1 1 2 2

22 2 221 22 3 1 1 2
3

2
1 3 2

( )

( )

R R R R R R
A

L L L L

R R L L L
A R

R R

R R L

R



      
        
     

       
   

  
 

(3.33b) 

In particular case when 21 LL   we obtain 

1, 1

2
arccos

A A A A
  

                     (3.34) 

Let the matrix n nA   be nonsingular i.e. det 0A   

and adA  be its adjoint matrix, then 

1

det
adA

A
A

                           (3.35) 

Theorem 3.6. The angle   between the matrix A 

and its inverse matrix 1A  is equal to the angle   

between the matrix A and its adjoint matrix adA  

1 ,,
cos cos

adA AA A
   . (3.36) 

Proof. Applying Definition 3.2 to the matrices 

),( 1AA  and  ),( adAA  and using (3.35a) we obtain 

1

1

, 1

,

,
( , ) det

cos

det

( , )
cos

ad

ad

A A
ad

ad
A A

ad

A
A

A A A
AA A A

A

A A

A A











 
 
   

 

          (3.37) 

Therefore, the angle between the matrices A and 
1A  is equal to the angle between the matrices A and 

adA . □ 

Example 3.8.  The inverse matrix of the matrix 

2 1

2 3
A

 
   

                            (3.38)  

has the form 

1 3 11

2 2det 4
adA

A
A

  
    

 
.                (3.39) 

Taking into account that 

1

[ 2 1 2 3] ,

[ 3 1 2 2] ,

3 1 1 1

4 4 2 2

T

T
ad

T

A

A

A

  

    

       

           (3.40) 

and using (3.4a) we obtain 

,

( , ) 7
cos

18ad

ad
A A

ad

A A

A A
                  (3.41a) 

and 

1

1

, 1

( , ) 7
cos

18A A

A A

A A
 




  .              (3.41b) 

Therefore, we have 1 ,,
cos cos

adA AA A
    and this 

confirms Theorem 3.6. 

It is well-known that any matrix n nA   can be 

decomposed into the symmetrical part 

2

T
n n

s

A A
A 

                       (3.42) 

and the asymmetrical (antisymmetrical) part 

nn
T

a

AA
A 




2
                  (3.43) 

such that 

AAA as  .                       (3.44) 

Theorem 3.7. The angle   

,

( , )
arccos

s a

s a
A A

s a

A A

A A
                   (3.45) 

between the symmetrical part sA  and the asymmetrical 

part aA  of the matrix A is equal to zero. 
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Proof.  For the matrix 

11 12 1

21 22 2

1 2

...

...

...

...

n

n

n n nn

a a a

a a a
A

a a a

 
 
 
 
 
 

  
                 (3.46) 

the symmetrical part has the form 

1 112 21
11

2 212 21
22

1 1 2 2

...
2 2

...
2 2

...

...
2 2

n n

n n

s

n n n n
nn

a aa a
a

a aa a
a

A

a a a a
a

 
 
 

 
 
 
 
  
 
 

  

    (3.47) 

and the asymmetrical part 

1 112 21

2 221 12

1 1 2 2

0 ...
2 2

0 ...
2 2

...

... 0
2 2

n n

n n

a

n n n n

a aa a

a aa a
A

a a a a

 
 
 

 
 
 
 
  
 
 

  
.   (3.48) 

Using (3.1), (3.2), (3.47) and (3.48) we obtain 

12 21 12 21

1 1 1 1

21 12 21 12

, 1 1, , 1 1,

...
2 2

2 2

...
2 2

0
2 2

n n n n

n n n n n n n n

a a a a

a a a a

a a a a

a a a a   

      
  

      
  

      
  

   
   
  

    (3.49) 

Therefore, the angle between the symmetrical 
and asymmetrical parts of the matrix (3.46) is equal 
to zero. 

Example 3.9. The symmetrical part of the matrix 
(3.38) has the form 

2 1.5

1.5 32

T

s

A A
A

 
    

                (3.50) 

and the asymmetrical part 

0 0.5

0.5 02

T

a

A A
A

 
   

 
.              (3.51) 

Using (3.50) and (3.51) we obtain  

[ 2 1.5 1.5 3], [0 0.5 0.5 0]s aA A      

and 

,

( , )
arccos 0

s a

s a
A A

s a

A A

A A
                 (3.52) 

since ( , ) 0s aA A  . 

This confirms Theorem 3.7.  

4. Angles between matrices and their functions 
Let )(f  be a scalar function well defined on the 

spectrum of the matrix A, i.e. )( kf   has finite values 

for k = 1,…,n. 
If the eigenvalues are distinct the  matrix function 

( ) n nf A   can be written in the form [4, 13] 

1
( )

n

k k
k

Z f 

                           (4.1) 

where 

1

n
n k

k
i k i
i k

A I
Z


 







 .                      (4.2) 

For general case the formula (4.1) is given in [4,13]. 
Example 4.1.The characteristic polynomial of the matrix 

 
2 1

2 3
A

 
   

                          (4.3) 

has the form 

2
2

2 1
det[ ] 5 4

2 3
I A


  


 

    
 

    (4.4) 

and its zeros are 1 1   , 2 4   . Therefore, the 

spectrum of the matrix (4.3) is {-1, -4}. 

Using (4.2) in particular case for ( ) Atf A e  and 

(4.3) we obtain 

2 2
1

1 2

2 1
2

2 1

2 11
,

2 13

1 11

2 23

A I
Z

A I
Z


 


 

 
     

 
     

,               (4.5)  

and 

1 2
1 2

4 4

4 4

2 1
exp

2 3

2 1 1
( )

3 3 3
2 1 2

( )
3 3 3

t tAt

t t t t

t t t t

e Z e Z e

e e e e

e e e e

 

   

   

 
     

   
  
    

.      (4.6) 
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Using (3.4a) we may define the angle   between 

the matrices A and f(A) as follows 
Definition 4.1.The angle defined by 

( , ( ))
arccos

( )

A f A

A f A
                      (4.7) 

is called the angle between the matrices A and f(A). 

In particular case for 1( )f A A  we have 

1

1),(
arccos






AA

AA .                       (4.8) 

Example 4.2. (Continuation of Example 4.1). Find 

the angle between the matrices 1A  and A, Ate  for (4.3). 
In the first case taking into account that for (4.3) 


























22

13

4

1

32

12
1

1A               (4.9) 

and using (3.4b) we obtain  

[ 2,1,2, 3]A     and 1 3 1 1 1
, , ,

4 4 2 2

T

A      
  (4.10) 

and 

1

22 1

7
( , ) 4cos 0.39,

5
18

8
67.1

A A

A A







  

 

,     (4.11) 

In the second case taking into account (4.8) and (4.7) 
we obtain  

4 4

4 4

2 1 1
, ( ),

3 3 3

2 1 2
( ),

3 3 3

At t t t t

T
t t t t

e e e e e

e e e e

   

   

  

  

         (4.12) 

and 

22

4

2 5 8

( , )
cos

2 13

3 3 0,
1

18 (10 2 10 )
3

0, .
2

At

At

t t

t t t

A e

A e

e e

e e e

t



  

 

  

 

 
 

 

  

   (4.13) 

These considerations can be extended to[4,13]: 
1) any matrix functions well-defined on the 

spectrum of the matrix A , 
2) any two matrix functions well-defined on the 

spectrum of the matrix A, 
3) any two matrix functions well-defined on the 

spectrum of the matrix A and B, respectively. 

5. Angles between polynomials 
Consider fhe fractional linear system (2.1) with 

zero initial conditions. Applying the Laplace transfom 

L  to (2.1) and taking into account that 

( )
( )

d x t
s X s

dt






 
 

 
L  we obtain 

 1( ) [ ] ,nT C I A B D s             (5.1a) 

where 

0

( ) ( )
( ) std x t d x t

X s e dt
dt dt

 

 


 

  
 

L .       (5.1b) 

All. nonzero entries of (5.1a) are rational function of 

s  . 

In this section the angles between two polynomials 
of fractional linear systems will be defined and their 
basic properties will be established.  

Consider the polynomials in variable s 

1
1 1 0

1
1 1 0

( ) ( ) ...

( ) ( ) ...

n n
n n n

m m
m m m

p s p s a s a s a s a

q s q s b s b s b s b







     

     
 (5.2) 

with constant coefficients ia , i = 0,1,…,n and jb ,   

j = 0,1,…,m. 

Definition 5.1.The scalar 

 ( ), ( ) ( ) ( )
b

a

p s q s p s q s ds                 (5.3) 

where a, b are given real numbers, is called the scalar 
product of the polynomials (5.2). 

In particular case if ( ) ( )p s q s  then 

  2( ), ( ) [ ( )]
b

a

p s p s p s ds                 (5.4) 

and 

))(),(()( spspsp                        (5.5) 

is the module of the polynomial p(s). 
Using (5.3) and (5.5) we may define the angle   

between the polynomials (5.2) 
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Definition 5.2.The angle defined by 

,

( ), ( )
arccos

( ) ( )

0

p q

p s q s

p s q s
 

 

 

 
               (5.6) 

is called the angle   between the polynomials (5.2). 

The formula (5.6) can be equivalently written in the 
form 

 
,

( ), ( )
cos cos

( ) ( )p q

p s q s

p s q s
                (5.7) 

In particular case if )()( sqsp   then from (5.7) we 

have cos 1  and 0  . 

Example 5.1.Find the cos  between the following 

polynomials 
2( ) 2 3p s s s   and ( ) 2 1q s s             (5.8) 

for a = 1 and b = 2.    
Using (5.3), (5.4), (5.5) and (5.8) we obtain 

 
2

1

2
2

1

2
3 2

1

2
4 3 2

1

( ), ( ) ( ) ( )

( 2 3)(2 1)

(2 5 8 3)

1 5
4 3 34.167

2 3

p s q s p s q s ds

s s s ds

s s s ds

s s s s

 

    

    

    






        (5.9) 

 

 

2 2
22 2 2

1 1

2
5 4 3 2

1

2 2
22 2

1 1

2
3 2

1

( ) ( ) ( 2 3)

1 10
6 9 71.533

5 3

( ) ( ) (4 4 1)

4
2 16.333

3

p s p s ds s s ds

s s s s s

q s q s ds s s ds

s s s

    

     

    

   

 

 
  (5.10) 

and 

 ( ), ( ) 34,167
cos 0.995

( ) ( ) 34,182

p s q s

p s q s
    .   (5.11) 

From (5.7) it follows that    

, ,cos cosp q q p                          (5.12) 

and 

, ,cos cosp q p q                          (5.13) 

Let us consider the transfer function of fractional 
linear system of the form    

( )
( )

( )

n s
T s

d s
                            (5.14) 

where 
1

1 1 0( ) ...m m
m mn s b s b s b s b

           (5.15) 
1

1 1 0( ) ...n n
nd s s a s a s a
             (5.16) 

The inverse transfer function of (5.14) has the from 

1 ( )
( )

( )

d s
T s

n s
                          (5.17) 

From (5.6) applied to (5.14) and (5.17) we have the 
following conclusion. 

Conclusion 5.1.The angle ,n d  between the 

polynomials (5.15) and (5.16) and the angle T  of 

(4.14) and 1T
   of (4.17) satisfy the equalities  

1)                     , ,n d d n                               (5.18)  

2)                      1T T
                                 (5.19) 

In particular case for 
1

( )
( )

T s
d s

                           (5.20) 

we have 

1 1, ,1T d dT
      .                  (5.21) 

Remark 5.1. Note that if zeros of the polynomials 
(5.15) and (5.16)  have negative real parts (the 
polynomials are asymptotically stable)  when the angle 

,d n  between the polynomials d(s) and n(s) has the same 

sign for all nonnegative 0a  and 0b   in (5.3) and (5.4). 
In this case we may assume for example a = 0 and b = 1. 

Example 5.1.Find the angle of the transfer function 

2

( ) 2 4
( )

( ) 4 3

n s s
T s

d s s s


 

 
                   (5.22) 

with the poles 1 1s   , 2 3s   and zero 1 2z   . 

Using (5.4), (5.5) and (5.22) we obtain  

 
1

2

0

1
3 2

0

1
2 2

0

1
2

0

1
2 2 2

0

1
4 3 2

0

( ), ( ) (2 4)( 4 3)

(2 12 22 12) 27.5

( ) (2 4)

(4 16 16) 25.333

( ) ( 4 3)

( 8 22 24 9) 30.533

n s d s s s s ds

s s s ds

n s s ds

s s ds

d s s s ds

s s s s ds

    

    

  

   

   

     













  (5.23)  
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and  

 
,

( ), ( ) 27,5
cos 0.988

( ) ( ) 773,509
n d

n s d s

n s d s
    .  (5.24) 

Example 5.2. (Continuation of Example 3.6) Consider 
the fractional electrical circuit shown in Fig. 3.4 for  
R1= R2=1, R3=2  and L1= L2 =1. 

In this case the matrices (3.40b) have the forms 

3 2

2 3
A

 
   

,   
1 0

0 1
B

 
  
 

             (5.25) 

As the output y of the electrical circuit we choose 

1
1 2

2

i
y i i C

i

 
    

 
   and   1 1C           (5.26) 

The transfer  matrix T(s) of the electrical circuit has 
the from 

 

 

 

1
2

1

2

( )

3 2 1 0
1 1

2 3 0 1

1
5 5

6 5

T s C I s A B

s

s

s s
s s





  

    
        

  
 

        (5.27) 

The angle 
1T

  of the transfer function 

1 2

5
( )

6 5

s
T s

s s




 
                       (5.28) 

is equal to 

 
1

1 2

5
arccos ( ) arccos 10,63

6 5T

s
T s

s s
 

   
 

 (5.29) 

since  

 

 
1

2

0

1
2 2

0

1
2 2 2

0

( ), ( ) ( 5)( 6 5) 46.417

( ) ( 5) 30.333

( ) ( 6 5) 73.533

n s d s s s s ds

n s s ds

d s s s ds

    

  

   







(5.30) 

6. Concluding remarks    
The notions of angles between  matrices and 

between polynomials of fractional linear systems and 
electrical circuits have been introduced and investigated. 
In analysis of  angles between state matrices of fractional 
linear  systems the Hadamard product of two matrices 
has been applied and some basic properties of the angles 
between matrices of fractional linear systems have been 
established (Theorems 3.1-3.6). The angles between 
symmetrical and asymmetrical parts of the state matrices 

have been defined and have been analyzed (Theorem 3.8). 
Next the angles between matrices and their functions 
have been also introduced (Definition 4.1). The angles 
between two polynomials are defined (Definition 5.2). 
Some basic properties of transfer functions of fractional 
linear systems are analyzed and some new properties 
have been also established. The considerations are 
illustrated by examples of fractional linear systems and 
linear electrical circuits. The considerations can be 
extended to fractional descriptor linear continuous-time 
and discrete-time systems. 
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КУТИ МІЖ МАТРИЦЯМИ ТА МІЖ 
ПОЛІНОМАМИ В ДРОБОВИХ ЛІНІЙНИХ 
СИСТЕМАХ ТА ЕЛЕКТРИЧНИХ КОЛАХ 

Тадеуш Качорек 

Сформульовано поняття кутів між матрицями та між 
поліномами дробових лінійних систем та електричних кіл. 
Під час аналізу кутів між матрицями стану дробових лі-
нійних систем засновано добуток Адамара з двох матриць. 
Розглянуто також кути між матрицями та їх функції. 
Досліджено кути між симетричною й несиметричною 
частинами матриць. Проаналізовано кути між поліномами 
передатних матриць дробових лінійних систем та вста-
новлено їхні деякі нові властивості. 
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