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Abstract: The notions of angles between matrices
and between polynomials of fractional linear systems
and electrical circuits are proposed. In analysis of angles
between state matrices of fractional linear systems the
Hadamard product of two matrices is applied. The
angles between matrices and their functions are also
addressed. The angles between symmetrical and
asymmetrical part of matrices are investigated. The
angles between polynomials of transfer matrices of
fractional linear systems are analyzed and some new
properties are established.
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1. Introduction

A dynamical system is called positive if its trajectory
starting from any nonnegative initial state remains
forever in the positive orthant for all nonnegative inputs.
An overview of state of the art in positive theory is given
in [1, 3, 8, 12]. Variety of models having positive
behavior can be found in engineering, especially in
electrical circuits [15], economics, social sciences,
biology and medicine, etc. [3, 12].

The positive electrical circuits have been analyzed in
[5-7, 9-11, 15]. A new class of normal positive linear
electrical circuits has been introduced in [7]. Positive
fractional linear electrical circuits have been investigated
in [10, 15]. Stability of continuous-time and discrete-
time linear systems with inverse state matrices has been
analyzed in [14] and the transfer matrices with positive
coefficients of standard and fractional positive systems
in [11, 16]. The angles between state matrices and
between polynomials of transfer matrices of linear
electrical circuits have been investigated in [6]. Some
recent results in fractional systems theory have been
given in [2, 17-19].

In this paper the notions of angles between
and polynomials
systems will be introduced and their basic properties
will be investigated.

The paper is organized as follows. In section 2 the
basic definitions and properties of fractional positive

matrices of fractional linear

linear systems are recalled. The angles between matrices
of fractional linear systems and electrical circuits are
introduced and their properties are analyzed in section 3.
The angles between matrices and their functions are
addressed in section 4. The angles between two
polynomials are introduced and their properties are
investigated in section 5. Concluding remarks are given
in section 6.

The following notation will be used: R - the set of

real numbers, R - the set of nxm real matrices,

R - the set of nxm real matrices with nonnegative

entries and R” =R, M - the set of nxn Metzler
matrices (real matrices with nonnegative off-diagonal
entries), /, - the nxn identity matrix.

2. Positive fractional linear systems
Consider the fractional
system described by the state equations

linear continuous-time

% = Ax(¢) + Bu(t), (2.1a)
y(t)=Cx(t)+ Du(t), (2.1b)

where x(£)eR", u(t) e R", y(t) e R’ are the
state, input and output vectors and 4 € R™", BeR"™",

CeR", DeR"™,

d*f() _
dt®

o 0!
oD f(t)= F(l—a)(J;(t—T)a dz-’, (2.1¢)

O<axl

where f(r) = % and I['(x) = 0J?tx*le*tdl‘ , Re(x)>0
0

is the Euler gamma function.

It is well-known [15] that in fractional electrical
circuits as the state variables x(¢),..., x,(¢) (the
components of the state vector x(¢)) the currents in the

coils and voltages on the capacitors are chosen.
Definition 2.1. [3, 8] The fractional linear system

(2.1) is called (internally) positive if x(¢) € R} and
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y=y(@)eR?, te[0,4+0] for any x,=x(0)eR]
and every u(t) e R7, t €[0,+o0].
Theorem 2.1. [3, 8] The fractional linear system
(2.1) is positive if and only if
AeM,, BeRT", CeRY, DeR"™ . (22)
Definition 2.2. [3, 8] The positive fractional linear

system is called asymptotically stable if

limx(z)=0 forany x, € R .

—>0

2.3)

Theorem 2.2. [3, 8] The positive fractional linear
system is asymptotically stable if and only if:
1) All coefficients of the characteristic polynomial

det[l,s— A]l=5"+a, " +..+as+a, (24
are positive, i.e. g, >0 for k=0,1,...,n—1.
2) There exists strictly positive vector

A=[4 /1n]T , 4 >0, k=1,..,n such that

AL <0 2.5)

3. Angles between state matrices of fractional
linear systems

In this section the angle between two matrices will
be defined.

To any given matrix 4=[a;]e R™" the following

two corresponding vectors can be defined

A=[a,...q,, a,...a,, a,...a, ] eR™ (3.1a)

and

~

A=[a,,...a, a,...a, a,...a,] eR"™ (3.1b)

nn
T denotes the transpose.
Using the vectors of the matrices 4 € R and
B=[b;]e R"™™ we may defined the following scalar

product of the two matrices.
Definition 3.1. The scalar

(3.2)

is called the scalar product of the matrices 4 and B.
In particular case if 4 = B then

— — A A —2 A2 nom
AD=(4D=[4 =|4 =X2a>0 (3

i=1 j=1
for any nonzero matrix 4 R"".
Using (3.2) and (3.3) we may define the angle ¢

between two given matrices A and B of the same
dimensions.

Definition 3.2. The angle defined by
A,B (4,B

A

Al 2

P=¢,5= arccos% = arccos 3

(3.4a)
O<p<r,

is called the angle ¢ between the matrices A and B.

The relation (3.4a) can be equivalently written in the
form

_(4,B) (4,B)

cosg=cosg, » _W_ T (3.4b)

From (3.4b) it follows the following conclusion.

Conclusion 3.1.

Cos@, 5 =Ccosdy , and cosg , , =cosd, ;. (3.5)

In particular case if B = A then from (3.4b) we have
cosg=1 and ¢=0.

Example 3.1. Find the cos@ between the following
matrices

-2 0
1

b
Il
N o =

2
0. (3.6)
1

W =
|
—_

In this case
A=[1-201231,B=[0210-11" (3.7a)
and
1:1:[1 02-21237, Ez[O 1-1201]. (3.7b)
Using (3.2), (3.3), (3.4b) and (3.7) we obtain

(4,B)=(4.B)=-3, |4 =‘21‘2 —19,

|§|2 1f - (3.82)
and

CosP=cosg, =

_(4,B) (4B 3 (3.8b)

=-0.260"

B |5~ Vo
Consider the following two matrices of the same
dimensions

7

A= [aij] eR™™, B= [bu] e R (3.9
Definition 3.3. The matrix defined by
ay by, 1D
AoB= e R (3.10)
anlbnl anmbnm

is called the Hadamard product of the matrices (3.9)
[13].
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Theorem 3.1. If the Hadamard product (3.10) of the
matrices (3.9) is zero matrix then the angle ¢ between

V4
the matrices (3.9) is equal to 3 .

Proof. From Definitions 3.1 and 3.3 it follows that
Ao B =0 implies

(3.11)

In this case from (3.4b) we obtain cos¢p =0 and

T
¢—E.D

Example 3.2. Using (3.10) for the matrices

1 0 -2 010
A= ,B= (3.12)
{0 -1 3} {2 0 0}
we obtain
000
AoB = (3.13)
{O 0 O}
and
_ 2 3
(4,B)=2 % aijbij =0. (3.14)
i=1 j=1

Therefore, by Theorem 3.1 the angle between the
matrices (3.12) is equal %

Theorem 3.2. The angle ¢ between the matrices
A=[a;]e R, B=[b;]e R"™" satisfies the condition
cos@ >0 if and only if

n m

(4,B)=% X a;b; >0 (3.152)
i=1 j=I1
and cos¢ < 0 if and only if
(4,B)=X Y a,b; <0. (3.15b)
i=1 j=1

Proof. Note that if (3.15a) is satisfied then from (3.4b) it
follows that cos ¢ > 0 since |Z| >0 and |1§| >0.

Proof of (3.15b) is similar. o

By Theorem 2.2 the Metzler matrix is asymptotically
stable (Hurwitz) if and only if there exists a strictly
positive vector A =[4,,..,4,], A4, >0, k=1..,n such
that the condition (2.5) is satisfied.

Examples of electrical circuits with Metzler state
matrix 4 are given in [15].

Theorem 3.3. The angle ¢ between two asymptotically

stable Metzler matrices A=[a;]eM,, B=[b;]e M,

satisfies the condition 0 < ¢ < % .

Proof. From (2.5) it follows that the diagonal entries
a;and b; for i=1...,n of asymptotically stable Metzler

matrices A and B are negative. In this case the condition

(3.15a) is satisfied and 0 < ¢ <% .0

Example 3.3. Consider the following two
asymptotically stable Metzler matrices
-2 1 -1 1
A= , B= . (3.16)
0 -3 10 -1
Using (3.2), (3.4b) and (3.16) we obtain
-2 —1]
— 1 _ - —
a=| [ B=| |.(4B)=6
0 0 (3.17)
-3 -1
|4 =143 =3
and
A,B 6
cos¢=( .B) _ =0.926 (3.18)

A3~ i
This confirms the thesis of Theorem 3.3

Example 3.4. Find the cos¢ between asymptotically

stable Metzler matrix 4 given by (3.16) and the unstable
Metzler matrix

B= b 3.19
1o 2 (3-19)
In this case we obtain
-2 1
— 1 —_ |1 _
A: 5 B= s (AaB):_ 5
0 0 (3.20)
-3 2
|4 =14, |B[ =6
and
(4,B) -7 7
CoOS¢p=———r = =-0.764, —<¢<7m (3.21)
EICRR G

The angles between two state matrices corresponding
to different choice of the state vectors in linear electrical
circuits have been investigated in [6].

Theorem 3.4

Let 4eRY" and Be RY" be nxn real matrices

with nonnegative entries and at least one positive entry:
1) The angle @, between the matrices 4 and B

satisfies the condition

0<g,, < % (3.222)
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2) The angle ¢, , between the matrices 4, A*,

k =1,2,... satisfies the condition

0<g, <% for k=0,1,... (3.22b)

Proof. Note that the Hadamard product of the

matrices A= [aij] c ERZX" and B = [bz'j] R s

positive
n m
AOB=ZZaijb[j>O (3.23)
i=1 j=1
and from (3.4) we have
cosp,p>0and 0<g, <% (3.24)

since |4]B|>0.
The proof of (3.22b) is similar since 4° € R™" for
k=0,1,..0
Remark 3.1.If B=A4e R then ¢, , =0.
Theorem 3.5. The angle ¢ between the Metzler

Hurwitz matrix 4 €M, and its inverse A" satisfies the

condition
0<¢< % (3.25)
Proof. From (3.4b) we have
4,47
cos¢ = (_—_]) (3.26)
[l

By assumption the matrix 4 € M, is Hurwitz and it
satisfies the condition (2.5). The strictly positive vector
A can be chosen as A1=4A"'c for ceR" strictly
positive. Taking into account that for the Metzler
Hurwitz matrix 4 we have — 47! € R and from (3.26)
and (2.5) we obtain (3.25) since cos¢p >0.0

Example 3.5. Consider the Metzler matrix

2 1 0
A=|2 =3 1 (3.27)
0 1 -3

| 8 3 171 16
/1=A’1c:56 6 2 1=§7,

2 2 41 4| (28
e=[1 1 1]

Using (3.27), (3.26) and (3.28) we obtain

A=[-2102-3101-3

A~ —%[831662224]T

1 , (3.29)

-(—16+3+12—18+2+2—12)=f—g>0

and from (3.29) cosp>0 and O<g@< %since

‘ZHZ‘I‘>O.

Example 3.6.Consider the fractional linear electrical
circuit shown in Fig. 3.3 with given resistances R, R,,

R;, inductances L;, L, and source voltages e, e,.

Fig. 3.3. Electrical circuit.

Using the Kirchhoff’s laws we may write the
equations

, _ d“i
e = (R + Ry — Ryl + 1, dtal

(3.30)

-

d
e, =(Ry + Ry)iy, — Rqiy + L, p -

ta

The equations (3.30) can be written in the form

“1i I e
d =4 |+B]" (3.31a)
dt” | i, iy e,
where
RR R 1,
_ L 1 _ L,
A= , B= (3.31b)
R, R +R 0 L
L, L L,

For R, >0,k =1,2and L, >0,i =1,2 the matrix 4
is Metzler Hurwitz matrix and its inverse has the form
1 (R, + Ry)L,
R RL
R=R (R, +R)+R)R;.

RiL,

A=
(R+R)L,|” (332
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The angle ¢,

given by

¢A,A’l

arccos {{2

R\L, L)][a|a?

L) C(RRY
L, L L
‘_71‘2 ((R +R)L) +R32(

where

(4,

= arccos

A™

(R +R)(R, + R;) _

R

1

+((R1 +R)L, jz
R

In particular case when L,

¢, ., =arccos
4,47 =7~
| 447

=L, we obtain

P between the matrices 4 and A”'is

(3.33a)

(3.33b)

(3.34)

Let the matrix 4 € R be nonsingular i.e. det 40

and A4, be its adjoint matrix, then

. . . 1
and its inverse matrix A

A—l Aad
det 4
Theorem 3.6. The angle ¢ between the matrix 4

between the matrix 4 and its adjoint matrix 4_,

cosg, =cosg, , . (3.36)

(3.35)

is equal to the angle @

Proof. Applying Definition 3.2 to the matrices
(4,47") and (4, A,,) and using (3.35a) we obtain

COos

_ (‘Z’ Zad)

4|4,

[
_(4,47)

q Aad
det A

o T

=Cos ¢A,Aad

det A

).

(3.37)

Therefore, the angle between the matrices A and

A7 s equal to the angle between the matrices 4 and

A, 0
Example 3.8. The inverse matrix of the matrix
a=|2 1 (3.38)
2 -3 '
has the form
3.1
A =i=_l ) (3.39)
det A 412 2

Taking into account that
=[-2 1 2 -3,
=[-3 -1 -2 -2, (3.40)

h;l N

and using (3.4a) we obtain

A A
cosg, , = _4 “d) % (3.41a)
and
A4 ___1‘_18. (3.41b)

Therefore, we have cos¢ e =cosg, , and this
confirms Theorem 3.6.
It is well-known that any matrix 4 €R™" can be

decomposed into the symmetrical part

A+ A"

A =

N

e R (3.42)

and the asymmetrical (antisymmetrical) part

A-A"

A =

a

e R™" (3.43)

such that
A +A4,=4. (3.44)
Theorem 3.7. The angle

(4,.4,)

¢, 4 =arccos =

A

(3.45)

a

between the symmetrical part 4 and the asymmetrical

part A, of the matrix 4 is equal to zero.
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! (3.46)

a

nn

the symmetrical part has the form

app +ay
ay,
2
ap +ay
ay
2
aln + anl a2n + anz
2 2

and the asymmetrical part

a, — 4y
2
)y —app

2

0

anl _ aln an2 — a2n
2 2

aln + anl —‘
2

a2n + an2
2 (3.47)

2 - (348)

Using (3.1), (3.2), (3.47) and (3.48) we obtain

ap T a4y, | a4 —ay
2 2

+ aln + anl aln —a
2 2

nlJ_i_
n Ayt ap, || G~ i
2 2

(3.49)

a, _,+a a, . —da,
+ n,n—1 n—l,n n,n—1 n—l,n =0
2 2

Therefore, the angle between the symmetrical
and asymmetrical parts of the matrix (3.46) is equal

to zero.
Example 3.9. The symmetrical part of the matrix
(3.38) has the form

T
4 Ar4 {
2

and the asymmetrical part

T
oA

-2 15

0
¢ 2 0.5

-3

-0.5
L

} (3.50)

(3.51)

Using (3.50) and 3.51) we obtain
A =[-2 15 1.5 -3], 4,=[0 -0.5 0.5 0]
and
(4,,4,)
=arccos————-=0
b, =

S

(3.52)

a

since (4,,4,)=0.
This confirms Theorem 3.7.
4. Angles between matrices and their functions
Let f(A) be a scalar function well defined on the

spectrum of the matrix A4, i.e. f(4;) has finite values
fork=1,...n.
If the eigenvalues are distinct the matrix function

f(A4) e R™" can be written in the form [4, 13]

2 Z S (4) 4.1
k=1
where
n A—1 A
Z, =] —2*&. 42
) 42
i#k

For general case the formula (4.1) is given in [4,13].
Example 4.1.The characteristic polynomial of the matrix

=3

A+2
-2

(4.3)

has the form
-1

det[I,A — A]= s

‘=/12+5/1+4 (4.4)

and its zeros are A =-1, A, =—4. Therefore, the
spectrum of the matrix (4.3) is {-1, -4}.

Using (4.2) in particular case for f(4)=e"" and
(4.3) we obtain

p _A-LA, 21[2 1}

=
- 312 1
S , 4.5)
A-LA 1|11 -1
ZZZ—Z_
-4 32 2
and
-2 1
e :exp[ 5 _3}22191” + 7" =
AN TR —4t
—e +—e —(e'—e ™) (4.6)
3 3 3
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Using (3.4a) we may define the angle ¢ between

the matrices 4 and f{A) as follows
Definition 4.1.The angle defined by

¢= arccos—(Z’J7 (4))

|47 ()

is called the angle between the matrices 4 and f(4).

(4.7)

In particular case for f(4)= A" we have

(4,47

42 ) (4.8)
A4

@ = arccos

Example 4.2. (Continuation of Example 4.1). Find

the angle between the matrices A and 4, e for (4.3).
In the first case taking into account that for (4.3)

P2
12 =3 4|2 2

and using (3.4b) we obtain

4.9)

T
A=[-2,1,2,—3] and A" = —P,l,l,—l} (4.10)

442 2
and
_ 7
cos¢g= A A7) = 4 =0.39,
Fret "
$=067.1°

In the second case taking into account (4.8) and (4.7)
we obtain

—(e
3 3 3 4.12)
g(eft 74[)7167t +£ef4t !
3 3 3
and
Z At
cosg— A"
‘2‘2 ‘Atz
20 By
3 3 <0, (4.13)

J18 \/; (107 —2¢7% +10e”™)

T
120, —<g¢<m.
5 ¢

These considerations can be extended to[4,13]:
1) any matrix functions well-defined on the
spectrum of the matrix 4 ,
2) any two matrix functions well-defined on the
spectrum of the matrix 4,
3) any two matrix functions well-defined on the
spectrum of the matrix 4 and B, respectively.

5. Angles between polynomials
Consider fhe fractional linear system (2.1) with
zero initial conditions. Applying the Laplace transfom

L to (2.1) and taking into account that
L {d xlft)} =s5“X(s) we obtain
t
T(A)=C[I A-A"'B+D, A=s" (5.1a)
where
dx(t) | ©d%x(t) _
X(s)=L = e dt. 5.1b
-t | L0 jo s

All. nonzero entries of (5.1a) are rational function of
A=s".

In this section the angles between two polynomials
of fractional linear systems will be defined and their
basic properties will be established.

Consider the polynomials in variable s

p(s)=p,(s)=a,s" + an_ls"_1 +..tas+a, 52)
q(s)=q,(s)=b,s" + b,,Hs'”_l +...+bs+b, .

with constant coefficients a;, i = 0,1,...,n and b,
j=0,1,....m.

Definition 5.1.The scalar

(p(s),9(s)) =] p(s)q(s)ds (5.3)

where a, b are given real numbers, is called the scalar
product of the polynomials (5.2).
In particular case if p(s)=q(s) then

b
(p(s), p(s))=[[p(s)I*ds (5.4)

and

|p(5)] =N (p(s), p(5)) (5.5)

is the module of the polynomial p(s).
Using (5.3) and (5.5) we may define the angle ¢

between the polynomials (5.2)
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Definition 5.2.The angle defined by

p(s),q(s)
|p(s)||a(s)|

$=¢,, =arccos

(5.6)
O<p<rm

is called the angle ¢ between the polynomials (5.2).

The formula (5.6) can be equivalently written in the
form

cosg=cosg, , = —(p(s),q(s))

|p(s)||a(s)|

In particular case if p(s)=g¢(s) then from (5.7) we
have cos¢g=1and ¢=0.

Example 5.1.Find the cos¢ between the following

(5.7)

polynomials
p(s)=s>+2s+3and g(s)=2s+1 (5.8)
fora=1andb = 2.
Using (5.3), (5.4), (5.5) and (5.8) we obtain
2
(P(5),9()) = [ p(s)q(s)ds =
1
2
=[(s* +25+3)(2s +1)ds =
1
2 (5.9)
=[(25° +55° +8s+3)ds =
1
I 4 53 2 ?
=—s" +—5 +45" +3s| =34.167
2 3 |
2 1 2 2 2 2
|p(s)|" =[[p(s)] ds=[(s* +2s+3)°ds =
1 1
2
=%s5 +s° +?s3 +65>+9s| =71.533
) ) ! (5.10)
()" = [[g(s)] ds =] (45> +4s +1)ds =
1 1
4 2
=—s5" +2s° +5| =16.333
3 1
and
_(p(s).q()) _ 34,167 _ 0.995. (.11
Ip(s)||a(s)| 34,182
From (5.7) it follows that
cosg,  =cosg, , (5.12)
and
cos¢_,_, =cosg, . (5.13)

Let us consider the transfer function of fractional
linear system of the form

n(s)
I(s)= 5.14
(5)=— ®) (5.14)
where
n(s)=b,s" +b, s" " +..+bs+b, (5.15)
d(s)=s"+a, 8" +..+as+a,  (5.16)

The inverse transfer function of (5.14) has the from
d
T7'(s)= ()
n(s)
From (5.6) applied to (5.14) and (5.17) we have the
following conclusion.
Conclusion 5.1.The angle ¢, , between the

(5.17)

polynomials (5.15) and (5.16) and the angle ¢ of
(4.14) and ¢T" of (4.17) satisfy the equalities

1) Boa =i (5.18)
2) o, = ¢T" (5.19)

In particular case for

1
= 5.20
T(s) 7) ( )
we have

br=¢ 1 =ba=0 (5.21)

Remark 5.1. Note that if zeros of the polynomials
(5.15) and (5.16) have negative real parts (the
polynomials are asymptotically stable) when the angle

@, ., between the polynomials d(s) and n(s) has the same
sign for all nonnegative @ >0 and b >0 in (5.3) and (5.4).

In this case we may assume for example ¢ =0 and b = 1.
Example 5.1.Find the angle of the transfer function

2s+4
T(s) = n(s) _— s+
d(s) s +4s+3
with the poles s, =—1,5, =3 and zero z, =-2.
Using (5.4), (5.5) and (5.22) we obtain

(5.22)

1
(n(s),d(s)) =[(2s+ 4)(s> +4s+3)ds =
0
1
=[(2s” +125% + 225 +12)ds =27.5
0
1
n(s)” =[(2s +4)*ds =
0 (5.23)
1
=[(4s® +16s +16)ds =25.333
0

1
|a’(s)|2 =[(s* +4s+3)°ds =
0

1
=[(s* +8s’ +225” + 245 +9)ds =30.533
0
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and

(n(s).d(s)) 27,5

= = ~(0.988. (5.24
Cna Z @l 773,509 629

Example 5.2. (Continuation of Example 3.6) Consider
the fractional electrical circuit shown in Fig. 3.4 for
R1: R2:1, R3:2 and L1: L2 =1.

In this case the matrices (3.40b) have the forms

el 3

As the output y of the electrical circuit we choose

(5.25)

I
y=il+i2=C{1} and C=[1 1]  (5.26)
)
The transfer matrix 7{(s) of the electrical circuit has
the from

T(s)=C[lL,s—A4] ' B=

s+3 =271 0
=[1 1] = (527
-2 s+3 0 1
:—s2+6s+5[s+5 s+5]
The angle ¢T of the transfer function
s+5
L(s)=———" (5.28)
1(5) s +6s+5

is equal to

¢ =arccosT(s)=arccos— S+ =10,63° (5.29)

s +6s+5
since

(n(s),d(s)) = j.(S +5)(s> + 65+ 5)ds =46.417
0

In(s)[ = }(s +5)ds =30.333 (5.30)
0

1
|d ()" =] (s> + 65 +5)2ds =73.533
0

6. Concluding remarks

The notions of angles between matrices and
between polynomials of fractional linear systems and
electrical circuits have been introduced and investigated.
In analysis of angles between state matrices of fractional
linear systems the Hadamard product of two matrices
has been applied and some basic properties of the angles
between matrices of fractional linear systems have been
established (Theorems 3.1-3.6). The angles between
symmetrical and asymmetrical parts of the state matrices

have been defined and have been analyzed (Theorem 3.8).
Next the angles between matrices and their functions
have been also introduced (Definition 4.1). The angles
between two polynomials are defined (Definition 5.2).
Some basic properties of transfer functions of fractional
linear systems are analyzed and some new properties
have been also established. The considerations are
illustrated by examples of fractional linear systems and
linear electrical circuits. The considerations can be
extended to fractional descriptor linear continuous-time
and discrete-time systems.
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KYTH MI’K MATPUISIMUA TA MIZK
MOJITHOMAMM B JIPOBOBUX JITHIMHUX
CHUCTEMAX TA EJIEKTPHYHHUX KOJIAX

Taneym Kauopex

CopMyIp0BaHO MOHATTS KYTiB MK MATPHIIMH Ta MiX
HOJIHOMaMH JIpOOOBUX JIHIHHNX CUCTEM Ta EICKTPHYHUX KiJ.
Ilix wac aHamizy KyTiB MDK MaTpHISIMH CTaHy APOOOBHX JIi-
HIHHX CHCTEM 3aCHOBaHO NOOYTOK Anamapa 3 IBOX MaTpHLb.
Po3risiHyTO TakoK KyTH MDK MaTpHIFIMHM Ta iX (yHKil.
JlocnipkeHO KyTH MiX CHMETPHYHOIO I HECHMETPHYHOIO
YacTUHAMHU MaTpullb. [IpoaHanizoBaHO KyTH MK MOJTIHOMaMHU
HepelaTHUX MaTpullb APOOOBMX JiHIHUX CHCTEM Ta BCTa-
HOBJICHO IXHI JIesIKi HOB1 BIIACTHBOCTI.
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