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Abstract: a frequency-symbolic method (FS-

method) of the analysis of steady-state mode of linear 
parametric circuits is intended for forming their transfer 
functions in the frequency domain. Transfer functions 
are approximated by Fourier polynomials and contain a 
complex variable, time variable and parameters of circuit 
elements in the form of symbols. The coefficients of 
such Fourier polynomials by the FS-method are 
unknown in the symbolic systems of linear algebraic 
equations (SSLAE), and are defined as their solutions in 
symbolic form. 

In the paper we present a method of forming an 
approximation expression which ensures the adequacy of 
calculations. Examples and results of computer 
experiments are given. The system of functions 
MAOPCs based on a frequency-symbolic method is used 
for the optimal design of electronic devices of noise-
immune hidden radio engineering systems using code 
signals.   

Key words: circuit analysis computing, linear 
periodically time-variable circuits, frequency-symbolic 
method, frequency-symbolic models, approximations of 
transfer functions by Fourier polynomials.  

1. Introduction 
A number of works [1,2,3] reveal the content of the 

frequency- symbolic method of analysis of linear 
parametric circuits, in which the parameters of the 
elements change over time. Moreover, this change is 
considered periodic. It is also believed that the circuit 
has a steady- state. The analysis of such circuits involves 
formation of their transfer functions ),( tsW with a 

number of parameters specified by the symbols, s, t – a 
complex variable and time, respectively. In the transfer 
functions of this type, it is convenient to substitute 
specific values of the element parameters that is a significant 
advantage in solving multivariate problems of circuit 
analysis, such as statistical analysis, optimization, etc.  

The transfer functions formed by the frequency-
symbol method are approximated by Fourier polynomials, so 
the problem of forming transfer functions is translated 
into determining the coefficients of such polynomials. 
The adequacy of such transfer functions is discussed in 
the work proposed. 

2. Problem Statement. Formation of transfer 
functions by the frequency-symbolic method. 

Suppose we have a linear parametric circuit in which 
the parameter of one element changes over time (by 
period T ), and the parameters of other elements are 
constant. Let such a circuit be in a steady-state mode. It 
is known that the transfer function of such a circuit can 
be determined from a linear differential equation with 
complex and time-varying coefficients [4, 5, 2]: 
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where S is the complex variable, t represents the 

time, 
( , )

( , )
( )

Y s t
W s t

X s
  stands for the conjugate 

parametric transfer function of a linear parametric 
circuit in the frequency domain S; 
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corresponding basic differential equation of the 
parametric circuit  
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describing the relationship of the signal )(tx applied to 

the circuit with its original response y(t);  
( )ia t , ( )jb t are the known defined for a given 

circuit valid time functions t; ( , ), ( )Y s t X s  denote the 

images of the output y(t) and input x(t) variables in the 
frequency domain S, respectively. 

The specified symbolic definition of parametric 
transfer function ( , )W s t involves forming the function 

( , )W s t of such kind in which variables s, t, and some 

or all circuit element parameters defining the 

coefficients ( )ia t , ( )jb t  from (2) are given not by 

specific numerical values, but  symbols. 
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It is obvious that the parametric transfer function 
( , )W s t  of such a symbolic form is, in essence, a 

macromodel of a given parametric circuit and can be the 
basis for the following studies of the circuit by way of of  

– studying the properties of this function ( , )W s t  

through the assignment of various numerical values to 
the parameters specified by the symbols; 

– assessing the stability of the circuit; 
– determining by this function other functions that 

characterize the circuit, in particular, those derived from 
( , )W s t  with respect to the parameters of the circuit 

elements, such as conductivity y , capacitance c or depth 

of modulation m  required to determine the sensitivity of 

the circuit W
yS , W

cS , W
mS  to the change in these 

parameters, etc. 
It is often difficult or impossible to solve such 

problems without symbolic circuit functions. 
Equation (1) (L.A. Zade's equation), as his publication 
[4] was probably the first to derive this equation and to 
present the methods of its solution. 

As practice has shown, the known methods for solving 
equation (1) turned out not to be effective enough. 
Therefore, the frequency- symbolic method we have 
developed for solving (1) is designed to close this gap. 

3. Physical content of the frequency-symbolic 
method 

Accept some prerequisites as a basis for the 
following material. 

Prerequisite 1. Consider the content of the proposed 
frequency-symbolic (FS-method) definition of 
parametric transfer functions under the assumption that 
when the parameter of the parametric element changes 
periodically, the parametric time -varying transfer 
function is also periodic. This fact is noted by a number 
of specialists in the theory of circuits and signals [6, 7]. 
If the parametric element changes with the period T , 
then the parametric transfer function changes with the 
periodT  [4]. 

Prerequisite 2. It is known [8] that in general, there 
is no exact analytical solution to ( , )W s t either by 

employing equation (1) or by using any other methods. 
In this regard, we will define this solution in an 
approximate form, but in such a way that the 
methodological error of the result could always be 
reduced if necessary. 

Prerequisite 3. To solve equation (1) we apply the 
approach of projection (Galerkin) methods, which 
involves approximation of the solution on the basis of a 
certain chosen system of orthogonal functions [8,9]. 

Given the accepted prerequisites, to solve equation 
(1) we use the approximation of the desired periodic 

function ( , )W s t with respect to the time variable  t in 

the form of a trigonometric polynomial, which is widely 
used in the theory of circuits and signals, takes into 
account the accepted three prerequisites [6] and has the 
following form: 
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where 
2

T


  . 

The problem of determining the transfer function 
( , )W s t due to the selected approximation is transferred 

to the problem of determining the corresponding time-

independent functions 0( )W s , ( )ciW s , ( )siW s . 

Note that such an approximation of parametric 
transfer functions, although for other purposes, has been 
proposed before, for example, in [6]. 

Along with all traditional advantages of the 
trigonometric polynomial, it has another, fundamental 
and decisive in our case, property – the fact that the 

coefficients 0( )W s , ( )ciW s , ( )siW s of polynomial (3) are 

functions of a complex variable s only and do not 
depend on time t. This property makes it possible to 
determine from (3) in symbolic form the required 

derivatives 
ˆ ( , )i

i

d W s t

dt
for 0 ,1, ,i n  , 

substitute them into expression (1) and, thus, convert 
expression (1) from a differential to an algebraic form 
from (2 1)k   by the unknown: 

0 1 1 2

2

( ), ( ), ( ), ( ),

( ) , ( ), ( )
c s c

s ck sk

W s W s W s W s

W s W s W s
.         (4) 

Perform such substitution. In addition, move ( , )B s t  

from the right side of equation (1) to the left, and present 
the parameter of the parametric element of the circuit, as 

it changes with the period
2

T





, by a trigonometric 

Fourier polynomial  with m harmonic components: 

0
1

( ) (1 [ cos( ) sin( )])
m

ci si
i

c t c m i t m i t


     , 

where c0 is the average value of the parameter c(t), cim , 

sim  are the depth of modulation of the cosine and sine 

parts of the i th harmonic component of the parameter 
c(t), respectively. 

The resulting symbolic linear algebraic expression is 
denoted by: 

0 1 1 2 2( , , , , , ..., , , ) 0c s c s ck skW W W W W W W t  .  (5) 
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An important property of the functional   from (5) 
is that it is periodic over time t, and changes with the 

same period 
2

T





as the parametric element of the 

circuit c(t). This fact follows from the following. Since 
the parameter of only one element of the circuit is 
variable, and it together with its time derivatives t is 
represented by trigonometric functions cos( )i t  and  

sin( )i t , the sums of the products of the members 

present in symbolic expression (5) (division operations 
are absent) will contain the products of different 
quantities (one, two or more) of such harmonic functions 
with frequencies from the series 1 , 2 ,…, m . 
Therefore, these products will form new total and 
difference harmonics, but, importantly, only from the series 
1 , 2 ,…, m , and higher. And this does not change the 
period of change in the resulting functional  . 

Since the functional   in time tis periodic with the 

period of change 
2

T





, it, in turn, can be represented 

by a Fourier series and decomposed into separate 
harmonics from the series 1 , 2 ,…, k ,… and a 
constant component. It is obvious that the solution to 
equation (5) is considered to be the values of the 
coefficients from (5), which turn it into an identity. It is 
also obvious that these solutions must ensure the equality 
of the constant component to zero and all harmonic 
components of the functional  , and hence, their cosine 
and sine parts. Since the number of unknown coefficients is 
(2 1)k  , we can choose arbitrary )12( k  of such 

components from all harmonic components  , equate them 
to zero and determine (2 1)k   of the unknown coefficients 

(4) from the (2 1)k  equations obtained. Which harmonic 

components to choose is a separate question. If, for example, 
we choose the equation, starting with the constant component 
and the first k-harmonic components of the functional  , we 
obtain a system of equations: 

0

0

0

0

0

1
( , ) 0,

2
( , ) cos 0,

2
( , ) sin 0,

2
( , ) cos 0,

2
( , ) sin 0,

T

T

T

T

T

s t dt
T

s t tdt
T

s t tdt
T

s t k tdt
T

s t k tdt
T











 



 



 



  



 













              (6) 

After performing integration actions in the system, 
we obtain (2 1)k   linear algebraic equations with 

respect to unknowns from (4), which form a system of 
linear algebraic equations of (2 1)k   order with a 

missing variable t, for example, of the following type:  

( ) ( ) ( )F s W s D s  ,                       (7) 

where ( )F s , ( )D s  are the ( 2 1)k  -dimensional 

matrix and  vector of free members are determined by 
the parameters of constant elements of the circuit, the 
variable s  and the parameters c0, mci, msi,    of the 
parametric element c(t) of this circuit; ( )W s

 
is the 

(2 1)k  -dimensional vector of unknowns (4) of the 

required approximation of the conjugate [5] parametric 
transfer function ( , )W s t .  

Although the solution of SSLAE (7) in symbolic 
form presents certain difficulties, the means of such 
solutions for simple cases are present in MATLAB. 
Methods for symbolic solution of SSLAE (7) for more 
complex cases are considered in [11]. 

EXAMPLE 1. Consider one of the simplest examples, 
which still demonstrates the content of the presented FS-
method for determining the parametric transfer function 

( , )W s t  of a linear parametric circuit. Let a separate 

parametric capacitance 0( ) (1 cos( ))c t c m t    

described by a differential equation 

  ( ) ( ) ( ) ( )i t c t u t c t u t      be such a circuit, with 

i(t) being the given current flowing through the capacitor 
c(t) and u(t) representing the voltage on the capacitor 
c(t), respectively. Define the parametric transfer 
function ( , ) ( , ) ( )W s t U s t I s  of such a capacitance. 

According to expression (1) we construct, for the given 
differential equation, the polynomials ( , )A s t  and 

( , )B s t : ( , ) ( ) ( )A s t c t s c t  , ( , ) 1B s t   and obtain 

L.A. Zade equation (1): 

( , )
( ) ( ( ) ( )) ( , ) 1

dW s t
c t c t s c t W s t

dt
     .    (8) 

This example is chosen also because equation (8) 
has an analytical solution ( , ) 1 ( ( ))W s t s c t  . But it 

is all the more interesting to compare the analytical 
solution with the solution obtained by the FS- method. 
Thus, according to the FS-method, we choose, for 
example, the simplest approximation for ( , )W s t , 

containing one harmonic component: 

0 1 1
ˆ ( , ) ( ) ( ) cos( ) ( ) sin( )c sW s t W s W s t W s t       . (9) 

From (9) determine 

1 1

ˆ ( , )

( ) sin( ) ( ) cos( )c s

dW s t

dt
W s t W s t



         
. (10) 



Yuriy Shapovalov 

 

30 

Substitute expressions (9), (10) into (8) and obtain 
functional (5) in the form: 

  
    

 
    

0 1 1 0

1 1

0 0

0 1 1
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c s

s c

c s

W W W t c m t

W t W t
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W W t W t

     

        
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       

   (11) 

Since functional (11) is equal to zero, its constant 
component and the component of the first harmonic in 
the expansion (11) to the Fourier series for 1k  are also 
equal to zero. Therefore 

 
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2

2
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2
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T

c

T
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T
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dt c s m W c s W
T

t dt
T
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T
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
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    
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







(12) 

Three (2 1 3k  ) equations (12) define a SSLAE 

with three unknowns 0 1 1, ,c sW W W , which in matrix 

form has the form:  

0 0
0

0 0 0 1

0 0 0 1

1
0 12

0 .

0
c

s

c s c sm W

c sm c s c W

c m c c s W

 
     
            
            
 

     (13) 

The symbolic solution of SSLAE (13) is as follows: 

0 2
0 0

1 12
0 0

2
,

2

2
, 0.

2
c s

W
c m s c s

m
W W

c m s c s
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If the approximation of the transfer function 
( , )W s t  takes into account 2 harmonic components 

( 2k  ), then expression (9) will look like:  

0 1

1 2

2

ˆ ( , ) ( ) ( ) cos( )

( ) sin( ) ( ) cos(2 )

( ) sin(2 ),

c

s c

s

W s t W s W s t

W s t W s t

W s t

   

    

 
   (9а) 

its time derivative is as follows: 

1

1 2

2

ˆ ( , )
( ) sin( )

( ) cos( ) 2 ( )

sin(2 ) 2 ( ) cos(2 ).

c

s c

s

dW s t
W s t

dt
W s t W s

t W s t
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Substituting expressions (9a), (10a) in (8), we obtain  
functional (5) in the following form: 
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According to expression (11a) a SLAR of 2 1 5k    

order is formed:   
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or after the symbolic definition of integrals: 
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(13а) 

where the coefficients 0 1 1 2 2, , , ,c s c sW W W W W  from 

(9а) are unknown.  



On the Adequacy of the Frequency-Symbolic Method for Linear Parametric Circuits … 31

The solution to SSLAE (13a) are the expressions: 

4

0 2
0 0

1 12
0 0

2

2 22
0 0

4
,

4 3

4
, 0,

4 3

2
, 0.

4 3

c s

c s

m
W

c s c m s

m
W W

c s c m s

m
W W

c s c m s


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     


  

     


 
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       (15) 

Compare the obtained solutions (14) and (15) with 
the analytical solution. To do this, set of numerical 

values 0 1c  F, 1  rad/s, 0,1m   to the 

parameters of the parametric capacitor. Voltage U is 

determined by the expression ˆRe ( , ) stU W s t e     for 

the FS-determined transfer function ( , )W s t  and by the 

expression
1

Re
( )

stU e
s c t

 
   

 for the analytical 

solution, 1s j  . The calculation results for k 

harmonic components in the approximation of the 

transfer function ˆ ( , )W s t and the analytical solution 

for 100,101, ,105t    s  are given in Table 1. Here 

and in the following Tables, the results of the 
calculations are presented taking into account the four 
digits after comma. 

Table 1 
Voltage calculations on parametric capacitor 

U by FS-method, B 
t, c 

k=1 k=2 k=3 

U by analytical 
expression, B 

1 2 3 4 5 

100 -0,4650 -0,4662 -0,4662 -0,4662 

101 0,4138 0,4150 0,4150 0,4150 

102 0,9897 0,9847 0,9848 0,9848 

103 0,6751 0,6759 0,6759 0,6759 

104 -0,3538 -0,3552 -0,3553 -0,3553 

105 -0,9989 -0,9947 -0,9945 -0,9945 

 
Table 1a shows the relative errors for each k of 

Table 1 compared to the solution obtained by an 
analytical expression. 

As follows from Table 1 and Table 1a, the voltage 
values are closer to the analytical solution when more 
harmonic components are taken into account in the 

transfer function ( , )W s t .  

Table 1а 
Relative errors of voltage calculations  

on parametric capacitor 

Relative error of FS-method, % 
t, c 

k=1 k=2 k=3 

1 2 3 4 

100 2,5740E-03 0,0000E+00 0,0000E+00 

101 2,8916E-03 0,0000E+00 0,0000E+00 

102 4,9756E-03 1,0154E-04 0,0000E+00 

103 1,1836E-03 0,0000E+00 0,0000E+00 

104 4,2218E-03 2,8145E-04 0,0000E+00 

105 4,4243E-03 2,0111E-04 0,0000E+00 

 
 

 

Fig. 1. Single-circuit parametric amplifier,  

( ) cos( )вх mi t I t     ; Im=1 A; ω=1 c-1 ; 

Y=1/R=1Sm; L=1 H; 0( ) (1 cos( ))c t c m t     ; c0=1 F; 2 . 

EXAMPLE 2. Consider the features of determining 
the transfer function of a single-circuit parametric 
amplifier shown in Fig.1 by using the FS-method. 

The differential equation describing a given circuit 

with respect to the input current ( )вхi t and output 

voltage ( )вихu t is as follows:  

 
 

( )

2 ( )

( ) 1

вх вих

вих

вих

L i L c t u

c t L L Y u

с t L u

     

       

   

.           (16) 

L.A. Zade equation (1) derived from expression (16)  
has the form: 

 
 

   

2

( ) ( , )

2 ( ) 2 ( ) ( , )

( ) 2 ( )

( ) 1 ( ) 1 ( , ) .

L c t W s t

L c t s c t L L Y W s t

L c t s c t L L Y s

c t L c t L W s t L s

  
           

         

         

(17) 

By analogy with example 1 in the approximation of 

the parametric transfer function ( , )W s t  by one 

harmonic component (9), we obtain the following 
SSLAE, whose unknowns are the coefficients of 

approximation  0 1 1, ,c sW W W : 
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 
     

   

2 2
0 0

0
2 2 2 2

0 0 0 0 0 1

2 2 1
0 0 0 0

1
1 0

2

1 2 0 .

02 2 1

c

s

sLY C Ls C Ls m
W Ls

C Ls m C L m C Ls C L LYs LY L C s W

WC m Ls L Y L C s sLY C Ls C L

                                          
  

                 (18) 

The complete symbolic solution (18) obtained by MATLAB is rather cumbersome, so it is not given here. The 
same solution in fractional-rational form (the symbol specifies only a complex variable s ) at 1.0m  is as follows: 

 

 

 

4 3 2

6 5 4 3 2

4 3 2

6 5 4 3 2

2

6 5 4 3 2

200 2 11 10 13
0 ,

199 599 2791 4596 6788 4600 2600

20 9 4 12
1 ,

199 599 2791 4596 6788 4600 2600

40 2 4
1 .

199 599 2791 4596 6788 4600 2600

s s s s s
W

s s s s s s

s s s s s
Wc

s s s s s s

s s s
Ws

s s s s s s

   


     

   
 

     

 
 

     

 

The symbolic solution in fractional-rational form 
(the symbol specifies only a complex variable s ) when 

approximating the parametric transfer function by two 
harmonic components, obtained in the MATLAB 
program, has the following form: 

W0= s* (549420160* s^2+159201* 
s^8+455654400* s+638400* s^7+499389696+ 
115871728* s^4+7965640* s^6+196723200* 
s^3+21710400* s^5)/(30241688* s^7+ 333736816* 
s^5+145060808* s^6+859839984* s^4+158403* 
s^10+1200700672*  s^3+795203* 
s^9+1502158336* s^2+8726523* s^8+955044096* 
s+499389696),  

Wc1= -40* s* (1087552* s^2+548544* 
s+18359* s^6+243480* s^4+1199* s^7+ 
1152960+284256* s^3+36376* s^5+399* 
s^8)/(30241688* s^7+333736816* s^5+ 
145060808* s^6+859839984* s^4+158403* 
s^10+1200700672* s^3+795203* s^9+ 
1502158336* s^2+8726523* s^8+955044096* 
s+499389696),  

Ws1= 160* (201* s^6+802* s^5+8624* 
s^4+22416* s^3+89944* s^2+123632* s+ 193056)* 
s/(30241688* s^7+333736816* s^5+145060808* 
s^6+859839984* s^4+ 158403* s^10+1200700672* 
s^3+795203* s^9+1502158336* s^2+8726523* 
s^8+  

955044096* s+499389696),  
Wc2= 2* (399* s^8+800* s^7+17160* 

s^6+24800* s^5+223872* s^4+198400* s^3+ 
 968640* s^2+332800* s+943104)* 

s/(30241688* s^7+333736816* s^5+145060808*  

s^6+859839984* s^4+158403* s^10+1200700672* 
s^3+795203* s^9+1502158336*  s^2+8726523* 
s^8+955044096* s+499389696),  

Ws2=-4800* (s^6+3* s^5+31* s^4+54* 
s^3+244* s^2+240* s+448)* s/(30241688*  

s^7+333736816* s^5+145060808* 
s^6+859839984* s^4+158403* s^10+ 1200700672* 
s^3+795203* s^9+1502158336* s^2+8726523* 
s^8+955044096* s+ 499389696).  

When completing example 2, compare the 
calculations of the output voltage of the circuit (Fig.1) 
performed by MicroCap7.0 (column 2 of Table 2) and by 
the program that implements the developed FS- method 
with the number of harmonic components in the 
approximation of the parametric transfer function of 1, 2, 
3 and 4 (columns 3, 4, 5, 6 of Table 2), respectively. The 
results shown in Table 2 were obtained at the modulation 

coefficient of the parametric capacitance 0.2m  and the 

phase difference between the harmonic change in the 

capacitance and the input signal (current) 45     at k 

harmonic components in the approximation ( , )W s t . 

Column 7 shows the relative errors of calculations by the 

FS-method at k=4 compared to the results of 
calculations using MicroCap7 (column 2).  

From Table 2 it follows that the values in columns 2, 
3, 4, and 5 differ slightly from each other, but the values 
of columns 2 and 6 coincide completely. These results, 
as well as the results of example 1, also prove the 
adequacy of the FS-method and the program MAOPCs 
for a symbolic analysis of parametric circuits developed 
by the team including the author of this paper [10]. 
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Table 2 

Result by FS-method, B 
Time, c 

Result by Micro-Cap 
7.0, 
B k=1 k=2 k=3 k=4 

Relative error of 
FS-method, % 

1 2 3 4 5 6 7 

62,832 0,6924 0,6922 0,6925 0,6924 0,6924 0,0000 

63,146 0,8918 0,8986 0,8911 0,8919 0,8918 0,0000 

63,460 1,0714 1,0837 1,0720 1,0713 1,0714 0,0000 

63,774 1,1754 1,1707 1,1767 1,1756 1,1754 0,0000 

64,088 1,1092 1,0860 1,1069 1,1091 1,1092 0,0000 

64,403 0,8244 0,8188 0,8242 0,8244 0,8244 0,0000 

64,717 0,4207 0,4411 0,4230 0,4208 0,4207 0,0000 

65,031 0,0449 0,0588 0,0440 0,0447 0,0449 0,0000 

65,345 -0,2494 -0,2527 -0,2502 -0,2493 -0,2494 0,0000 

65,659 -0,4839 -0,4881 -0,4835 -0,4839 -0,4839 0,0000 

65,973 -0,6920 -0,6918 -0,6921 -0,6920 -0,6920 0,0000 

66,288 -0,8921 -0,8989 -0,8914 -0,8921 -0,8921 0,0000 

66,602 -1,0716 -1,0839 -1,0722 -1,0715 -1,0716 0,0000 

66,916 -1,1754 -1,1708 -1,1768 -1,1756 -1,1754 0,0000 

67,230 -1,1090 -1,0858 -1,1068 -1,1089 -1,1090 0,0000 

67,544 -0,8251 -0,8195 -0,8249 -0,8251 -0,8251 0,0000 

67,858 -0,4215 -0,4418 -0,4238 -0,4216 -0,4215 0,0000 

68,173 -0,0445 -0,0583 -0,0436 -0,0443 -0,0445 0,0000 

68,487 0,2497 0,2530 0,2505 0,2496 0,2497 0,0000 

68,801 0,4842 0,4883 0,4838 0,4842 0,4842 0,0000 

 
4. Choosing the number of harmonic components 

in the approximation of the function ( , )W s t . 

It was noted above that SSLAE (7) can be formed 
from arbitrary harmonic components of functional (5). It 
is obvious that the presence of certain harmonic 
components in approximating expression (3) can 
significantly affect its adequacy. The difficulty of the 
question is that the expression being approximated is 
missing in analytical form. Only differential equation 
(1) is known, which this approximation expression 
must satisfy. Therefore, without solving the problem 
of forming an approximation polynomial with mathematical 
thoroughness, we present an engineering method for 
solving this problem. 

Previously, remind: 
1. If the parametric element of the circuit changes with 

the period
2

T





, then the conjugate parametric transfer 

function ( , )W s t also changes with the period T. 

2. Regardless of the number of harmonic 
components that specify the parametric element (one or 
more), the function ( , )W s t  contains an unlimited 

number of harmonic components with frequencies i,  

0,1,2,i    . 

As a rule [9], the highest accuracy for ˆ ( , )W s t  is 

obtained when harmonic components are  included  in 
the approximation in a row, starting with the basic 
frequency of change in the parametric element : 
constant component, first harmonic component , 
second 2, etc. This is physically clear: if the parameter 
c(t) of a parametric element is taken to be constant, then 

when approximating ˆ ( , )W s t ,  the constant term of a 

trigonometric polynomial  is also sufficient. If the 
parametric element begins to change harmoniously with 
the period T , but with insignificant depths of modulation 

( 1 11, 1c sm m� � ), then often in the 

approximation of ˆ ( , )W s t , it is enough to take into 

account only the first or the first two harmonic 
components.  With a significant change in the parametric 

element - in the approximation of ˆ ( , )W s t we have to 

take into account the first, second and higher harmonic 
components. We expect that in the general case, an 
increase in the approximation of the number of harmonic 
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components to k should lead to a decrease in the 
methodological error of the frequency- symbolic 
method, however, this is due to an increase in the order 
of SSLAE, which is obtained. 

On the other hand, we can notice one of the positive 
features of the method, which is that the frequency-
symbolic method does not calculate the members of the 
series, but determines the unknown coefficients of 
approximation of the desired parametric transfer 
function, chosen as a trigonometric polynomial. 
Although these are close concepts, but not identical. In 
particular, the process of calculating a series consists, for 
example, in the alternate determination of each of its 
subsequent members with the already defined previous 
ones, which remain unchanged in the future. In this case, 
no doubt, you should control the convergence of the 
formed series. By the frequency-symbolic method, the 
unknown coefficients of the approximating function by 
the trigonometric Fourier polynomial are determined 
from the SSLAE independently of each other, and an 
increase in k, for example, by one leads to changing all 

members of the series obtained at the previous value k, 
not just the last (last two). ). In addition, the required 
function is periodic, differentiated the required number 
of times, and the trigonometric polynomial is used not as 
a series, but as a system of orthogonal functions. 
Therefore, in our case, it is incorrect to speak about the 
convergence of the series, but it is enough to ensure only 
the adequacy of approximation, which is determined by 
the harmonic components selected for the approximating 
expression, and their number. 

Illustrate the latter in Example 1 (parametric 
capacitance). L.A. Zade equation (8) for parametric 
capacitance, as mentioned, has an analytical solution 

))((1),( tcstsW  . Therefore, it is easy to show how 

the number of selected members in the approximation of 

),(ˆ tsW affects the accuracy of the result.  In particular, 

Fig. 2 shows the dependences of the relative error η of 
determining the individual coefficients of approximation 

of the function ˆ ( , )W s t  depending on the accepted 

number of k harmonic components in it. The relative 
error was determined between the corresponding 
coefficients of the trigonometric polynomial, determined 
by the frequency-symbolic method, and the expansion of 
the analytical solution in a Fourier series (in both cases 
the value k was chosen to be the same and equal in turn 
1, 2,…, 8). From the above dependences it follows that: 

– the relative error of determining each approximation 
coefficient decreases significantly with increasing the 
number of harmonic components in it; 

– in the approximation, with the coefficient belonging to 
the higher  harmonic component, its accuracy decreases.   

 

Fig. 2. Dependences of relative errors η of separate 
approximation coefficients for Ŵ(s, t)at different quantity  

of k harmonic components in it. 

Figure 3 shows the relative errors of calculating the 
function ( , )W s t  by the frequency-symbolic method and 

the expansion of the analytical solution in a Fourier 

series at two time points t1 =1,0472 s and  t2 =4,1888 s 
depending on the number of harmonic components taken 

into account in the function ˆ ( , )W s t . The error in both 

cases is determined in relation to this analytical solution. 
From the above dependences it follows that: 

– the result of the expansion of analytical solution in 
a Fourier series is not always more accurate than the 
approximation determined by the frequency-symbolic 
method; 

– the values of the solution approximation determined 
by the frequency- symbolic method at some time points 
are more accurate than the values of the series obtained 
from the analytical solution; 

– increasing the number of harmonic components in 
both cases always leads to a decrease in error. 
As the results of computational experiments shown in 
Fig. 2 and Fig. 3, the main tool for reducing the error in 
determining the transfer function by the frequency-
symbolic method is to increase the number of harmonic 
components in its approximation. But the latter leads to 
the cumbersomeness of symbolic expressions and, as a 
consequence, to emergency stops of calculations in the 
MATLAB program. Therefore, in practice, an 
approximation expression should contain the least 
number of harmonic components, but those that ensure 
the adequacy of the result. 

On the other hand, no matter how many harmonic 
components are taken into account in the approximation 

of ˆ ( , )W s t , there will never be a certainty that the 

approximation expression includes all “significant” harmonic 
components. However, for the practical application of 
the frequency-symbolic method, we can use the method 
of accuracy control presented in the Conclusion.  
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a) 

 

 
b) 

Fig. 3. Relative errors of the calculation of the function 
W(s,t)  by the FS-method (W) and by the expansion of the 

analytical solution (Z) in a Fourier series with respect to the 
analytical solution (E) for: a) t = 1,0472 s; b) t = 4.1888s. 

5. Conclusion 
Based on the material presented above, in conclusion, 

we can present the following method of controlling the 
accuracy of the frequency-symbolic method for the 
analysis of linear parametric circuits. 

The accuracy of the obtained transfer function with 
the constant component and the k first harmonic 
components taken into account in the approximation 
expression is sufficient if the increase in their number in 
the approximation n does not lead to a significant change 
in the results obtained on its basis, insufficient - if vice 
versa.  In the latter case, it is necessary to increase k and 
repeat the calculation. 

For example, if we have two variants of the output 
signal of the circuit defined by the product of the input 

signal j te  by the approximation of the transfer function 

ˆ ( , )W s t  by the expression [4,5]: 

ˆ( ) Re[ ( , ) ]j ty t W s t e                       (20) 

when the number of harmonics k and k+n, respectively, 
and these both output signals are within a given 
deviation λ, we assume that the transfer function 

ˆ ( , )W s t  is defined with sufficient accuracy. If not - then, 

as mentioned above, repeat the calculation of the transfer 

function ˆ ( , )W s t with a larger value of k. 

Obviously, this method does not guarantee 
compliance with the requirements for the accuracy of the 
results, but the greater n, the more chances that with a 
given number of harmonic componentsk , the proposed 
method of accuracy control will provide an adequate 
result. 

In our opinion, the final determination of the number 
of required harmonic components k in the approximation 
of the transfer function can be put on a specialist-
researcher dealing with the linear parametric circuit, who 
understands the electrical processes occurring in the circuit 
and can predict the choice of “significant” harmonic 
components in the parametric transfer functions.  
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ПРО АДЕКВАТНІСТЬ ЧАСТОТНОГО 
СИМВОЛЬНОГО МЕТОДУ АНАЛІЗУ 
ЛІНІЙНИХ ПАРАМЕТРИЧНИХ КІЛ  

Юрій Шаповалов  

Частотний символьний метод (ЧС-метод) аналізу 
усталеного режиму лінійних параметричних кіл призна-
чений для формування їх передавальних функцій у 
частотній області. Передавальні функції апроксимуються 
поліномами Фур’є та містять комплексну змінну, змінну 
час та параметри елементів кола у вигляді символів. 
Коефіцієнти таких поліномів Фур’є за ЧС-методом 
виступають невідомими у символьних системах лінійних 
алгебраїчних рівнянь (ССЛАР), і визначаються як їх 
розв’язки у символьному вигляді.  

Подано спосіб формування апроксимаційного виразу, 
який забезпечує адекватність обчислень. 

Наведено приклади та результати комп’ютерних експе-
риментів. Основана на частотному символьному методі 
система функцій MAOPCs використовується при опти-
мальному проектуванні електронних пристроїв зава-
достійких скритних  радіотехнічних систем з викорис-
танням кодових сигналів. 
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