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Abstract: The article is dedicated to famous Lviv residents, the author of the Monte Carlo method, 

and mathematician Marco Katsu. The method of Monte Carlo methodical algorithms for modeling 

statistical regularities of light passage through optically inhomogeneous media is briefly described in the 

article. 
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Introduction 

1. Lviv mathematician Stanislaw Ulam is a creator of statistical modeling method or Monte 

Carlo method. Famous mathematician Stanislaw Ulam was born in Lviv on 13 April 1909. His father, Jozef 

Ulam, was born in Lviv and was a lawyer, and his mother, Anna, was born in Stryi. During 1919-1927 he 

was studying in Lviv Gymnasium, and during 1927-1933 in technical faculty of Lviv Polytechnic Institute. 

During his study in Lviv Polytechnic Institute, Stanislaw Ulam attended a course of theoretical physics by 

famous Polish theoretical physicist Wojciech Rubinowicz, who was German physicist Sommerfeld’s 

student. S.Ulam took active participation in scientific seminars of Lviv school of mathematics that were held 

in Rome and Scottish Cafe with the involvement of Stefan Banach, Waclaw Sierpinski and Stanislaw Mazur.  

 
Fig. 1. S.Ulam (on the left) with famed physicist Richard Feynman (in the middle) and mathematician 

von Neumann (on the right)
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As he recalled it, around 1929-1930 at the time of mathematical discussions in coffee houses young 

at that time mathematician Stanislaw Mazur raised a question about abstract machines, which can copy 

themselves. These ideas preceded theory of  abstract machines, which would be developed by famous 

Hungarian mathematician, participant of Manhattan Project John von Neumann. John von Neumann came 

to Lviv for the first time for the congress of mathematicians in 1927. Unfortunately, S.Ulam couldn’t meet 

him because of his final examination. Lviv department of Polish Mathematical Society suggested to student 

Ulam to hold the post of secretary. It gave him the opportunity to take part in international mathematical 

congresses and to expand the circle of contacts with leading mathematicians. 

In 1932 S.Ulam was invited to make a report on International mathematical congress, which occured 

in Zurich. In a short while, from 1934 S.Ulam began to correspond with famous scientist von Neumann and 

discussed with him relevant problems of mathematics. John von Neumann emigrated to USA in 1930 and 

worked in Institute for Advanced Study (Prinston). Exactly at Ulam’s invitation in 1937 von Neumann back 

again to Lviv for being engaged in scientific seminar. John von Neumann recommended S.Ulam to emigrate 

to the USA. Then Ulam joined a group of mathematicians, which was lead by von Neumann himself. This 

group began intensive mathematical investigation within Manhattan Project in 1943. In 1945 von Neumann 

mathematically coherent the use of an explosive method of detonation of an atomic bomb and suggested 

principle of building electronic computer, which lately would be named in his honor of EDVAC.  S.Ulam 

with von Neumann in 1949 offered decisive for Manhattan Project implementation method of statistical 

testing of complex systems with different implementation possibilities, which was later called Monte Carlo 

method.  

The main difference between Monte Carlo method and researches, which were conducted in the field 

of statistical modeling, is that Monte Carlo modelling overturned the standard view of how problem must be 

solved, using the methods of probability theory and mathematical statistics. Previously it was assumed that 

fistly you need to study the deterministic problem and then to use the simulation. In Monte Carlo modelling 

is allowed that one must have a deterministic problem and find its stochastic counterpart. It is the general 

principle that isn’t based on specific physical ideas and can be used for solving tasks in physics, chemistry, 

biology and economic etc. S.Ulam with Edward Teller put forward an idea of hydrogen bomb in 1950, which 

was later (1954) theoretically coherent by O. Lavrentiev and A.Sakharov. Afterwards, in 1955, he put 

forward an idea of nuclear pulse propulsion for an interplanetary space Project Orion.  Stanislaw Ulam 

worked closely with prominent physicist, a Nobel Prize winner for physics (1965), Richard Feynman. In the 

photo Stanislaw Ulam with another Lviv mathematician Mark Kac, student of Hugo Steinhaus, professor of 

mathematics at The Rockefeller University, with which he co-authored the book. As Ulam remembered, 

editors of British Encyclopaedia proposed him and Mark Kac to write a mathematics article for the special 

supplement “Britanica”. This article was also published as separate collective writing, which name was 

“Mathematic and Logic”. Lately it was translated into French, Spanish, Russian, Czech and Japan languages. 

   
Fig. 2.  Mark Kac (1914-1984) and Scottish Coffee Houses took place on the Stanislaw Ulam (1909-

1984) ground floor of this house. Next door (on the right, 1 Saksahanskyi str.). Now there is editorial staff 

of “World of physics” magazine
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S. Ulam remembered with warmth years spent in Lviv. He found it difficult to perceive death of 

well- known Lviv mathematician Stefan Banach after war. After Second World War S.Ulam renovated 

relationships with Polish mathematicians. They gave to him famous Stefan Banach’s workbook with 

manuscripts of scientific seminars (from the words of Steinhaus, workbook was saved and given by  Stefan 

Banach’s son - neurosurgeon), which was translated by S.Ulam into English and prepared to publishing 

named “The Scottish Book” [The Scottish Book: A Collection of problems. Translated from a notebook kept 

at the Scottish Coffee House for the use of the Lwowe Section. Polish Mathematical Society Los Alamos, 

N. Mex: Los Alamos Scientific Laboratory, 1957]. S.Ulam published a monograph “Unsolved Problems of 

Mathematics” in 1960. Stanislaw Ulam died in Santa Fe (New Mexico, USA) on 13 May 1984, was burnt in 

Paris at the Montmartre Cemetery. 

The purpose of this message is to attract attention to unfairly forgotten Lviv mathematician Stanislaw 

Ulam. However, it is difficult to succinctly display all facets of his scientific achievements and make it better 

than authors of writing [1] to mark the scientist's 100th birthday. Mykhailo Zarichyi, professor of Ivan Franko 

National University of Lviv aptly noted a tribute of great respect and recognition of merit of Lviv school of 

mathematics of Steinhaus-Banach-Ulam-Sierpinski-Mazur. He read in one of the scientific journals that 

between two worldwide wars there were three European capitals of mathematics: Paris, Goettingen and Lviv. 

So we hope that Lviv community will support the idea to reconstruct historical places of great works of 

mathematics at Rome and Scottish Coffee Houses. 

2. Method of Ulam or the Monte Carlo method (MCM). By idea of Monte Carlo method we 

evaluate the value of a defined integral 
b

a

dxxf )(  at the interval [a,b] means to evaluate the value of  

n

n
abh k)(  . Where )( abh   is the area of the rectangle, inside which lies the graph of the function )(xf

; 
n

nk
is the ratio between random points under the curve of )(xf and to the total number  n of randomly 

generated pairs which coordinates are ix )( bxa i  and iy )( bya i  with uniform distribution. 

Therefore, modeling random numbers with a given distribution law is an important component of the MCM  

3. Modeling  the scattering of photons in turbid media [2 - 4] using MCM. When physical and 

technical process are modeled, often a probability distribution  is shown/depicted  through an ensemble. 

Instead of dealing with one variable and its probability distribution , consider any large set of  values taken 

by the number of n   variables  in  given  region.  Moreover  a number of variables,whose values fall within 

interval from x  to dxx  , is equal to  dxxnP )( .  Then  a probability distribution is replaced with a 

probability density of  a large number of  samples, that has no influence  on a final result, but is convenient 

method for illustrative description of  randomness. So, the probability  that x  belongs to the certain element 

of  a phase space dx ,  is equal to the phase of the sample states of an ensemble within this interval.  

Substitution  of an ensemble  for  real physical systems leads to that every physical quantity )(tY  

becomes a stochastic process, means value and  moments of which can connect with observations.  

Furthermore,  there is the time and ensemble averaging . So, thanks to the theory of Brownian motion it is 

known that the average velocity is depicted by the macroscopic damping law, while the autocorrelation 

function determines a diffusion coefficient. A physical system actually often consists of  a number of  

identical  particles, which  to a certain extent  form physical  realization of  an ensemble . For instance, 

molecules of ideal gas form an ensemble that  represent the Maxwell-Boltzmann velocity distribution 

function . A distribution of  electrons scattered from a target  is a probability distribution by angles of 

deviation. MMC is used to solve two types of problems: process modelling  with impact of  stochastic process 

as well as  modeling of complex multidimensional physical objects, not related  to some randomness, but  

allows  an artificial probabilistic interpretation. In both cases  essence of  the  method lies in finding  possible 
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values of  a random variable, that  adequately  represents  the process, and  estimation mean values from  

numerous  implementation of process that is modeled. 

Modelling of the first type of problems. This type of the problems includes  transportation  and 

queueing theory problems, calculation of product quality and reliability, a behavior in a group of particles 

etc.  If  theoretical methods allow to  calculate precisely intersection of  interaction of an elementary particles 

with scattering center or particular atom of matter  then modeling by the method of play of  random behavior  

with  microparamaters  for  individual  particles  such as velocity, free path or the scattering angle. Based on 

parameters a collection of characteristics of  the investigated process can be estimated.  

Stochastic processes, as  scattering of photons in randomly heterogeneous medium have influence 

on processes that  are modeled in problems of the first type.There is applied  so-called  method of trajectory 

integration, which can be divided into analytical, if  corresponding  problem is solved by approximate 

analytical method   and  stochastic , as in the case of  light propagation task  in randomly heterogeneous 

medium. Метод of distribution of Browning particles and in the flows of particles is one of analytical  

methods, which uses certain approximation for problem solving.  MCM  is  a stochastic method  for modeling 

of  the scattering in randomly heterogeneous medium. 

4. Modelling  of the photons scattered in a tissue . It is known [5-9] that the attenuation regularities 

of photon flux (transport) in optically inhomogeneous medium with random fluctuations of interaction 

centers are usually modeled using statistical Monte Carlo. This is a flexible, but accurate approach to 

simulate the process in which local rules of photon migration represented in the form of probability 

distribution of random variables, such as the displacement step size between two photons scattering acts, 

azimuthal and polar deviation angles of the direction of this step. 

MCM is equivalent to the modeling of the photon migration by analyzing the differential equations 

of the radiation transport. However, its analytical solutions are often impossible to obtain, while Monte Carlo 

allows achieving the solution of the problem with any precision by increasing the number of photons. 

Through the use the laser light sources, this approach has got a wide practical application especially in 

biomedicine [7-8]. MCM in scattering medium optics is the technique of obtainment and statistical analysis 

of the trajectories of a large number of scattered photons. In essence, it is a set of procedures for constructing 

ensembles of random numbers and functions, statistical moments of which are been determined. As the 

statistical characteristic of the light field in optics of randomly inhomogeneous medium can be defined as 

the ensembles of photon trajectories and random waves, the approach based on the idea of the radiation 

propagation as a photons flux is called the "corpuscular" and approach based on the wave conception - 

"wave". 

On other hand, the probabilistic laws on the  interaction of  elementary particles (photons,neutrons, 

electrons etc) with matter are known. Mainly  there are the parameters determined of these procesess, related 

to presence  of many particles, when their statistical regularities,such as flow, density, etc are topical. 

Consider photons (quanta of the electromagnetic radiation)  with energy h  passing through a plane-parallel 

medium  with the thickness h .  For  simplification take into account that  angle of  entry  of  a photon in a 

medium is equal to zero. In the medium photons are scattered and absorbed (Fig. 3,a). In the process  «1»  a 

photon  after  elastic scattering comes out of medium  opposite side; in the process  «2»  a photon  after  

elastic scattering comes back to previous medium, and  the process  «2» it is absorbed. Each of considered 

processes occurs with certain probability, whose values must be calculated. 

Modeling of a photon trajectory. Based on  linear reduction of elementary  light intensity dI ,  

elementary thickess of the layer dh : dhdI   is grounded that  mean free path of a photon  , as the 

distance between two sequential processes of interaction of photons through  scattering  with the probability 



S

Sp    and absorption  with the probability  



 p , де   S , if  0 const , then  

probability density function  of  an exponential distribution  with the parameter   : 

      )(,)( ep  and the  cumulative distribution function ,1)(   eF 0  are correct.  
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 Therefore, under these conditions a random variable   may be modeled by the formula  rln
1


 ,  

where  r  ]1;0[ . The meaning of  free path is equal to 


1
 , and  the variance - 

2

1


.Vector position is 

specified with spherical coordinates  , , which  are related to cartesian coordinates  as shown in Fig. 3,b. 

So,  when a fallen  photon  on a plane parallel plate  is directed  along the Z  axis , then 
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Fig. 3 

When the fallen photon moves  along )1,0,0( , then  conversion of coordinates of  random scattering 

center to  local coordinates ),,(),,( zyxzyx   means to rotate  the coordinate axes ),,( zyx  about  the  

z  axis through the angle  of   and  the further rotation of intermediate coordinate system ),,( zyx   about  

the y   axis through the angle  . The cosine of  the zenith angle   cos  is within unit interval ]1;1[  , and  

the azimuthal  angle   is within interval ]2;0[  . The probability distribution of the azimuthal  angle  










22

1

0

  dr , where r 2  ( ]1;0[r ). The function  for  modeling of  the zenith angle    depends 

on value of  anisotropy parameter g .  If  the scattering is isotropic 0g , then  cos = 12 r . It’s so-called  

a  transport approximation. 

Henyey-Greenstein indicatrix  and a phase function. In figure 1,c  is shown  indicatrix of 

scattering  for  different  values g . For their describtion  Henyey and  Greenstein  introduced the function 

2/32

2

)cos21(

1
)(cos




gg

g
p




    ( g <1).  The function )(cosp  which characterizes  the diagram  of  photon 

scattering  on a  individual particle , is called phase function.  The function defines the probability that  the 

value   of a scattering angle fall within the interval ];[  d  and equals to 
 dp sin)(cos2

 as well 

as meets the condition of normalisation 1)(cos
4

1

4

 dp




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1)(cos
4

1

4

 dp





   absorbed 

















S

Sdp





 4

)(cos
4

1
,  if centers are distributed chaotically . For 

0g  the phase function )(cosp  is not dependent on the angle  .  

If 1g , then this is Mie's forward scattering.  In the case 0g , it is isotropic in all directions of  

the Rayleigh  type. In polar coordinates  anisotropy parameter is   



















4

4

)(cos

cos)(cos

dp

dp

g = 





0

sincos)(cos2 dp , where  g < cos >.  Since a direction of photon scattering  is random , then

 




0

)(cos rdp  and 0.  For most biological tissue 99.07.0  g , in other words  
00 458  .  Biological 

objects are highly scattering  media, where process of  light transmition  has  a diffuse character.  

Weight characteristics. After Metropolis' and Ulam's papers had been published, investigation of 

possible optimization on MCM was started in 1950th.  It was noticed that a lot of the computation  time was 

spent on  estimation of   trajectory of scattered particles, which  contribution to a final result may be not 

topical enough . For this purpose weight method of optimization was developed , where virtual scattered 

particles are given so-called weight – a factor that takes  the largest value  in direction of  the space  where  

its scattering  is the most probable.  A weight of a particle changes due to absorption as well.  Sometimes 

intermediate steps are used – splitting of a played point with a random coordinate x  to several with 

coordinates ),...1,,( ijyx ji  , that is, the scattering of the played photon is given as a superposition of the 

scattering processes of the so-called "virtual" photons.  

Weight parameter can be described by some functional. In this case its maximum value can be 

estimated from the minimum condition, which allows you to build weight windows with a minimum 

dispersion.  Then, when the initial photon weight is  , as a result of a reflection from the boundary of the 

separation of media with different refractive indices it will change: R , but for the photon that passed into 

the medium - )1( R . If some falling photon gain the weight - )1( R , then for the reflection of the 

boundary of division weight will equals R , and for the photone which has passed through it - )1( R . 

Change of photons weight throught scattering and absorption is determines as 
S









. So, after n  

scattering acts of photons in the medium, their flows at a distance of 
S

n
z

 
  equals 















n

S






1  













S

n







exp . Thus, if the distance between two consecutive scattering 

acts of a photon is chosen from the logarithmic distribution generated by the computer, then, in order to take 

account of the act of absorption, each photon is assigned a weight  , which decreases continuously during 

the propagation of a photon in the absorbing medium. At the entrance to the medium 1 . 

The algorithm for modeling the interactions of photons with the medium by the MCM is based on 

the following basic steps: photon source generation, trajectory generation, absorption, destruction, photon 

registration. Sometimes so-called "ballistic photons" are introduced, which, without losing their weight, 

come out of a scattering medium. The process of diffuse scattering is also conveniently divided into several 

types. Because, a photon can undergo diffuse scattering and be transferred to the outflow from the medium 
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along the trajectory in the form of a "snake" and, in general, can not escape with the only diffuse scattering. 

Each elementary act of interaction of a photon with a medium is characterized by a change of its weight 















S

S








1 . 

Algorithmization of modeling of a random photon trajectory in a scattering medium. The 

photon source is located at the origin (0,0,0)  on a three-dimensional coordinate grid (Fig.1d). Let's set the 

algorithm of the drawing of the parameter, which determines the direction of propagation of the scattered 

photon. Since the scattering diagram is symmetric according to the direction of the fall of the photon (Z axis), 

this statistical symmetry in the statistical simulation of the probability of the azimuthal scattering direction 

is equivalent to the requirement that the cosine of this angle be uniformly distributed in the range ]1;1[  , 

thus, the random choice of the scattering direction is modeled by the equation 12cos  r . 

Let's consider the scheme of calculation of the random variable describing the parameters of the 

random trajectory of the photon motion in the medium. Let’і the photon gained k - scattering at the 

coordinate point kz  and after scattering began to move in the direction kcos . Let`s play the mean free path 

with formula rk ln
1


  and calculate the abscissa (coordinate) of the next scattering) 

 kkkk zz cos1   )12(  rz kk  .Let's check the condition of passing a photon through a layer: 

1kz >h. If this condition is not satisfied, the photon count is completed and a unit is added to the photon 

counter passing through the layer. Otherwise check the condition 1kz <0. If this condition is not met, then 

the calculation of the photon trajectory is completed and a unit is added to the counter reflected by a layer of 

photons. If this condition is not fulfilled as well, i.e. hzk  10 , then this means that the photon has 

undergone another collision inside the layer and it is necessary to play the part of the photon in a collision. 

In this case, new value r , should be taken and photon absorption condition r <


  should be 

checked. If the last inequality is satisfied, then the trajectory calculation is stopped and a unit is added to the 

counter of the absorbed photons. Otherwise, we assume that the photon was scattered at the point with the 

abscissa 1kz . Then a new direction of motion of the photon is played 12cos 1  rk  and the whole cycle 

is repeated again, each time with the new values of the variable r . All r  are recorded without indexes, since 

it is assumed that each collision is used only once. Three values of  r  are needed to calculate the one section 

of photons path. Initial values for each photon path: 1cos,0 00  z . 

 Let the incident light beam consists of a certain number of photons entering the medium plane 

),( YX  along the axis  Z at a coordinate point )0,0,0( . If the photon is swallowed, then a new one is 

launched. The calculation continues until the photon does not absorb or will not go beyond the medium. The 

value of the angle of the total internal reflection ( 1)( крR  ) is calculated by the formula 











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опт
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n

1
sin 1 . With a total internal reflection of a photon, a random number is generated ]1;0[r ,  

which is compared with the value of the energy reflection coefficient . In case of  
)( крRr 

 the photon 

undergoes the total internal reflection, otherwise it is assumed that it leaves the medium. For the photon that 

has undergone the total internal reflection, the value of the coordinate inverts zz  , and other coordinates 

remain unchanged. For the angles of incidence exceeding this critical value, the energy  reflection coefficient  

equals 

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Reflections coefficient 2
~n

 of plane-parallel plate with thickness d  and refrective index 2
~n

 is 

calculated with formula spspsp rrR 22 Im~Re 
, where Fabri-Perot multi-beam interference effect is taken 

into account with  an  representation of amplitude reflection coefficient as 
)

~
exp(~~1
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. The scheme of superposition 

amplitudes of  Fabri-Perot is depicted in Fig. 4.a. Modulation of reflection coefficient )(R  and phase 
)(

 

of light, reflected by plane-parallel plate is shown in Fig. 4b, where the relative permittivity gains dispersion. 

Calculations are performed according to the formulas:
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 ~Imexp  , indices 1,2,3 correspond to the numbers of mediums, respectively, above the plate (1) 

and under it -3 (Figure 4 a)[12]   

Consider the 3D-process of elastic scattering photons in an optically inhomogeneous medium of a 

cubic shape with the length of the side a  : 1000:a ; aX 5.0:min  ; aX 5.0:max  ; aY 5.0:min 

; aY 5.0:max  ; aZ 5.0:min  ; aZ 5.0:max  . Then the function of the photon presence in it is going 

to be: a x y z( ) minX x maxX( ) minY y maxY( ) minZ z maxZ( ) . This function returns a value of 1 

for the coordinate values inside the cube and 0 outside it: 
a 0 0 0( ) 1 a 500 0 0( ) 0

, etc. For a 

constant value of the scattering parameter s , the intensity of light decreases according to the exponential 

law, therefore the random value of the mean free path will belong to the distribution srnd /))1(log( . The 

Monte Carlo algorithm for scattering of the photon has the form (1). 
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Fig.5 a,b shows the flat sections of 3D scattering diagrams of photons reflecting the anisotropy effect. 

Fig. 5c and d show the trajectories of diffuse motion: on the left for one photon, which carried out 100 acts 

of scattering, and on the right - for 10 photons with the same number of acts of scattering. In Fig. 5с, the 

visualization of random sequences returned by the function ()Walk  and and their histograms  are given. We 

are convinced of the equally probable distribution of the coordinates of the scattered photon. Authors advice 

is taken into consideration in the algorithm [13].  

Figure 4 also shows the curve of theoretical distributions as histogram envelopes. Based on the 

criterion of "chi-square" we justified the distributions of relative frequency values R with 95% confidence 

probability will be normal in both cases. On these figures also plotted confidence limits with confidence 

probability of 95% for the reflection coefficient R that determine confidence interval. 

   

  
0g

       
75.0g

 
Fig. 6. Distribution of the relative frequency values of the diffuse reflectance ratio  

Taking into account in the integral law the intensity attenuation of light by plane-parallel layer of 

spatial nonlinearity transport coefficient of photons interaction with scattering centers does not significantly 

change the width of the confidence interval for the same confidence probability. Here the value of other 

parameters
190  cms , 

110  cma and thickness of the plane parallel layer cmZ 02.0max   are 

taken similar to [14]. We see that taking into account the appropriate nonlinearity leads to some increase in 

the average values of the diffuse reflection meanR . And the difference 00 


gg
meanRmeanR

 for diverse 

values of the anisotropy g does not significantly change, coefficient of photons interaction. 

Conclusion 

The Monte Carlo method proposed by Stanislav Ulam is effective for modeling random processes 

in optical systems with fluctuations, the physical expression of which is the value of the variance. In the 

three-dimensional random scattering model, the minimum set of statistically independent random values of 

the parameters consists of the polar and zenith angles and the free path length. 
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Стаття присвячена відомим львів’янам, автору методу Монте-Карло, та математику Марку Кацу. В 

статті коротко розкриті методичні алгоритми Монте-Карло моделювання статистичних закономірностей 

проходження світла крізь оптично неоднорідні середовища.  
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