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GRAVITATIONAL POTENTIAL ENERGY AND FUNDAMENTAL PARAMETERS
OF THE TERRESTRIAL AND GIANT PLANETS

The basic goal of this study (as the first step) is to collect the appropriate set of the fundamental astronomic-
geodetics parameters for their further use to obtain the components of the density distributions for the terrestrial
and outer planets of the Solar system (in the time interval of more than 10 years). The initial data were adopted
from several steps of the general way of the exploration of the Solar system by iterations through different
spacecraft. The mechanical and geometrical parameters of the planets allow finding the solution of the inverse
gravitational problem (as the second stage) in the case of the continued Gaussian density distribution for the
Moon, terrestrial planets (Mercury, Venus, Earth, Mars) and outer planets (Jupiter, Saturn, Uranus, Neptune).
This law of Gaussian density distribution or normal density was chosen as a partial solution of the Adams-
Williamson equation and the best approximation of the piecewise radial profile of the Earth, including the PREM
model based on independent seismic velocities. Such conclusion already obtained for the Earth’s was used as
hypothetic in view of the approximation problem for other planets of the Solar system where we believing to get
the density from the inverse gravitational problem in the case of the Gaussian density distribution for other
planets because seismic information, in that case, is almost absent. Therefore, if we can find a stable solution for
the inverse gravitational problem and corresponding continue Gaussian density distribution approximated with
good quality of planet’s density distribution we come in this way to a stable determination of the gravitational
potential energy of the terrestrial and giant planets. Moreover to the planet’s normal low, the gravitational
potential energy, Dirichlet’s integral, and other planets’ parameters were derived. It should be noted that this
study is considered time-independent to avoid possible time changes in the gravitational fields of the planets.

Key words: fundamental astronomic-geodetics parameters; solution of the inverse gravitational problem;
Gaussian density distribution; Dirichlet’s integral.

Introduction

One of the basic papers regarding the internal
structure of the Solar planets has been written by the
pioneer of geophysics Georg H. Darwin in (1877)
where their some fundamental parameters have been
adopted for the estimation of the internal densities of
terrestrial and outer planets. According to the
“Encyclopedia of the Solar System” (2015) most large
bodies of the Solar system have been discovered
much earlier before the space age of Planetary
Exploration. The study of planets through space
probes usually contains several basic steps by
iterations.

In the first stage, the flybys give close images and
measure certain physical properties of the planets.
Further use of satellites around orbits close to the

celestial bodies leads to mapping most of the surface
and taking detailed remote sensing measurements. In
the following the exploration continues with landing a
probe on the surface to make in situ measurements.
Returning samples to the Earth for detailed analysis
are the next step before a human landing on a
planetary system might be considered. Considering
these steps we come again to the general way of the
exploration of the Solar system by iterations.

In reality, all the planets and some smaller bodies
have been visited by spacecraft, but only the Moon
was studied, including all the above-mentioned steps,
including the additional system of two low-low
GRAIL satellites with a minimum altitude of 23 km,
which allows the detailed study of the gravity field
[Konopliv, et al., 2014; Lemoine, et al., 2014] and the
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topography [Zuber, et al., 2016] of the Moon with a
horizontal resolution of 3-5 km. A summary of the
exploration steps of the large objects in the solar
system is presented by flybys and orbiting missions
to the Earth, Mercury (Mariner 10, 1974;
MESSENGER, 2008), Venus (Mariner 2, 1962;
Venera 9, 1975), Mars (Mariner 4, 1965; Mariner 9,
1971; Vikingl, 1976), Jupiter (Pioneer 10, 1973;
Pioneer 11, 1974; Voyagers 1, 1979; Voyagers 2,
1979; Galileo, 1995; JUNO mission, 2016), Saturn
(Pioneer 11, 1979; Cassini 2017), Uranus (Voyager 2,
1986), and Neptune (Voyager 2, 1986). Therefore,
Uranus and Neptune have not been explored from
space in detail apart from the single VVoyager 2 flybys.

Thus, because many key characteristics of planets
regarding their origin, evolution, and internal
structure remain unresolved, the problem of clarifying

the fundamental parameters of the translation —
rotational motion of planets, their use to build radial
density profiles, including estimates of such an
important parameter as the gravitational potential
energy of planets.

First descriptions of the Earth’s density in the
form of spherically symmetric density distributions
were investigated by Legendre, Laplace, Darwin,
Roche, etc. Recently, instead of the polynomial
representation of a piecewise radial density
[Dziewonski and Anderson, 1981], one hypothesis
was analysed especially in view of the Williamson-
Adams equation [Bullen, 1975]. The latter leads to the
famous Gaussian distribution that was called by the
Earth’s density normal law [Marchenko, 2000]. Fig. 1
illustrates several continuous density distributions
including PREM piecewise radial density.
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Fig. 1. The Earth Legandre-Laplace, Roche, Bullard, and
Gauss continuous densities compared with piecewise PREM-density model r (1), g/cm®

It should be noted that the case of the Earth the
Gaussian distribution of density (or the normal law)
agrees best of all with the PREM-model also based on
the seismic data. On the other hand, the continues
Gauss’ model of radial density leads to the most
reliable estimation Eg, . of the potential energy E
[Marchenko, 2009] taken from the piecewise PREM-
model [Marchenko, & Zayatz, 2011] answering the

6

following question: what kind of continuous density
law should be chosen to compare such general
characteristics as the mass of the planet, the average
moment of inertia, or the gravitational potential
energy of the planet. Hereafter the energy E taken

with the sign (-) is the work W(=—E) of

gravitation required to transport the masses, having
the total Earth’s mass M, “from a state of infinite
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diffusion to its actual condition” inside the planet
[Thomson, & Tait, 1883]. Gauss proved in his famous
memoir (1867) that W =-E has some minimal
value W_.~if all masses are concentrated on the
planet’s boundary s considered as a level surface.
Therefore, this study focuses on the estimation
E=-(W,,, +DW) for the different planets of a
terrestrial kind and giant planets based only on the
Gaussian density or normal distributions. The well-
known formula allows a simple search for W_.. and
offers an important interpretation of the deviation
DW from W_, which dependences on Dirichlet’s

integral applied on the internal potential V; generated

from an adopted density distribution. It should be
noted that this study is considered as time-
independent to avoid possible time changes in the
gravitational fields of the planets.

9(1)="2=1d, (1)

and hydrostatic relationships

gradp(l) = r(l)xgradV (1)

finally the Adams—Williamson equation can be written as

dinr(1) _ g(I)
-~ ’ (4)

dl F(1)
where p is the pressure inside the Earth. Thus (4)
represents the formula to derive the radial density

distribution from the seismic velocity data, fulfilled

Initial data. Adams—Williamson equation

The density r may be satisfying to the so-called

Adams-Williamson equation for each shell of the
stratified Earth under the following assumptions
(OEITER) where R is the mean radius of the
spherical planet: 1) the Earth is globally in hydrostatic

r(l
equilibrium ﬂﬂ—(|)=£0; 2) chemical composition

and phase transformation are homogeneous in every
shell; 3) the temperature is adiabatic in each shell. In
the integral form the condition of the hydrostatic
equilibrium requires a minimum of gravitational
energy. Thus, if we observe seismic velocities V, and
V; in the form of the function

4

F=F(I)=V(I)i—§V(I)§, 1)
in view of the gravitational
o g()=S3 @
I
e By, @

under the assumptions above. In order to use (4) we must
first try to solve this equation and to express the
observed seismic data by a suitable function of depth,
separating the Earth into convenient shells. Traditionally
we shall assume that the separation into shells has to be
choice at those spheres, where discontinuities in the
parameter F or in its derivative can be observed.

Table 1
Fundamental parameters of the planets (All NASA parameters were updated in 2020)
Planet a,, km r,,glcm’ | (or C) R r,,glcm’
1 2 3 4 5 6
Terrestrial planets
Mercury | 2439.4 5.428 Margot, et | C=0.346 +0.014 | 2439.7 2.9 Rivoldini, et
Messenger al. 2012 Margot, et al. NASA al., 2009
2439.5 NASA 5.427 NASA 2012:1=0.35
NASA
Venus 6051 5.25 Cottereau, C=0.3360 6051.8 2.85 Yoder,
Magellan Souchay, 2009 Cottereau, NASA 1995
5.243 NASA Souchay, 2009 2.9 Rappaport,
1=0.33 NASA etal., 1999
Earth 6378.137 NASA | 5.514 NASA 0.3308 NASA 6371 NASA 2.67 Moritz,
1990
Moon 1738 GRAIL 3.344 NASA 0.394 NASA 1737.4 NASA 2.8 Hikida,
Wieczorek,
2007
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Continuation of Table 1

1 2 3 4 5 6
Mars 3396 Mars 3.935+0.4 0.3653 Mocquet, | 3389.5 NASA 3.0 Zuber, etal.,
Reconnaissance | Seidelmann, et etal., 2010 2000;
Orbiter al., 2002 0.3638 2.9 Konopliv, et
3.933 NASA Konopliv, et al., al., 2006
2016
Outer planets
Jupiter 71492 NASA 1.326 NASA C=0.2629 - 69911 NASA <0.8 NASA
0.2645
Helled, et al.,
2011
0.254 NASA
Saturn 60268 NASA 0.687 NASA C=0.218 58232 NASA <0.4 NASA
Helled, et al., 2011
0.210 NASA
Uranus 25559 NASA 1.271 NASA 0.225 NASA 25362 NASA <0.1 NASA
Neptune | 24764 NASA 1.638 NASA 0.230 NASA 24622 NASA <0.1 NASA
[a,is the equatorial radius; R is the mean radius; I is the mean density; | is the dimensionless mean

moment of inertia; I,

is the surface density. All NASA planet’s parameters were taken from the web-site

(http://nssdc.gsfc.nasa.gov/planetary/). All adopted parameters are highlighted in bold text.]

It is evident that the formal solution of (4) may be
obtained after the integration of Adams—Williamson
equation. The result is

r(l)=r expg Og(x) X+, (5)
F(X) g
and we get the functlonal dependence for radial

density as the exponential function. The right hand
side of the expression (5) is unknown. For this reason,

we shall apply instead of (5) the simplest
approximating function
r(1)= roexp(—bzxz), b = const, (6)

where the degree 2 is the lowest power for which we
get a non-zero value F at the origin.

Table 1 demonstrates adopted fundamental
parameters of the planets derived from the exploration

4er3efxerf(bxx) X

of the Solar system and applied in the following as
initial information. For the applications, we shall
write some well-known formulas within the sphere of
the radius I (the part of the Earth’s mass which is
restricted by this radius) for the mass

1
M (1) =4p § r(x)x’dx, (7
0
where dx is the element of a line and the mean density
rn(:
r (l):iM(l). (8)
m 4P

The value r (1) in the form of (8) leads to the

above-mentioned representations (2). The expression
(6) admits according to (1) and (4) the next remarkable
expressions for the mass

M (1) =P
e

and for the mean moment of inertia

8pr, R5e3\/_erf(bxx) X

1(1) =
=" S 8b 4r,

where erf(z) is the integral of the Gaussian

distribution from 0 to z or the probability integral with
the density distribution according to (6).

r(1)x(2bx* +3);

u
g,
2r0r( )ﬂ ®)

R? é 4 1? 0
= zeM (D) - p3 r()g, (0
e u

[t ¥ e el

Thus we come to a remarkable result: 1) one of the
solutions of the Adams-Williamson equation is
nothing else but the famous Gaussian (normal)
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distribution, which may be approximated by Roche’s
model, represented the possible solution of the
Clairaut equation; 2) in the case of the Gaussian
density distribution, the mean moment of inertia (with
the accuracy to the certain constant) can be expressed
as the simple difference between the Earth’s mass and
the mass of the homogeneous Earth with such mean
density, which is equal to its surface density r(l).

Gauss’ distribution of the planets density

According to [Moritz, 1990] three above-
mentioned conditions had lead to the following
conclusion “any global density law must satisfy three
basic conditions” [see also Bullard, 1954]: 1) It must
provide the total mass or, equivalently, the mean
density; 2) It must give the value for the mean
moment of inertia; 3) It must reproduce the density at
the base of continental layers, which may be taken as

b, =-

2¢p *GXR’r, X¢1(|1)X¢2(|2)X¢>3(|3)...€Dm_l(|m_l)

about 3.2 to 3.3 g/lcm®, e.g. the conventional density
just below Mohorovichich discontinuity much used in
isostasy I, =3.27 glem® “.

These three conditions may lead to the construction of
the continuous radial density distribution. The first
two conditions can apply for the determination of the
continuous Roche’s model. First, according to Gauss’
model for the density at the origin, which is
dependent on the observed value of F we get

2xp xGxR?
@,(0)= -2, 1)
1

where F,(0) corresponds to the first piece of the

seismic data F at the origin. According to the above
stratification we get (i=1, 2, ... m) pieces on the
whole. Next, after simple manipulations, the following
formula may be written

" 3¢, (0)
which leads to the following conclusion If the
density of the Earth is known at the origin, then
the seismic data at the boundaries of the Earth’s
jumps is sufficient to independently determine the
coefficients (12) of the piecewise Gaussian
model..

However, according to (12) we can add an
additional density condition to the origin, which will
depend on the observed value F . In addition to the
previous results and conclusions, we will finally
describe some simplest properties of the normal
model, having the form of a spherical shell with the
corresponding stratification of the planet and return to
the three conditions listed at the beginning of this
section. After the transformation (10) to the

dimensionless moment of inertia | =1 I MR?, we

obtain the simplest relation

1é r.u
== al-—% (13)
m e U

b*¢ dng

between the Earth’s mean density d, the moment of

inertia |, and the surface density Iy . This formula

provides for our non-linear inverse problem the
remarkable closed expression

1€ ru
b?="gl-—, (14)
né  dnd

for the coefficient b of the continuous Gauss’ density
model.

@, (1), (1,) 2, (1,)..2, (1,1)

, (12)

Thus, we come to the sequential solution of the
non-linear inverse problem by means of two closed
expressions for 2 basic parameters. The first one is the
qualitative characteristic (14) of the global density
distribution.

The second one is the quantitative characteristic

= 4xb’r_xexp(b?)
" 31(\p rexp(b?)rerf(b) - 2b)
which was derived from the expression (8) for the

Gauss’ mean density. The solution of (14)—(15) provides
finally the density at the centre mass of the planet, and a

(15)

remarkable agreement of I, the mean density r_,

and the mean moment of inertia |_. In the case of the
Earth this model agrees best of all with the continuous
Bullard’s model (see Fig. 1), which has 3 parameters.

It should be noted that the determination of 2
parameters of the continuous Roche’s model is
based only on the mean density r_ and the mean

moment of inertia |_, without any condition for

mi
r,. As a matter of fact, in the case of the
continuous Gauss’ density model with 2
parameters all these 3 conditions can be replaced
by one relationship (14) for the qualitative
characteristic b of the planet’s normal density

distribution. The quantitative characteristic I,
now is the non-linear function (15) of the
computed b and the Earth’s mean density.
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Table 2
Parameters of the normal law and Roche’s model for the Planets of Solar system
r b g(l) at the planet Deep of the
Planet - surface, maximum of g(1),
g/cm m/c2 km
The Moon and Terrestrial planets
Mercury 11.33066 1.153545 3.7 202
Venus 11.07512 1.163695 8.9 404
Earth 12.89487 1.248673 9.8 1039
Moon 4.25882 0.642566 1.6 0
Mars 5.95588 0.849683 3.7 0
The Giant planets
Jupiter 8.19094 1.984189 24.8 20118
Saturn 5.49708 2.182179 104 20796
Uranus 9.24325 2.108185 8.9 7819
Neptune 11.55951 2.085144 111 7515
According to the so-called Saigy theorem, the . dg ( |) .
gravity g(l) has a maximum inside the Earth. If the derivative TH is equal to zero. As a result, for the

radial model has been used as a basic tool, some
additional closed relationships can be derived. Thus, it
is necessary to find such a point(s), where the radial

stationary point(s) we write first of all the well-known
expressions

dg(1) _4pGe dr,(1)6 2 2 0 2
— =" —cr ()+1——2.=4pGer()-=r_(1):=0 b r(l)==r_(1). (6
Moreover, since the Roche model is a certain dzg(l)
approximation of Gauss’s law, instead of numerical T<0 at the point (20) and our function g(I)

integration we use Roche’s law, which gives simple
estimates in closed form

r(x)=r, (1— sz) =a+bx?, (K=const), (17)

where

a=r,>0 and b=r,K<0, (18)
and get immediately
L2
rm(l)=a+%elg =a+3be2. (19)
5 &Ry 5

Now the solution of (16) leads to the closed

expression for the parameter x:
1 _Ba

R 3x/-b~

This root corresponds to (17) and a >0, where
the sign of b must be negative: b <0. Furthermore
applying such dimensionless relationship (20) for
x T[0,1], the following inequality can be obtained

a
a9
-b 5
for the coefficients of Roche’s model. It should be
noted that only a sign of the second radial derivative

follows from the coefficient b. For this reason

(20)

(21)

10

has one maximum only at this point. To calculate the
coefficients a,b, we use the following convenient
equations

a= 5r,(10-21l,) b= 35r,,(51, -2)

8 8
which together with expressions (14) - (15) were used
for the calculation of planet’s parameters given in
Table 2.

It has to be pointed out that in the cases of the
Moon and Mars Roche’s model cannot allowing
positive results for the Seidgy theorem. The
formulas (16)-(22) lead to the maximum at the
surface of these planets. It is obvious because
Roche’s law was used for the approval of this
theorem. More consistent results can be obtained via
the normal distribution.

» (22)

Planets gravitational potential energy.
Conclusion and summery

Fig. 2 demonstrates all normal density distribution
r(1/R) [g/cm®] for the Moon and terrestrial planets

(left) including additionally the outer planets (right).
It should be noted that density about the surface of all
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Giant planets is close to zero that corresponds to
NASA data from Table 1 in the form of inequalities.
Fig. 3 reflects the Seigy theorem illustrating gravity
distribution g(1/R) [m/c?] based on the normal

density of the Moon and terrestrial planets together

glcm3

with the outer planets. Thus, the normal law of
density leads to the most deeper values of maximum
as shown in Fig. 3. More detailed analyses allow the
same conclusion as shown in Fig. 2 and Fig. 3
together with Table 1 and Table 2.

8— glcm3

e Radial Gauss densitv profiles for
77 Jupner
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Fig. 2. Normal density distribution r(r) [g/cm®] of the Moon and terrestrial planets (a)
including this law for outer planets (b)
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Fig. 3. Gravity distribution g(r)[m/c?] based on the normal density
of the Moon and terrestrial planets (a) and including this law for the outer planets (b)

One of the unique criteria for the determination of
r (as the solution of ill-posed problem) is the search

for the stationary value of E [Wermer, 1981]. A

similar approach follows from Mescheryakov’s
(1977) result: “If a numerical value of the potential
energy E and the density on the Earth’s surface s are

11
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given prior, then in the Tikhonov sense the
determination of the density r transforms into a
properly posed problem” [Tikhonov and Arsenin,
1974]. Thus, the work W = -E of the gravitation
represents the quadratic functional of r [Moritz,

1990] and can be used in the solution of this inverse
problem. In view of geophysics the energy E may also
be applied as an estimate of a lower limit to the
mantle viscosity obtained from the rate of time-
changes of E [Rubincam, 1979]. The continuous
Legendre-Laplace law, Roche’s law, Bullard’s
model, Gaussian distribution of the Earth and the
piecewise continuous Roche profile were applied in
Marchenko (2009) for several estimations of E that
led to the inequality with minimum limit corresponding to
Gauss’ continuous profile and very close to the
piecewise PREM model [Marchenko, Zayats, 2011].
Therefore, the comparison of all the E-estimates gives
E EE,EE,<-W_ . (23)
The conventional expression for the Earth’s
gravitational potential energy E = -W reads [Gauss,
1867; Moritz, 1990]:

Gauss

E= —%éVi(th Dor(r,d, Dt (24)

According to (Gauss, 1867; Moritz, 1990) the
work W = -E has some minimal value W_; if all

masses are concentrated on the level surface S where
the gravitational potential V, = const and the interior
is empty. In this case, the internal potential
V, =V, =const represents the harmonic function
inside the surface s and leads to zero Dirichlet’s
integral. Thus, the minimum amount of W =-E
becomes

W, =MV, /2, (25)
and represents the solution of the variational Gauss
problem [Gauss, 1840, 1867]. Substitution of eq. (25)
into Eq. (24) leads to the following fundamental
formulae

E=-(W,, +DW). (26)

Thus, otDW =L0 D(V,,V;)dt her kind of
8pG,

expression for E, given under the assumption that the
boundary s is a level surface, provides a simple
estimation of W_..~ and remarkable interpretation of

the deviation DW from this minimal amount W, ,
i.e. in terms of a non-zero Dirichlet’s integral when all
masses are distributed inside t according to an
adopted density law.

Final expressions based on eq. (26) read

GM? _p’GriR°exp(-29°) 12
-E=W = R =P =l dep( g)SZQ—x@exp(gz)erf(g)Hv 27)
5 2p5
~DE =DW =@gﬁg rerf(v/29) -vperf(g)’l, (28)
g

Table 3 contains estimates of the energy
E=-(W,;, + DW) separately for each planet, but

in all cases, the normal law of density was
applied.

Table 3
Results of the calculation of the work of gravitation W_,,, DW and the energy E
Planet W DW E=-(W,_ +DW)

The Moon and Terrestrial planets

Mercury 1.4902260x10% erg 4.6793022x10% erg -1.9581562x10% erg
Venus 1.3063239x10% erg 4.1336440110% erg -1.7196883x10% erg
Earth 1.8682711x10% erg 6.3194654x10% erg - 2.5002176x10* erg
Moon 1.0381252x10% erg 2.3922314x10% erg -1.2773484x10% erg
Mars 4.0513002+10 erg 1.0374989x10% erg -5.0887992x10% erg
The Giant planets

Jupiter 1.7190280x10% erg 1.1264831x10% erg -2.8455112x10% erg
Saturn 1.8500793x10* erg 1.4445069110* erg -3.2945862x10* erg
Uranus 9.9237757x10% erg 7.2661139x10% erg -1.7189889x10% erg
Neptune 1.4213884x10" erg 1.0197873x10" erg -2.4411757x10% erg

12
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It has to be pointed that the gravitational potential
energy in the Table 3 were computed using the direct

=P

2Gd2R® & 24/p exp(-b?)erf(b)

b § [
without assuming that the surface S of each planet is

a level surface. Because the stratification of the planets
was accepted as spherical, we came to conclusion that

formulas (29) and E =-(W_. + DW) give the same

min

results. Another conclusion will connect with the
general amount of gravitational potential energy.
According to the Encyclopedia of the Solar System
(2015), we will recall that such giant planets as
Jupiter, Saturn, Uranus, and Neptune have accounted
for 99.5 % of all the planetary mass in the solar
system. The gravitational potential energy of these
outer planets consists of 74.6 % of all planetary
energy from Table 3. The amount of energy of all
terrestrial planets, including the Moon, has accounted
for 25.4 % of all planetary energy.

Mathematically speaking, other types of the
expressions (27)—-(28) for E give an remarkable
interpretation of the deviation of the work of
gravitation for the infinite transition of the masses to
the planet's surface with a minimum value W_,

(corresponds to the first step or (27) and the work of
gravitation having total Earth’s mass M , from a state
of an infinite diffusion before its distribution on the
planet’s surface S (Thomson and Tait, 1883)). Thus,
in view of the nonzero Dirichlet’s integral DW >0,
Table 3 shows that the value of the Dirichlet’s integral
DW for each planet significantly depends on its
radius. With a smaller radius, we get a smaller impact,
which has a simple explanation. Indeed, the
Dirichlet’s integral (formula (28) corresponds to the
second step or to the work of gravitation to transport
masses having the total mass of the Earth M , "from a
state of infinite diffusion on the planet's surface to its
actual state inside the planet"). That is, the work of
gravitation, which has the total mass of the Earth,
corresponds to formula (29) and again combines the
definition (Thomson and Tait, 1883) and its transition
from a state of an infinite diffusion to the actual
distribution within the planet. Increasing the radius of
the planet leads to a corresponding increase in the
work of gravitation. This state of affairs can be
changed only by the application of different laws of
density, which best approximates its piecewise
continuous distribution. However, the normal density
distribution used in this work is, in our opinion, one
of the best in terms of approximation and

formula (29) [Marchenko, 2009] based on the

expression (24):
V2perf(v/2b) 0
2b E,
transformation into a finite element method for the
radial density profile.

-2exp(-2b?) - , (29)
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I'PABITALIIMHA IIOTEHLIIAJIbBHA EHEPT'IS1 TA OCHOBHI ITAPAMETPU
3EMHUX ITJTAHET I TUDTAHET-TII'AHTIB

OCHOBHOKO METOI IIOT0O JOCTI/KCHHs (MEpIUuii eTam) cTall0o HAKOMUYCHHs BiAMOBiAHOTO Habopy ¢yHza-
MEHTAJIbHUX aCTPOHOMO-TEOJIC3UYHUX IapaMeTpiB Uil IX MOJAJbLUIOr0 BHKOPUCTAHHS 3 METOI BU3HAYCHHS
CKIIAJIOBUX PO3MO/ILTIB T'YCTHHHY JJIsSI 3¢MHUX Ta 30BHIIHIX maHeT COHMYHOI cucTeMu (Ha iHTepBasi Oibiine Hixk
JecsaTh pokiB). [1ouaTkoBi AaHi OTPUMAHO Y PE3yNibTaTi KiIbKOX KPOKIB 3aralibHOTO CIIOCO0Y MOCIiIKCHHS
CoHsYHOI CHCTEMH 13 BUKOHAHHSM ITepalliif 3a OIOMOTOI0 PI3HUX KOCMIYHUX amapariB Ta Miciif. MexaHiuHi Ta
reOMETPUYHI TapaMeTpH IUTaHET JA0Th 3MOTY 3HaWTH PO3B’si3aHHs OOepHEHOT TpaBiTaliiHOl 3amaui (apyruit
eTal) y pa3i BAKOPUCTAaHHS TayCCOBOrO PO3Moniny ryctuHu 1t Micsis ta 3emuux (Mepkypiil, Benepa, 3emus,
Mapc) i mnaner-riranriB (FOnitep, CatypH, Ypan, Hentyn). Leit 3akon po3noainy ryctunu [aycca (abo
HOPMAaIbHHUN PO3MOIT) BUOPAHO SK YAaCTKOBHI pO3B’SI30K piBHAHHS Amamca — BinbsMcoHa Ta Halkpaiie
HAOJMKEHHS KYCKOBO-paziagbHOTO mpodiso 3emiti, ypaxoByrodun Moaenb PREM Ha oCHOBI He3alaeKHHX
ceificMigHMX mBUAKOCTeH. L[eif BUCHOBOK, SK TimoTe3a BxKe 3poOJIeHUH s 3eMIli, BUKOPUCTAHO IS BUPIIICHHS
npobaeMy anmpoKCUMAIlil A 1HIINX IUIAHeT, IIOA0 SIKUX MU CIIOJIIBAEMOCS BHUPIIIMTH OOEpHEHY IpaBiTalliiiHy
npoOJeMy B pa3i 3aCTOCYBaHHS PO3MOIiTy IYCTHHH ['aycca Ayl IHIMX TUIAaHET, OCKIJIBKHY celicMivHa iH(opmarris
B TaKOMY BHIaJKy Maike BiACYTHS. ToMy, SIKIIO MM MO’XEMO 3HaWTH CTIHKWH PO3B’SI30K i1 0OepHEHOT
rpaBiTaIliifHOT 3aadi Ta BIONOBITHUN pO3MOIiN TycTWHHU [aycca, anmpOKCHMOBAaHUH i3 HANEKHOIO SKICTIO, TO
OPUXOJUMO Yy pe3yibTaTi 10 CTabiIbHOTO BHM3HAUCHHS I'paBiTAllifHOI NMOTEHLIHHOI eHeprii 3eMHHX Ta
TiraHTCHKUX IUTaHeT. KpiM HOpMaJbHOTO 3aKOHY TYCTHHH IUIAHETH, BH3HAUCHO I'PaBiTallifHy MOTECHIAIbHY
eHeprito, iHTerpan [ipixie Ta iHmn ¢yHaameHTtansHi napamerpu miaHeT CoHsiuHOI cuctemu. Lle mocimiukeHHS
3IHCHIOETHCS BIEPILE SK CTaTHYHE, 00 YHUKHYTH MOXKJIMBHX 3aJIS)KHOCTEH BiJl yacy B IpaBiTaIliifHUX MOJAX
TUIAHET.

Knouosi crosa: hyHmaMeHTaIbHI aCTPOHOMO-TEOIC3MYHI ITapaMeTpH; PO3B’I3aHHSI 00ePHEHOT rpaBiTaIliitHOT
3a1a4i; po3mnoain rycTunu 'aycca,; iHterpain Jipixie.
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