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THE GRADIENT CONSTRUCTION APPROACH ANALYSIS
OF THE THREE-DIMENSIONAL MASS DISTRIBUTION FUNCTION
OF THE ELLIPSOIDAL PLANET

To investigate the features of the algorithm implementation for finding the derivatives of the spatial
distribution function of the planet’s masses with the use of high-order Stokes constants and, on the basis of this,
to find its analytical expression. According to the given methodology, to carry out calculations with the help of
which to carry on the study of dynamic phenomena occurring inside an ellipsoidal planet. The proposed method
involves the determination of the derivatives of the mass distribution function by the sum, the coefficients of
which are obtained from the system of equations, which is incorrect. In order to solve it, an error-resistant
method for calculating unknowns was used. The implementation of the construction is carried out in an iterative
way, while for the initial approximation we take the three-dimensional function of the density of the Earth's
masses, built according to Stokes constants up to the second order inclusive, by dynamic compression by the
one-dimensional density distribution, and we determine the expansion coefficients of the derivatives of the
function in the variables X,Yy,z to the third order inclusive. They are followed by the corresponding density

function, which is then taken as the initial one. The process is repeated until the specified order of approximation
is reached. To obtain a stable result, we use the Cesaro summation method (method of means). The calculations
performed with the help of programs that implement the given algorithm, while the achieved high (ninth) order
of obtaining the terms of the sum of calculations. The studies of the convergence of the sum of the series have
been carried out, and on this basis, a conclusion has been made about the advisability of using the generalized
finding of the sums based on the Cesaro method. The optimal number of contents of the sum terms has been
chosen, provides convergence both for the mass distribution function and for its derivatives. Calculations of the
deviations of mass distribution from the mean value (“inhomogeneities”) for extreme points of the earth's geoid,
which basically show the total compensation along the radius of the Earth, have been performed. For such three-
dimensional distributions, calculations were performed and schematic maps were constructed according to the
taken into account values of deviations of three-dimensional distributions of the mean (“inhomogeneities”) at
different depths reflecting the general structure of the Earth's internal structure. The presented vector diagrams of
the horizontal components of the density gradient at characteristic depths (2891 km — core-mantle, 700 km —
middle of the mantle, also the upper mantle — 200, 100 km) allow us to draw preliminary conclusions about the
global movement of masses. At the same time, a closed loop is observed on the “core-mantle” edge, which is an
analogy of a closed electric circuit. For shallower depths, differentiation of vector motions is already taking
place, which gives hope for attracting these vector-grams to the study of dynamic motions inside the Earth. In
fact, the vertical component (derivative with respect to the z variable) is directed towards the center of mass and
confirms the main property of mass distributions — growth when approaching the center of mass. The method of
stable solution of incorrect linear systems is applied, by means of which the vector-gram of the gradient of the
mass distribution function is constructed. The nature of such schemes provides a tool for possible causes of mass
redistribution in the middle of the planet and to identify possible factors of tectonic processes in the middle of
the Earth, i.e indirectly confirms the gravitational convection of masses. The proposed technique can be used to
create detailed models of density functions and its characteristics (derivatives) of the planet's interior, and the
results of numerical experiments — to solve tectonics problems.
Key words: incorrect problem; Fire — Cesaro method; Earth; PREM model; Stokes constants.

Introduction distribution of its bowels [Fys, et al., 2021]. It is an

The determining characteristic of the structure of exhaustive factor in the formation of the properties of
the Earth internal structure is the function of mass  terrestrial matter and in combination with the figure
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of the planet forms an external gravitational field,
which is characterized by spatial dependence (three-
dimensionality). It cannot be the result of the action of
real one-dimensional models of mass distribution
density used in geophysics. After all, the radial
models of the planet's subsoil distribution created
using seismology data involve the use of only Stokes
constants of zero and second orders (mass, moment of
inertia) [Dzewonski, & Anderson, 1981]. Today, the
most widely used is the standard model, PREM
[Dzewonski, & Anderson, 1981], which generally
characterizes the internal structure of the planet, and
therefore can be the basis for further constructions of
three-dimensional density models using higher-order
gravitational field coefficients. In such a situation, the
solution of the problem is possible only approximately
and has an iterative character [Tserklevych, et al., 2012].
The zero approximation of the value is usually taken as a
three-dimensional density model [Meshcheryakov, &
Fys, 1986] based on one of the standard models, such as
PREM [Dzewonski, & Anderson, 1981] and consistent
with Stokes constants up to and including the second
order and dynamic compression. The fact of taking into
account the coefficients of potential decomposition to a
certain order [Meshcheryakov, & Fys, 1986] generates
an iterative scheme for constructing such models that
reflect in sufficient detail the nature of the distribution of
planetary masses [Meshcheryakov, & Fys, 1990].

The dynamics of phenomena occurring in the
middle of the Earth involves a change in the
distribution of masses in both radius and longitude, i.e
the gradient of density change is also a three-
dimensional function of the three coordinates.
Research in this direction and geophysics has hardly
been conducted and relate mainly to changes in the
radius distribution function. The possibility of
latitudinal changes was only discussed. Therefore,
given the efficiency of approximation of the function
by the sum of the corresponding polynomials
[Meshcheryakov, et al., 1986; Meshcheryakov, et al.,
1990], it is natural to apply it not only to the mass
distribution function itself, but also to its derivatives.
This work is devoted to the attempt of such
adaptation. The considered method is also an
approximation that can be partially estimated (values
on the Earth's surface are used), which makes it
possible to analyze the iterative process. The
derivative distribution functions constructed using the
proposed method are more informative and give a
more detailed picture of the distribution of the
planet’s masses, including their possible movement in
the middle of the Earth, and the obtained model
function gives a picture of the mass distribution. Maps
for the vertical derivative confirm the growth of the
mass distribution function with increasing depth in the
middle of the planet.
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Purpose

To propose and investigate the method of stable
construction of derivatives of the three-dimensional
mass distribution function of the planet together with
the Stokes constants of high orders. Based on it, to
study the internal structure of the Earth and possible
mass movements in the middle of the Earth.

Methodology
The main theses of the approximate method for
the gradient construction and the distribution function
of the interior masses of an ellipsoidal planet.

The use of a representation with systems of
biorthogonal systems for the derivatives of the mass
distribution function of the planet’s interior was
proposed in [Fys, et al., 2020]. The essence of this
method is to represent the image of lumpy continuous
derivatives of density functions using orthogonal

systems  (later biorthogonal  {W,,, },{w,. })

polynomials of three variables in an ellipsoid
2 2
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and is a linear combination of the following values
(power moments of the mass distribution function of
the planet):

i d
s = —— 50X XX ——dt,p+g+s=t, (3)
" Mafaja; ; T
where M — planet mass, a, — equatorial radii of the
Earth, a,,a,,a, — half-axis of the ellipsoid [Fys, et al.,
2016,2018].

The quantities (3) (power moments of the
derivatives) are determined through the power
moments of the density function d using the
Ostrogradsky formula
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of the density function, the order of which is one less

2 2
X, =*a,, [1- X—lz - x_2 = (x1 X, ) than in (3), and the expressions [Fys, et al., 2020]
& a 1
S e X3 x5d cosa,ds =
X aeﬂfo . MalazaS(')sOXI 2
D(x.%,)= I+g—+ +too— () (6)
1 fix
eliX g elX IZ! 00x1 X% xid
The representation of the surface of the ellipsoid Ma1 aja; o D(xz,x3)’

in formulas (5) can be considered in another form, for
example, expressed X, through X,,x;. Therefore, the
quantities (4) are determined by the power moments

Power moments are determined from a system of
equations derived from an expression for spherical
functions [Fys, et al., 2019]:
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The system of equations at N> 2 is ambiguous
and can be solved by performing additional
conditions (for example, under the least squares).
The power moments of the density up to and

2°"mi(m+k)!(n -k -2m)!

= & (g +iby )™, (7)

p+g+s=n

to determine the values I

and including the third order. In this case, there is a
need to determine the additional values S

with formula (4) up to

including the second order are determined from  included in the transformation of the Stokes
these observations, and therefore they can be used  constant as follows:
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U = QU Vi = )V, dx - antiderivatives of

spherical functions (polynomials of n + 1 order by
variables X, X,, X;).

The set of equations (8) is supplemented by
identities:

i i I
where (S pOO) (SOqO) (5005) =S pezige2jstal
i+j+l=t
The system of equations (8) is divided into four

groups with the corresponding number of equations
and unknowns (Table 1):

l. S oon+S 20n-21S 02n-21S 40n-41S 22n-4 1S 0an-41-1S nror 1+ ST T T
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Table 1
The number of equations and number of unknowns of each group (10)
Name Number of equations r Number unknowns t
| aeenu 1o laeéﬂg oaeenu 3_
*82f 28628 88 f
I, 11, IV(n - paired) aeen 1u 19 leén-1u oaen 1u 3o
88 g 288 2 | 88
V(11 — unpaired) éna n(n+1)
g2 2

31



Geodynamics 2(31)/2021

In accordance with this, the systems will write:
B.=AX,, 1=1234, (11)
where B, — matrices of dimension rxn, the elements
of which are coefficients for powers x, y, z of the

corresponding spherical functions.

Analyzing the formulas of Table 1 you can
set the number of equations and the rank of each
of the systems used to determine the solution.

Table 2
The number of equations and unknowns of each group (10) for different orders
Order n Numt_)er Number Rank Order n Numper Number Rank
group | equation | unknouns group | equation | unknouns
2 | 7 6 6 5 I 10 10 9
I 3 3 3 I 10 10 9
i 3 3 3 Il 10 10 9
v 3 3 3 v 7 6 6
3 | 7 6 6 6 I 13 15 10
I 7 6 6 I 10 10 10
i 7 6 6 1l 10 10 10
v 1 1 1 v 10 10 10
4 | 10 10 8 7 I 13 15 12
I 7 6 6 I 13 15 11
i 7 6 6 1l 13 115 11
v 7 6 6 v 10 10 10
8 | 16 21 11 8 i 13 15 12
I 13 15 10 v 13 15 10

As can be seen from table 2, the ambiguity of the
solution appears only at n = 4 (the first group), which
is undoubtedly a positive aspect of the proposed
method. For the same case and orders above the
fourth system (7) has many solutions. It is common to
look for a solution that has the property of minimal
deviation from zero (known in the literature as
“pseudo-solution”). Such a solution is a generalization
of the ordinary, because it coincides with it in the case
of unambiguity of the system. One of the known
algorithms for finding a generalized solution of a
system of equations is the following:

1. Reduce the system to normal

B'B =B AX,, i=1234,
A=B'B, b =B'A
AX =b, m=n,
det(A) =0 (det(A) » 0),
r=rang(A)£n
2. The solution of system (12) is determined

by a sequence of matrix operations [Syavavko, &
Rybytska, 2000]

(12)

s, =Sp(A)=aa;, C,=E, E -identity matrix,
i=1

. 1 .
C1 = COA +51Ev S, =Esp(C1A)’
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- 1 .
Cr—l = Cr—ZAi + Sr—lE’ S = msp(cr_zpﬁ),
X = icr—lbl i
S

r

1 ) (13)
S, = ?Sp(cr—lAi )1

The expression of the subsoil density function
of the planet is unknown, then we can determine

only the approximate values s (6). In addition,

with increasing order of approximation, the number
of unknowns may exceed the number of equations,
and therefore the results should be interpreted
taking into account the conditions, using Stokes
constant higher orders (t > 2) is possible only
approximately [Meshcheryakov, 1990; Meshcheryakov,
et al., 1986].

Let’s select the steps of the algorithm.

Without an exact expression of the distribution
function d,, we choose its three-dimensional

approximation, taken from work [Eys, et al., 2020]

2
dZ(Xl’XZ'XS):dO(r)+ a bmnkank(Xl'XZ’XS) (14)

m+n+k=0

where d°(r) - spherically symmetrical radial

model, for example, PREM [Dzewonski, & Anderson,
1981].

Decomposition coefficients (12) are determined
by formulas:
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1 .
\ 0
0d° (r) r’drs b,, =35d_S,,, b, =35d.C,,, by, =35d.S,,,
0 [/}

7. € z-C 0 5 31 U
by, = —d, 85, —2 +2C 9 1-25d°(r)rédr+->3d°(r ridry,
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7,62-C 0 5 31 U
by = =0, 85, —2 - 2C 9 1-24do(r)ridr+=3d°(r ridry, (15)
I TG A (r) d.? (r) 0
7. 6z 19 5 % 0 4 % 0 2 u
b, ==d, 85pl-—=:C,, -1-—pd " (r)ridr+33d"(r)r<dry.
oz zcgg 2H; P dcg () 9 () H
The power moments of the density of the second B 1
order are calculated as follows [Meshcheryakov, los =Sz o _Eszz- (16)
1991): C c For such assumptions, the system (8) under
Ly =—22+2C,,, 0 =ﬁ -2C,,, condition (9) for n = 1.2 gives a unique value S
16 They can also be calculated for the function d,
ooz = Can Sl_ﬁg’ hor = Cars directly by the formulas:
1 1p-1 g p-l
s, = Maraia: L 00 X Pxgxsd,dx,dx, + ) X Pixgxgd,dx,dx, (p >0),
DXZ x3 D;Z X3
1 - \\
S i 00 X Pxgxgd dx,dx, + () x:Px5 - 1x5d,dx,dx, (g > 0), (17)
al a ag Dxl X3 D;l‘x3
s® ; 00 X PXxaxsddx,dx; + () X Pxgx;d ,dx,dx, (s> 0)
" Ma1 a a3 Dxl X2 D>Z1 X2
Expression for d, on the ellipsoid surface: S100 =PV, So =BV, S = BV -
dy = bygy + Dyge X2 + Dy X2 + by, X2 + Using Stokes constants of the first order set the
| +0+s=3):
#2(Bu X, + b +hooxg )+ (18 ValUe S (Pra+s=3)
b,V
+D109 X, + ByyoX, +Bopr Xy S0 =Si = blfoo . S0 =S = ?ITE) '
this allows us to calculate (17) directly (the
coefficient by, coincides with the value of the S, = b001V UL T bloov,
density in the center of mass [Fys, et al., 2013]). 10 5
Therefore, the direct calculation of the values s s = bioeV
030 ' 003
of the surface power moments through the 5 S
decomposition coefficients after substitution (18) in When placing the origin of the coordinate system
one of the expressions (17) gives: in the center of mass from the above relations we
d (5b000 + (3b200 + by + booz)) obtainthat s ., =0, (p+q+s=3) and
S = ;
> S0 =Sa tSi +S 2b1°°
100 300 120 102 ~
_ dc (5b000 + (bzoo + 5b020 + booz)) 5
S020 - 5 ’ 2b010V
S010 S030 +SZlO +SOlZ 5 !
s — dc (5b000 + (bZOO + b020 + 3b002)) 2b V
002 — ) —
5 Soo1 = S0 +S2Ol +Soz1 ?1

Using identity (9) when t =1, we determine S,

Unpaired values s . of fourth order (p, or g,

pas

namely:
S0 =S200 TSo20 TSz s — unpaired) are defined by Stokes constants
The power moments of the first order are defined
as follows: C,,S,,:
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&by 3bzoo + Doz By + Dooz2 Boos 0

V OO+

Swo =V ey 35 355
z2b 3b b b, 0

Sy =V 2000 4 Pz +ﬂ+ﬂ+,
§5 35 35;
abooo 3bozo + D200 Baso +b0£9

Soa = 8 5 3B 355
2b 3b 3b, b 0

S, =V 20 4 P o Moo 4 Pz
§5 3B 35
ny & booo 3b200 bozo 3b002 0
S

§5 3% 354
Sep =V & Bygo bzoo + Moz 3520 3b002 (_)
§5 35 35 ;

from identity (9) and with the help of these relations,
we obtained

3b, 3b
Sz =V 450 1 Sz = ﬁ’ S =S = 0,
3b 3b
Soslzvﬁv 501325013:\/%’ St =S =0.

According to the known values s . and |

with formulas (4) we found 1’ ogs+ AS in the work [Fys,

d, 1d
et al., 2020] we now determine ﬂ— ﬂ— ﬂ—
D PR
With the help of derivatives we establish the form of
the approximate expression of the mass distribution

function d, , which we substitute as the initial one.

S "

2. The power moments of density d in this case are
calculated by the following formula:

*

I pas

—OX X x3d dt .

Ma/a;a; ¢

This approximation makes it possible to simplify the
process of calculating the expressions (9) of the
system (8), which takes the form:

_‘I_C 1 Eee, 1 s a b

I~ 9 o ¥ P2dz5, < pas ©

. M Xal aq p q S _ 20252

1 p+q+s=t [/}

I, l lll 1 (19)
T ® ok o 0
"Snk:— Snk+ A S;qRp0

K T Moafagald ™t s, e

where

= -o%ugkdt +pd U ds =3d, U dt,
S t

t i

Sy = -(‘]W—Nv;kdt +00dy Vo ds =4dV,dt .
t 1Txi s

This interpretation justifies minor deviations from

zero value Ds . and provides a basis for the

application of method (13) for solving the system of

equations (19). In addition, this approach greatly

34

simplifies the calculation of the coefficients of
decomposition (1) amn, which don’t change at m + n

+ k <N, and is calculated when m + n + k=N by the
formula

i —_ —_ i*
amnk_ a dpqslpqs_ a dpqslpqs

p+q+s£t p+q+s£t
(2t +2)1
+ a dpqs T DS -
p+q+s=t -

(arinnk )* = a dpqs( pqs)* =0‘

p++sEt

According to the specified method we define d; .

3. The iterative process is repeated until a
predetermined order of approximation N,.

Given that

Results

Research of improvement method and
interpretation of numerical experiment

To perform calculations, we use information about
the gravitational field from work [Pavlis, et al., 2008),
dynamic compression, adopted in astronomy
[Yatskiv, 1980], the figure recommended by the
Geodetic Union [Moritz, H, 1979] and radial mass
distribution or fixed values in the center of the Earth
[Eys, et al., 2018]. When holding the Stokes constants
obtained up to and including the eighth order, we
obtain the model functions of the derivatives by
rectangular coordinates and the mass distribution
function by them up to the tenth order.

Execution of the program on the basis of the
described algorithm allows to execute some
conclusions.

Let’s analyze the results of calculations. The given
method provides some improvements of the resulted
algorithm in work [Fys, et al., 2020] and elimination
of lacks which are revealed in the course of its
realization. The generalizations concern first of all

construction of a matrix of connections A from

(17) and reception of the approximate solution
(17) irrespective of conditions of its existence.
Comparison of the results of calculations in different
ways give similar results, so the application of this
algorithm is justified.

Based on this technique, a three-dimensional
model of density d, with the involvement of Stokes

constants up to and including the eighth order, which
retains all the basic properties of the reference model
PREM: the magnitude of jumps and the depth of their
occurrence, the nature of density change relative

radius. In this case, in contrast to the model d,, the

deviations of the density d, from the average value



Geodesy

are more informative, i.e give a more detailed picture
of the location of the masses. However, the increase
in the order of approximation is accompanied by
instability of calculations. Therefore, to obtain stable
results, we apply the generalized method of summation by
means (Cesare’s method [Korn G. A, & Korn T. M.,
2000], the essence of which is as follows. For the sum

S
dy =¢,+c +..+Ccy = AQF
i=0

defined as the limit of the sequence

X ) .

d, %81 I+150i's lim, .y d,

For two characteristic points (Indian minimum -

No. 2, UK — No. 3), the density function anomalies

(deviations from the mean) were calculated, which are
determined as follows:

Dd, =d,, (x,y,2)-d, (r),

where d, ()~ averaged over the “unit” sphere, the

values of the three-dimensional mass distribution
function. For them, graphs are given for various
orders of the summation (Fig. 1).

As can be seen from the illustrations, a clear
refinement is presented with an increase in the
summation order to eight. And already further
increasing of summation number leads to distorted
results, which is reflected in the graph c). This may be
due to the fact that no conditions were imposed on the
density function (functions of derivatives were
created). Therefore, in further studies, we restrict
ourselves to the number 8. In support of this
assumption, let us also construct graphs of
dependences for one of the derivatives.

For characteristic points from Table 3 graphs
of distribution of anomalies along radius were
constructed (Fig. 3).

Table 3

Geodetic coordinates of the main characteristic points of the Earth’s geoid [Meshcheryakov, 1991]

Point number | Geoid heights Latitude® Longitude ° Geographical location
1 78 -3 145 Near New Guinea
2 -110 5 79 In the Indian Ocean
3 70 50 -10 Near the UK
4 30 30 -70 Near the Bahamas
5 56 -55 50 Near Antarctica
6 -56 20 -120 In the eastern Pacific
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Fig. 1. Graphs of dependence of anomalies on the order of retention

of the sum for two characteristic directions

Fig. 2. Graph of the dependence along

the radius of the derivative j{—d' on the order

of the sum for point No.1 from Table 3
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Fig. 3. Graphs of density anomalies for the order of retention
of the sum of the number 8 for the characteristic directions of Table 3

As can be seen from these figures, along the radius
of each point, the negative masses at one depth are
compensated by positive anomalies at other depths.
The graph of the function for point No. 4 falls out of
this scheme, for which such a regularity is not
observed.

Thus, there is a redistribution of masses at
different depths. To do this, maps are constructed
that reflect the derivatives of the density function
(essentially it is gradient) on different layered
surfaces. By the nature of the behavior we can draw
an important conclusion about the decline of the
function (Fig. 4, a; 5, a; 6 a), density with

increasing radius (ﬂ—d', and in fact ﬂ), which
X, dr
confirms one of the basic postulates of geophysics.
fd 1d

% "1,

characterize horizontal displacements. They are
best depicted in the form of vector-grams, which
reflect the directions of horizontal displacements,
which is clearly illustrated by the map in Fig. 4, b;
5 b; 6, b (depth 5150 km, inner-outer core
boundary) and in Fig. 3 (depth 2891 km). However,
the obtained maps show the property of mass
movement towards the surface, the cause of which
is the rotational motion of the planet. It is
characteristic that such clusters are relevant to the
Earth entire radius in Fig. 2. At a depth of 5150 km
(inner-outer core boundary) and Fig. 3 (depth
2891 km, core-mantle boundary) movement is
carried out from the north to the south pole and
form a closed circuit that mimics the electric field
and can be related to the theory of magnetism. It is
characteristic that in higher shells such a
phenomenon is absent, for example, on a map of

Density gradient components
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depth 700 km (Fig. 5, b) the vector diagram loses
its global character and there are areas associated
with compaction and rarefaction of masses. From
this it can be argued that this technique has the
right to involve it in the study of the internal
structure of the Earth. The global nature of the
density and therefore cannot be used to the full to
explore the Earth. Their low informativeness is
explained by the low order of the used Stokes
constants and the proposed method (study of
derivatives).

Similarly, we will perform calculations and make
appropriate illustrations for a depth of 200 km
(Figs. 6-7). The choice of this value is due to the
location of the objects of study in the middle of the
mantle and their possible impact on the geodynamic
processes of the Earth.

Note the most significant points of the results of
Figs. 4-7 reflect the picture of the distribution of
anomalies of density derivatives along the axis OX,

(in a sense — the vertical derivative). It is clear from
the figures that the gradient of density anomalies is
directed towards the center of mass, because for two

depths (Figs. 4-7) for 0£J E% the angle between it
and the axis Ox, is obtuse, and for the gap

%EJ £p it is acute. The nodal point of Fig. 2 is

interesting with approximate coordinates 3 = 120 °,
A= 120 ° which can be interpreted as a point of
compression and tension in different directions.
Interestingly, it falls into the area of interaction of the
Arabian and African tectonic plates. Obviously, a
more detailed interpretation requires other ways of
comprehensive presentation of information, such as
an illustration of the total action of derivatives of

variables X, X, .
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Fig. 4. Map of isolines of the derivative with respect to x, (a), vector representation
of derivatives x,,x, (b) anomalies of the density of the Earth’s interior at a depth of 2891 km
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Fig. 5. Map of isolines of the derivative with respect to x, (a), vector representation
of derivatives x,,x, (b) anomalies of the density of the Earth’s interior at a depth of 700 km
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37



Geodynamics 2(31)/2021

180 4

160 1

w o TN //Z*

120 l j 7 / \/ s //

100

me(/\rwﬁ\,\‘e

60 <« - | \{ - / \ -«

40 ~ \ \ R / I .

20

D-50 0 50 100 150 200 250 300 350 400
a b

0 60 120 180 240 300 360

c
Fig. 6. Map of isolines of the derivative with respect to x, (a), vector representation
of derivatives x,,x, (b) anomalies of the density of the Earth’s interior at a depth of 200 km
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Fig. 7. Map of isolines of the derivative with respect to x, (a), vector representation of
derivatives x,,x, (b) anomalies of the density of the Earth’s interior at a depth of 100 km (c).
Isolines sketh through 7110 g/cm?® (a) and 1.6110™* g/cm® (c)
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An attempt at such an approach is made in Fig. 4—
7. Even the first step in this approach reveals features,
namely, the redistribution of masses at the boundary
“core-mantle” is carried out from the south to the
north pole, which coincides with the action of the
magnetic field. Characteristically, in the second case,
the picture of movement is completely different, and
it can be associated with tectonic movements.

Conclusions

1. The method of approximate construction of the
derivatives of the Earth mass distribution function for
high orders of the expansion coefficients of the
planet's gravitational field has been improved.

2. A stable solution is obtained for finding the
expansion coefficients in a series of derivatives and
the function itself using the Cesaro method.

3. Vector-schemes built on the “core-mantle” edge
confirm the hypothesis about the nature of the
magnetic field.

4. For further detailing, further improvement of
the algorithm is expected in order to optimize the use
of RAM.
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JOCJIDKEHHS OJHOI'O METOY ITOBYJOBU I'PAJIIEHTA TPMBUMIPHOI
®YHKIIT PO3IIOAIITY MAC HAJIP EJIITICOIJAJIBHOI INTAHETU

Meta poGOTH — AOCHIAWTH OCOOIMBOCTI peaiizamii aJropuTMy 3HAXOMKEHHS MOXITHUX IPOCTOPOBOI
¢yHKIi{ po3moAiy Mac IJIaHETH i3 3aJYYCHHSAM CTOKCOBHX CTaJMX BHUCOKHX IOPAIKIB Ta Ha OCHOBI I[bOTO
3HAWTH 11 aHATITHYHHUI BUpa3; 32 HABEACHOIO METOJIMKOI0 BUKOHATH OOYMCIICHHS, 32 JIOTIOMOTOI0 SIKUX BUBUUTH
JUHAMIYHI SBUINA, IO BiAOYBAIOTHCS BCEPEAMHI €IIICOINaIbHOI IUTaHeTH. 3alpOIIOHOBAaHUM METO mependayae
BU3HAYCHHS MOXIAHUX (YHKIIT pO3MOIiTy Mac CyMOIO, KOe(iLliEHTH SIKOT OTPUMYIOTb i3 CUCTEMH PIBHSIHb, LIO €
HeKopekTHowo. [l i po3B’si3yBaHHS BHKOPHUCTAHO CTIMKMH 1O MOXMOOK METOA OOYHMCICHHS HEBIJOMHUX.
[ToOymoBy peainizoBaHO iTepalifHAM CIIOCOOOM, a 3a IOYAaTKOBE HAOIIKCHHS B3ATO TPUBUMIPHY (YHKIIIIO
TYCTHHM Mac 3emuli, oOyloBaHy 3a CTOKCOBUMH CTAJIUMU 1O JPYroro MOPSAKY BKJIIOYHO, i3 JMHAMIYHAM
CTHCHCHHSIM OJHOBUMIPHUM PO3MOIIIOM T'yCTHHHA. Bu3HaueHO Koe(illieHTH PO3KIaay MOXimHUX (YHKINI 3a
3MIHHUMH X, Y,Z 10 TPETHOTO NOPSAKY BKIIOYHO. 3TiHO i3 HUMH BCTAHOBJICHO BIJIOBIIHY (YHKIIIO TYCTHHH,

Ky HaJali B35ATO 3a Mo4aTKoBy. [Ipoliec MOBTOPIOBaNU 10 JOCSTHEHHS 33JaHOT0 MOPSAKY anpokcumarii. s
OTPUMAHHS CTIHKOTrO pe3ysbTaTy BHUKOPHCTaHO MeTon mincymyBaHHs Yesapo (MeTon cepenHix). BukonaHo
PO3paxyHKH 32 JOMOMOTOI0 HPOrpaM, 10 peati3yloTh HaBEICHUI alrOpUTM, il JOCATHYTO BUCOKHH (IeB’sATHI)
MOPSIIOK OTPUMAHHS WICHIB CyMH 00YHCIIeHb. BUKOHAHO MOCHTIKEHHS 301KHOCTI CyMHU psAy Ta Ha Iiff OCHOBI
3p0O0JICHO BUCHOBOK IIPO JOLUIBHICTh BHUKOPUCTAHHS Yy3arajJbHEHOTO 3HAXO/DKEHHS CYM Ha OCHOBI METOIY
Yesapo. BubpaHo onTUManbHy KibKICTh YTPUMaHHS WICHIB CYMH, IO 3a0e3meuye 301KHICTh SK s (PYHKIIT
po3moAiny Mac, Tak i Ans il MOXigHWX. BUKOHAHO OOGUYMCIEHHS BIOXWUJICHb PO3MOAUTY Mac Bi CEepeIHBOTrO
3HaueHHs (“HEOMHOPIMHOCTEH”) IS eKCTPEMaIbHIX TOYOK 3€MHOTO reoina, sKi 3arajioM CBiquarsh Mpo CyMapHy
KOMIIEHCAIil0 B3IOBX pajiyca 3emui. [ TakuX TPUBHMIpPHHMX PO3MOMINIIB BHKOHAHO OOYMCIICHHS Ta
NoOy/0BaHO KapTOCXEMHM 3a BPaXOBaHWMH 3HAUCHHSMH BIAXWJICHb TPUBUMIPHHX PO3MOILUIB Bill CEPEIHBOTO
(“HeomHOpigHOCTER”) Ha pi3HUX TIIMOMHAX, SIKi BiIOOPa)XaroTh 3arajibHy CTPYKTYPY BHYTPIIIHBOT OyI0BH 3eMIIi.
Hage/ieHi BeKTOp-CXeMHU FrOPU30HTAILHUX KOMIIOHEHT TPaiEHTa I'YCTUHH Ha XapakTepHux riuouHax (2891 km —
sapo—mantist, 700 kM — cepenuHa MaHTii, Takok BepxHs MmanTisi — 200, 100 kM) [ar0Th mifcTaBH 3pOOHTH
ToTepeIHi BUCHOBKH TPO TI00aNbHI mepeMinenns Mac. Ha Mexi “aapo—maHTis” CIoCTepiracTbesi 3aMKHEHUH
KOHTYp, IO € AHAJOTi€I0 3aMKHEHOTO EeNEeKTPUYHOTO Koja. [[msg MeHmwux riubuH Bke BigOyBaeThCs
nudepeHiamis BEKTOPHUX PYXiB, IO Ja€ MiJACTaBH I 3aJy4eHHS OUX BEKTOPrpaM IO JOCIHiIKCHHI
IMHAMIYHUX pyxiB Bcepeauni 3emui. ITo cyTi, BepTHKansHa KOMIOHEHTa (MOXiHA 33 3MIHHOIO Z) CIPSIMOBaHA
JI0 TIEHTpa Mac Ta MiATBEPPKYE OCHOBHY BIACTHBICTh PO3MOILTIB Mac — 3pOCTaHHA 13 HAOIMKEHHSM JI0 LIEHTpa
Mac. 3aCTOCOBAHO METOJIHMKY CTiMIKOro po3B’s3yBaHHS HEKOPEKTHHX JIHIHHHX CHCTEM, 32 JONOMOTOIO SIKOI
moOyJOBaHO BEKTOpPrpaMu TpadieHTa (YHKIII po3momiay Mac. XapakTep TaKHX CXEeM Ja€ IHCTPYMEHT s
BUSIBJICHHSI MOXIIMBHX TPHYMH NEPEPO3NOJUTy Mac BCEPEIHHI MUIAHETH Ta MOXIIMBHX YMHHUKIB TEKTOHIYHHX
MmpoIeciB ycepenwHi 3emuri, TOOTO OMOCEpEeIKOBAHO IMiATBEPIKYETHCS TpaBiTalliifHa KOHBEKIisS Mac.
3anpornoHoBaHy METOANKY MOXHA BUKOPHCTOBYBATH JJISI CTBOPEHHS JICTAIBHUX MOJeNe (YHKIIH T'yCTHHH Ta
ii xapakTepucTHK (MOXiMHMX) Mac Hajap IUIAHETH, a PE3yJIbTAaTH YHUCIOBUX CKCIICPUMEHTIB — JUIS PO3B’sA3aHHS
3a/1a4 TeKTOHIKH.
Knouosi crosa: HekopekTHa 3anada; Meto Paepa-Uesapo; 3emist; momens PREM; cTtokcoBi crami.
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