
COMPUTATIONAL PROBLEMS OF ELECTRICAL ENGINEERING
Vol. 10, No. 2, 2020

ENCRYPTION OF TEXT MESSAGES USING MULTILAYER
NEURAL NETWORKS

Volodymyr Brygilevych1, Nazar Pelypets2, Vasyl Rabyk3
1 Institute Of Technical Engineering the State Higher School
of Technology and Economics in Jarosław, Jarosław, Poland,

2 Department of Sensory and Semiconductor Electronics Ivan Franko National University of Lviv, Ukraine,
3 Department of RadioPhysics and Computer Technologies Ivan Franko National University of Lviv, Ukraine

vbrygilevych@pwste.edu.pl, nazarpelypets@ukr.net, vasyl.rabyk@lnu.edu.ua

Abstract: The article considers an algorithm for

encrypting / decrypting text messages using multilayer
neural networks (MLNN). The algorithm involves three
steps: training a neural network based on the training pairs
formed from a basic set of characters found in the text;
encryption of the message using the weight coefficients of
the hidden layers; its decryption using the weight coe-
fficients of the output layer. The conditions necessary for
successful encryption / decryption with this algorithm are
formed, its limitations are emphasized. The MLNN archi-
tecture and training algorithm are described. The results of
experimental research done by using the NeuralNet
program are given: training the MLNN employing the BP
(Sequential), BP (Batch), Rprop, QuickProp methods; an
example of encrypting / decrypting a text message.

Key words: encryption, decryption, multilayer neu-
ral networks, training algorithms, NeuralNet program.

1. Introduction
The amount of information transmitted through

public communication networks is growing every year.
The main task, the importance of which is gaining
increase, is the security of this information. Cryptogra-
phy is one of the important aspects of secure communi-
cation, aiming to protect information from unauthorized
access. Cryptography provides availability, privacy, and
integrity of information.

Cryptographic encryption systems are based on two
approaches to the use of keys. In a system with one
secret key (symmetric encryption), the key is known
only to the sender and receiver of information. The
sender encrypts a message (P) with the key (K) to obtain
an encrypted message (C) [1]. Having been transmitted
over the network, the encrypted message (C) is decryp-
ted using the secret key (K). Asymmetric encryption uses
two keys [1]: a public key (K_Pub) to encrypt a message
and a private key (K_Prv) to decrypt it.

In recent years, more and more works [2]–[6] on the use
of neural networks in cryptography have begun to appear. In
such cryptographic data encryption / decryption systems, the

secret key is the weights of the neural network, and its
architecture. The advantages of such systems are that they are
very difficult to break without knowing the methodology
underlying these systems.

Feedforward multilayer neural networks for the
encryption / decryption of messages are used in [2]. The
key in the proposed algorithm is the architecture of the
neural network and its weight coefficients. During the
encryption phase, the neural network converts 6-bit input
sets of a message into 6-bit output sets, which are
transmitted over the communication network. When dec-
rypting a message, the neural network inversely converts
the received output sets into an input message.

Symmetric data encryption based on counter
propagation networks (CPN) is considered in [3].
During encryption, each message character is converted
to the ASCII binary format, which is used as a target
value for the Grossberg layer and forms a set of input
data of the Kohonen layer of the CPN. An encrypted text
which together with the target value is transmitted to the
receiver is obtained at the output of the Kohonen layer
trained. At the decryption stage, the received encrypted
text is fed to the input of the Grossberg layer, and the
obtained target values are set for the outputs. The Grossberg
layer having been trained, each resulting binary value of
the ASCII format is converted back to the corresponding
character.

In [4], the authors consider the algorithm of asym-
metric data encryption. Generation of a private key and
encryption are performed on the basis of Boolean algebra
using the Permutation and Doping functions. Decryption
and generation of a public key scheme employs a MLNN
trained by using an inverse error propagation algorithm.

In [5], an algorithm for encrypting 8-bit input data
using a clipped Hopfield neural network (CHNN) is
proposed. The authors note the simplicity of its archi-
tecture and the possibility of expanding the bit size of
input data by cascading such networks. The work gives a
comparison of this algorithm, implemented on Xilinx
FPGA, with the standard symmetric encryption algo-
rithm DES in term of their performance [1].

Volodymyr Brygilevych, Nazar Pelypets, Vasyl Rabyk

2

A symmetric encryption algorithm based on real-
time recurrent neural networks (RRNN) is considered in
[6]. This algorithm has a relatively simple architecture,
allows a variable key length, a variable length of the
input block, and increased security to be maintained. The
proposed RRNN has a multilayer structure. The dimension
of the input layer X is twice the dimension of the output
layer Y. One of the hidden layers consists of only one
neuron. The symmetric encryption algorithm works in two
stages: key extension and data encryption / decryption.

The main purpose of this work is to implement the
algorithm for encrypting / decrypting text messages based
on a MLNN, training and testing of the network using
the NeuralNet program [7]. In [7], this program is used to
recognize handwritten characters. The modification of the
program was performed to form from text messages sets of
input data of a given dimension, normalize these sets during
encryption, and denormalize the output data during
decryption. The MLNNs with one or two hidden layers
were used in the studies.

2. MLNN and its training algorithm
Fig. 1 shows the MLNN used to encrypt / decrypt

data. These are fully connected and feedforward neural
networks (FNN). The neurons in the first layer are
connected to the inputs of the neural network. The number
of hidden layers may vary.

Fig. 1. MLNN architecture.

The network consists of an input layer, two hidden
layers and an output one. The first hidden layer contains
s neurons, and the second – t neurons. When encrypting /
decrypting messages, it was assumed that the number of
neurons in the output layer is equal to the number of the
inputs (m = n). The n number of the network inputs and
their bit size may vary.

The number of weights in the MLNN shown in Fig. 1,
is defined as:

 () () ()1 1 1wN s n t s m t= + + + + + . (1)

Each neuron in the first hidden layer z_inj, j=1, …, s
receives signals xi, i=1, …, n from all the network inputs
[8]:

0

_
n

j i ij
i

z in x w
=

= ∑ , (2)

where jw0 stands for the bias of the j-th neuron of the

first hidden layer. The signals at the outputs of the
neurons of the first hidden layer are calculated through
the activation function:

 () sjinzfZ jj ...,,1,_ == (3)

and are fed to the inputs of neurons of the second hidden
layer. Similarly, we determine the signals at the outputs
of neurons of the second hidden layer.

The signals at the outputs of neurons in the output
layer:

 () njinyfY jj ...,,1,_ == , (4)

where

0

_
t

j i ij
i

y in k v
=

= ∑ . (5)

To train a MLNN, an error backpropagation algorithm
(BP) is used [8]. The algorithm includes the following
steps: supplying the training pair to the network input
and its feedforward propagation through the network;
backpropagation of the error associated with this training
pair; correction of network weight coefficients according
to a certain criterion. This criterion consists in choosing
such values of the network weights so that one might
obtain the minimum total standard error of the MLNN
for all training pairs.

The algorithm of error backpropagation is implemented
using a sequential or batch mode. In the sequential mode, the
correction of weights is performed after each training
pair is presented to the MLNN. The error for the l-th
training pair is determined by the expression [8]:

 () () ()()2

1

1
2

m

j j
j

E l d l y l
=

= −∑ , (6)

where yj(l), dj(l) is the actual and target output of the j-
th neuron of the output layer of the network for the l-th
training pair.

In the batch mode of the MLNN training, the weight
correction is performed after all training pairs of the
sequence are presented to the network. One cycle of
presenting all training pairs is called an epoch. For the
current epoch, the objective function is defined as [8]:

Encryption of Text Messages Using Multilayer Neural Networks 3

 () () ()()∑∑
= =

−=
N

i

m

j
jj lyld

N
lE

1 1

2

2
1 . (7)

where N is the number of training pairs of the sequence;
l stands for the number of the neural network training
epoch.

Minimization of objective functions (6), (7) is performed
by gradient methods. In particular, in the method of
steepest descent, the correction of weights wij is selected
in proportion to the partial derivative of the objective
function of the error E (l) with respect to wij:

 () () ()1ij ij ijw l w l w l+ = + ∆ , (8)

where

 () ()
ij

ij

E l
w l

w
η

∂
∆ = −

∂
, (9)

η represents the neural network training rate coefficient.
Given expression (7), the last expression (9) can be

written as:

 () () () ()
∑

=
∂

∂
−=

∂
∂

−=∆
N

r ij

j
j

ij
ij w

re
re

Nw
lElw

1

η
η , (10)

where the error signal ej(r) corresponds to the j-th neuron
for the r-th training pair.

The error backpropagation algorithm based on the
gradient method that are employed to train a MLNN has
a number of disadvantages. These include: long training
duration, the possibility of reaching a local minimum
during training, the possibility of network paralysis.

The adaptive algorithms RProp, Quickprop are used
to speed up the process of MLNN training. For the
weights to be corrected in the batch mode, the algorithm
Rprop [9] uses only signs of partial derivatives. The
QuickProp algorithm [10] prevents looping at the point
of a shallow local minimum, which most often occurs
during the functioning of a neuron in the saturation domain
of the activation function.

3. MLNN–based encryption and decryption algo-
rithm

Encryption / decryption of messages based on a MLNN
consists of several steps: training the network using the
error backpropagation algorithm; data encryption using
the weights of the hidden layers obtained in the first step;
data decryption using the weight coefficients of the input
layer obtained in the first step (see Fig. 1). In order to
encrypt / decrypt messages successfully, training the
network on training input pairs must be 100 %. The
training is to determine the MLNN weight coefficients
(wij – for hidden layers and νij – for the input layer).

In neural network systems intended for message
encryption / decryption, the secret key is:

 – network architecture: number of inputs, number of
hidden layers and neurons in them, number of neurons in
the output layer of the network (Fig. 1);

 – matrix of MLNN weight coefficients (wij) for data
encryption and decryption (νij);

 – initial data for initializing the weight coefficients
(wij, νij) of the network during its training;

 – bit size of input training pairs during their encryption.
Input data for MLNN training is a set of letters

(lowercase and uppercase) of the English alphabet,
numbers and punctuation marks in the ASCII format
(NS = 70 characters), for example:

'8'=0x38=00111000; 'p'=0x70=01110000

'Z'=0x5A=01011010; '?'=0x3F=00111111
Before training the network, a set of training pairs is

formed and stored in a file. In order to form it, you need
to specify the number of network inputs (n) and their bit
size (nb). The number of the training pairs is defined as

8 s

Tr
b

NN
n n

=
⋅

, (11)

where 8 bits are the bit size of each message character in
the ASCII format. If in expression (11) sN8 is not divisible

evenly by bn n⋅ , then the last training pair is padded with
zeros to nb bits.

Encryption / decryption of text messages was performed
using the NeuralNet program [7], written in C # in
Microsoft Visual Studio 2013.

The NeuralNet program provides two modes of
operation: “Training” – training the neural network on
the basis of the input training pairs formed from NS=70
characters; “Work” – encryption or decryption of arbitrary
text messages based on the trained MLNN.

Neural network training is performed in one of the
implemented methods: BP (sequential), BP (batch), RProp,
QuickProp. To configure the NeuralNet program in the
training mode, it is necessary to read the file with the
input training pairs and specify the following data:

– the activation function steepness (0<alfa≤1);
– the neural network learning rate (0<η≤1);
– the network training error (eps);
– the error (eps1) of the neural network outputs

against their desired values;
– the initial value for the initialization of network

weights;
– the number of inputs n of the network;
 –the number of hidden layers;
 –the number of neurons in the hidden layers;
 –the number of network outputs;
 –the number of training pairs;
 –the maximum number of network learning epochs.

Volodymyr Brygilevych, Nazar Pelypets, Vasyl Rabyk

4

The choice of initial values of neuron weight coefficients
and biases in the network affects the rate of its learning
and synchronization of neural networks of the sender and
receiver of messages. The weight coefficients initialization
procedure implemented allows one to set their initial
values to be the same from the interval (-0.5; 0.5) for
different MLNN exercises or to change them. This makes it
possible to get the same weights of the network after its
being trained by the sender and receiver of messages.

The NeuralNet program implements the following
criterion for complete training of the neural network
using the error backpropagation algorithm: the value of
the objective function (expressions (6) or (7)) is less than
the specified error of the network training eps or the
number of epochs is greater than the specified maximum
value. When training the neural network, the training
results are saved in a text file lerning.txt.

To switch to the encryption or decryption mode
using a trained MLNN, go to the “Work” tab of the main
interface window and select the appropriate mode. Then
download the input file to encrypt the message or the
encrypted file to decrypt it. When encrypting, the program
will display information on the results of encryption: the
number of input pairs; pair recognition accuracy in
percentage; the number of unrecognized pairs. When
decrypting messages, the received input pairs and characters
are displayed in the ASCII format.

Consider an example of encryption and decryption
of the following message:

Multilayer neural networks.
This message consists of 27 characters that are part

of the NS=70 base characters used in MLNN training.
Convert it to the ASCII format and create a set of input
pairs for encryption. Here is a message in the ASCII
code:

0x4D 75 6C 74 69 6C 61 79 65 72 20 6E 65
 75 72 61 6C 20 6E 65 74 77 6F 72 6B 73
 2E
and the training pairs (NTr=27) for n=8 and nb=1:

01001101 – 1-а,
01110101 – 2-а,
01101100 – 3-а, …
Step 1. Before encrypting this message, train the

MLNN by specifying its architecture and generating a
training pair file for the set of NS=70 characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkl
mnopqrstuvwxyz0123456789space!.,-?()

The training results of a MLNN with different
architectures and by different methods are presented in
Table 1. Training of all MLNNs was performed by the
NeuralNet program with the initialization of identical

initial values of weights, errors eps = 0.0001, eps1 = 0.1.
Other network parameters – alfa = 1.0, η = 0.8. The
selected errors were sufficient for 100 % network training.
For the 16_8_16_16, 16_12_16_16 network architecture,
the training error was eps = 0.005. 100 % of its training
therewith was also obtained. The bit rate of the input
data is selected nb=1. For nb>2 it was not possible to
teach MLNN 100 %. As the complexity of the network
(architecture 16_8_16_16, 16_12_16_16) increases, so
does the time of its training.

Table 1
MLNN training results

for a 70-character input basic set

Architecture
MLNN

Training
Algorithm NTr, NW NEpoch

4_4_4 BP (Sequential) 140, 40 666

4_4_4_4 RProp 140, 60 611

4_8_4_4 QuickProp 140, 96 25

4_12_4_4 BP (Sequential) 140, 132 426

8_8_8 BP (Sequential) 70, 144 2348

8_8_8_8 BP (Sequential) 70, 216 2009

8_12_8_8 BP (Sequential) 70, 284 2421

16_16_16 BP (Sequential) 35, 544 5308

16_8_16_16 BP (Batch) 35, 552 238542

16_12_16_16 BP (Batch) 35, 684 170186

Step 2. Encrypting a message. Suppose a trained

network has an 8-8-8 architecture. A message input file
is downloaded by the program functioning in its Encryption
mode. The values of the outputs of the hidden layer will
be the encrypted message. Each input pair is encrypted
with 8 output values. The following code is obtained for
the 1st input pair:

0,968486351114214 0,989043133425048
0,813025661203787 0,011391139946895
0,064313178643986 0,652372929720987
0,789000493082475 0,668199366103064
For NTr=27, the dimension of the incoming message is

27 Byte, and the encrypted message is 27⋅8⋅8=1728 Byte.

Step 3. Decrypting a message. A public key is also
transmitted in the file with the message encrypted. This
key specifies the network architecture, its basic parameters
and the starting value for the initialization of the network
weight coefficients. The receiver of the message reads the
public key data from the file and trains the network. In our
case, the architecture and parameters of the network are
the same as for step 1. After that, the program loads the
encrypted data in the Decryption mode and decrypts them.
As a result, we get a file in which each character is

Encryption of Text Messages Using Multilayer Neural Networks 5

represented in the ASCII format. The first 10 characters of
the decrypted message are as follows:

01001101 → 'M' 01110101 → 'u'
01101100 → 'l' 01110100 → 't'
01101001 → 'i' 01101100 → 'l'
01100001 → 'a' 01111001 → 'y'
01100101 → 'e' 01110010 → 'r'
Analyzing the results of decryption, we see that the

received message coincides with the incoming message
that was encrypted.

4. Conclusion
An algorithm for encrypting / decrypting text messages

based on an MLNN has been developed. This encryption
algorithm, as well as the asymmetric encryption methods,
uses public and private keys. The public key, which
includes a network architecture, basic parameters for the
algorithms of its training, an initial value for the
initialization of network weight coefficients, is transmitted
together with an encrypted message. The private key is
the MLNN weight coefficients obtained after its training
with the public key parameters before decrypting the
message.

The result of encryption of each input training pair of
messages results in the outputs of the last hidden layer
(8-byte real numbers). The dimension of the message
encrypted in Byte is defined as: 27⋅8⋅8=1728, where NTr is
the number of input pairs formed from the message being
encrypted, t is the number of neurons in the last hidden
layer. The incoming message dimension: NS Byte.

For an encrypted message to be decrypted, it is fed
to the input of the output layer of the MLNN trained by
the receiver. These are the outputs of the output layer
where we get the input training pairs in the ASCII
format, which are converted into a text message.

A necessary condition for encrypting / decrypting text
messages with this MLNN-based algorithm is its 100 %
training by both the sender and the receiver of the message.
Therewith the weight coefficients of the network in both
cases must be the same. This condition affects the choice of
the number of bits for input pairs. Thus, the experimental
studies have shown the possibility of 100 % network
training when choosing the bit size nb=1, 2. For nb>2, it is
not possible to train the network with a given error eps1.
Thus, for nb=4, given the normalization of the input data in
the range 0…1, the error eps1 must be several times less
than 1 / (24 -1) = 0.06 (6).

The encryption / decryption of text messages using
NeuralNet written in C # in Visual Studio 2013 is
considered. The results of training the MLNN of different
architecture by the BP (Sequential), BP (Batch), Rprop,
QuickProp methods for the basic set of input pairs according
to the number of necessary epochs are given. In all cases,
100 % network training has been obtained: at the network
output we obtain the target value that coincides with the

input training pair with an error of eps1. An example of
encrypting / decrypting a text message has been considered.

5. References
[1] B. Schneier, Applied cryptography: Protocols, Algo-

rithms, Source Code in C, Triumf, p. 815, 2012.
[2] E. Volna, M. Kotyrba, V. Kocian, and M. Janosek,

“Cryptography Based On Neural Network” // in
Proc. 26th European Conference on Modeling and
Simulation, pp. 386–391, 2012.

[3] V. Sagar and K. Kumar, “A Symmetric Key Crypto-
graphic Algorithm Using Counter Propagation
Network (CPN)”, in Proc. 2014 ACM International
Conference on Information and Communication
Technology for Competitive Strategies, vol. ISBN,
no. 978-1-4503-3216-3, 2014.

[4] K. Shihab, “A backpropagation neural network for
computer network security”, Journal of Computer
Science, vol. 2, no. 9, pp. 710–715, 2006.

[5] Choi-Kuen Chan, Chi-Kwong Chan, L. P. Lee,
L. M. Cheng, Encryption system based on neural net-
work, Communications and Multimedia Security Issues
of the New Century, Springer, pp. 117–122, 2001.

[6] M. Arvandi, S. Wu, A. Sadeghian, W. W. Melek, and
I. Woungang, “Symmetric cipher design using recur-
rent neural networks”, in Proc. IEEE International
Joint Conference on Neural Networks, pp. 2039–
2046, 2006.

[7] V. Bihday, V. Brygilevych, Y. Hychka, N. Pelypets,
V. Rabyk, “Recognition of Handwritten Images Using
Multilayer Neural Networks IEEE 2019”, in Proc.
11th International Scientific and Practical Conference
on Electronics and Information Technologies, ELIT
2019 – Proceedings.

[8] Simon Haykin, Neural Networks: A Comprehensive
Foundation 2nd edition, Prentice Hall, NJ, USA
©1998, 842p, ISBN:0132733501.

[9] M. Riedmiller and H. Brawn, RPROP – a fast
adaptive learning algorithms. Technacal Report // Kar-
lsruhe: University Karlsruhe. 1992. http://citeseerx.ist.
psu.edu/viewdoc/download;jsessionid=6A4F81B008
68291D27499A6AADC6C330?doi=10.1.1.52.4576
&rep=rep1&type=pdf

[10] S. E. Fahlman, “Faster Learning Variations on Back-
propagation: An Empirical Study”, in Proc. 1988 Con-
nectionist Models Summer School, pp. 38–51, 1988.

ШИФРУВАННЯ ТЕКСТОВИХ
ПОВІДОМЛЕНЬ З ДОПОМОГОЮ
БАГАТОШАРОВИХ НЕЙРОННИХ

МЕРЕЖ

Володимир Бригілевич, Назар Пелипець,
Василь Рабик

Розглянуто алгоритм шифрування/ дешифрування текс-
тових повідомлень з використанням MLNN, який складається

Volodymyr Brygilevych, Nazar Pelypets, Vasyl Rabyk

6

з трьох кроків: навчання нейронної мережі на основі нав-
чаючих пар, сформованих з базового набору символів, що
зустрічаються в тексті; шифрування повідомлення з викорис-
танням ваг прихованих шарів; його дешифрування з викорис-
танням ваг вихідного шару. Сформовано необхідні умови для
успішного шифрування/ дешифрування цим алгоритмом,
підкреслено його обмеження. Описано архітектуру і алгоритм
навчання MLNN. Приведено експериментальні дослідження з
допомогою програми NeuralNet: навчання MLNN методами
BP(Sequential), BP(Batch), Rprop, QuickProp; приклад шифру-
вання/ дешифрування текстового повідомлення.

Volodymyr Brygilevych – PhD,
Associate Professor of the Institute of
Technical Engineering at the State
Higher School of Technology and
Economics in Jarosław, Poland.

Research interests: mathematical
modeling of processes in mechatronic
sysstems, diagnosis of electronic
systems.

Nazar Pelypets – master student
of the Department of Sensor and
Semiconductor Electronics at Ivan
Franko National University of Lviv.
His research interests are connected
with the development and implemen-
tation on computers neuron networks
and their application for data forcasting,
image recognition.

Vasyl Rabyk – Ph.D, associate
professor of the Department of Radio-
Physics and Computer Technologies at
Ivan Franko National University of
Lviv. He graduated from Ivan Franko
State University of Lviv, Faculty of
Physics, speciality RadioPhysics and
Electronics Scientific and pedagogical
interests are asociated with theoretical

and practical aspects of diagnosis of electronic circuits, develop-
ment of electronic devices on microcontrollers, FPGA, applica-
tion of neuron networks for data forecasting, in cryptography.

Received: 20.05.2020. Accepted: 25.07.2020.

