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Abstract: The article considers an algorithm for 

encrypting / decrypting text messages using multilayer 
neural networks (MLNN). The algorithm involves three 
steps: training a neural network based on the training pairs 
formed from a basic set of characters found in the text; 
encryption of the message using the weight coefficients of 
the hidden layers; its decryption using the weight coe-
fficients of the output layer. The conditions necessary for 
successful encryption / decryption with this algorithm are 
formed, its limitations are emphasized. The MLNN archi-
tecture and training algorithm are described. The results of 
experimental research done by using the NeuralNet 
program are given: training the MLNN employing the BP 
(Sequential), BP (Batch), Rprop, QuickProp methods; an 
example of encrypting / decrypting a text message. 

Key words: encryption, decryption, multilayer neu-
ral networks, training algorithms, NeuralNet program. 

1. Introduction 
The amount of information transmitted through 

public communication networks is growing every year. 
The main task, the importance of which is gaining 
increase, is the security of this information. Cryptogra-
phy is one of the important aspects of secure communi-
cation, aiming to protect information from unauthorized 
access. Cryptography provides availability, privacy, and 
integrity of information. 

Cryptographic encryption systems are based on two 
approaches to the use of keys. In a system with one 
secret key (symmetric encryption), the key is known 
only to the sender and receiver of information. The 
sender encrypts a message (P) with the key (K) to obtain 
an encrypted message (C) [1]. Having been transmitted 
over the network, the encrypted message (C) is decryp-
ted using the secret key (K). Asymmetric encryption uses 
two keys [1]: a public key (K_Pub) to encrypt a message 
and a private key (K_Prv) to decrypt it. 

In recent years, more and more works [2]–[6] on the use 
of neural networks in cryptography have begun to appear. In 
such cryptographic data encryption / decryption systems, the 

secret key is the weights of the neural network, and its 
architecture. The advantages of such systems are that they are 
very difficult to break without knowing the methodology 
underlying these systems. 

Feedforward multilayer neural networks for the 
encryption / decryption of messages are used in [2]. The 
key in the proposed algorithm is the architecture of the 
neural network and its weight coefficients. During the 
encryption phase, the neural network converts 6-bit input 
sets of a message into 6-bit output sets, which are 
transmitted over the communication network. When dec-
rypting a message, the neural network inversely converts 
the received output sets into an input message. 

Symmetric data encryption based on counter 
propagation networks (CPN) is considered in [3]. 
During encryption, each message character is converted 
to the ASCII binary format, which is used as a target 
value for the Grossberg layer and forms a set of input 
data of the Kohonen layer of the CPN. An encrypted text 
which together with the target value is transmitted to the 
receiver is obtained at the output of the Kohonen layer 
trained. At the decryption stage, the received encrypted 
text is fed to the input of the Grossberg layer, and the 
obtained target values are set for the outputs. The Grossberg 
layer having been trained, each resulting binary value of 
the ASCII format is converted back to the corresponding 
character. 

In [4], the authors consider the algorithm of asym-
metric data encryption. Generation of a private key and 
encryption are performed on the basis of Boolean algebra 
using the Permutation and Doping functions. Decryption 
and generation of a public key scheme employs a MLNN 
trained by using an inverse error propagation algorithm. 

In [5], an algorithm for encrypting 8-bit input data 
using a clipped Hopfield neural network (CHNN) is 
proposed. The authors note the simplicity of its archi-
tecture and the possibility of expanding the bit size of 
input data by cascading such networks. The work gives a 
comparison of this algorithm, implemented on Xilinx 
FPGA, with the standard symmetric encryption algo-
rithm DES in term of their performance [1]. 
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A symmetric encryption algorithm based on real-
time recurrent neural networks (RRNN) is considered in 
[6]. This algorithm has a relatively simple architecture, 
allows a variable key length, a variable length of the 
input block, and increased security to be maintained. The 
proposed RRNN has a multilayer structure. The dimension 
of the input layer X is twice the dimension of the output 
layer Y. One of the hidden layers consists of only one 
neuron. The symmetric encryption algorithm works in two 
stages: key extension and data encryption / decryption. 

The main purpose of this work is to implement the 
algorithm for encrypting / decrypting text messages based 
on a MLNN, training and testing of the network using 
the NeuralNet program [7]. In [7], this program is used to 
recognize handwritten characters. The modification of the 
program was performed to form from text messages sets of 
input data of a given dimension, normalize these sets during 
encryption, and denormalize the output data during 
decryption. The MLNNs with one or two hidden layers 
were used in the studies. 

2. MLNN and its training algorithm 
Fig. 1 shows the MLNN used to encrypt / decrypt 

data. These are fully connected and feedforward neural 
networks (FNN). The neurons in the first layer are 
connected to the inputs of the neural network. The number 
of hidden layers may vary. 

 
Fig. 1. MLNN architecture. 

The network consists of an input layer, two hidden 
layers and an output one. The first hidden layer contains 
s neurons, and the second – t neurons. When encrypting / 
decrypting messages, it was assumed that the number of 
neurons in the output layer is equal to the number of the 
inputs (m = n). The n number of the network inputs and 
their bit size may vary. 

The number of weights in the MLNN shown in Fig. 1, 
is defined as: 

 ( ) ( ) ( )1 1 1wN s n t s m t= + + + + + . (1) 

Each neuron in the first hidden layer z_inj, j=1, …, s 
receives signals xi, i=1, …, n from all the network inputs 
[8]: 
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where jw0  stands for the bias of the j-th neuron of the 

first hidden layer. The signals at the outputs of the 
neurons of the first hidden layer are calculated through 
the activation function: 

 ( ) sjinzfZ jj ...,,1,_ ==  (3) 

and are fed to the inputs of neurons of the second hidden 
layer. Similarly, we determine the signals at the outputs 
of neurons of the second hidden layer. 

The signals at the outputs of neurons in the output 
layer: 
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To train a MLNN, an error backpropagation algorithm 
(BP) is used [8]. The algorithm includes the following 
steps: supplying the training pair to the network input 
and its feedforward propagation through the network; 
backpropagation of the error associated with this training 
pair; correction of network weight coefficients according 
to a certain criterion. This criterion consists in choosing 
such values of the network weights so that one might 
obtain the minimum total standard error of the MLNN 
for all training pairs. 

The algorithm of error backpropagation is implemented 
using a sequential or batch mode. In the sequential mode, the 
correction of weights is performed after each training 
pair is presented to the MLNN. The error for the l-th 
training pair is determined by the expression [8]: 
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where yj(l), dj(l) is the actual and target output of the j-
th neuron of the output layer of the network for the l-th 
training pair. 

In the batch mode of the MLNN training, the weight 
correction is performed after all training pairs of the 
sequence are presented to the network. One cycle of 
presenting all training pairs is called an epoch. For the 
current epoch, the objective function is defined as [8]: 
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where N is the number of training pairs of the sequence; 
l stands for the number of the neural network training 
epoch. 

Minimization of objective functions (6), (7) is performed 
by gradient methods. In particular, in the method of 
steepest descent, the correction of weights wij is selected 
in proportion to the partial derivative of the objective 
function of the error E (l) with respect to wij: 

 ( ) ( ) ( )1ij ij ijw l w l w l+ = + ∆ , (8) 
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η represents the neural network training rate coefficient. 
Given expression (7), the last expression (9) can be 

written as: 

 ( ) ( ) ( ) ( )
∑

=
∂

∂
−=

∂
∂

−=∆
N

r ij

j
j

ij
ij w

re
re

Nw
lElw

1

η
η , (10) 

where the error signal ej(r) corresponds to the j-th neuron 
for the r-th training pair. 

The error backpropagation algorithm based on the 
gradient method that are employed to train a MLNN has 
a number of disadvantages. These include: long training 
duration, the possibility of reaching a local minimum 
during training, the possibility of network paralysis. 

The adaptive algorithms RProp, Quickprop are used 
to speed up the process of MLNN training. For the 
weights to be corrected in the batch mode, the algorithm 
Rprop [9] uses only signs of partial derivatives. The 
QuickProp algorithm [10] prevents looping at the point 
of a shallow local minimum, which most often occurs 
during the functioning of a neuron in the saturation domain 
of the activation function. 

3. MLNN–based encryption and decryption algo-
rithm  

Encryption / decryption of messages based on a MLNN 
consists of several steps: training the network using the 
error backpropagation algorithm; data encryption using 
the weights of the hidden layers obtained in the first step; 
data decryption using the weight coefficients of the input 
layer obtained in the first step (see Fig. 1). In order to 
encrypt / decrypt messages successfully, training the 
network on training input pairs must be 100 %. The 
training is to determine the MLNN weight coefficients 
(wij – for hidden layers and νij – for the input layer). 

In neural network systems intended for message 
encryption / decryption, the secret key is: 

 – network architecture: number of inputs, number of 
hidden layers and neurons in them, number of neurons in 
the output layer of the network (Fig. 1); 

 – matrix of MLNN weight coefficients (wij) for data 
encryption and decryption (νij); 

 – initial data for initializing the weight coefficients 
(wij, νij) of the network during its training; 

 – bit size of input training pairs during their encryption. 
Input data for MLNN training is a set of letters 

(lowercase and uppercase) of the English alphabet, 
numbers and punctuation marks in the ASCII format   
(NS = 70 characters), for example: 

'8'=0x38=00111000; 'p'=0x70=01110000 

'Z'=0x5A=01011010; '?'=0x3F=00111111 
Before training the network, a set of training pairs is 

formed and stored in a file. In order to form it, you need 
to specify the number of network inputs (n) and their bit 
size (nb). The number of the training pairs is defined as 
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where 8 bits are the bit size of each message character in 
the ASCII format. If in expression (11) sN8 is not divisible 

evenly by bn n⋅ , then the last training pair is padded with 
zeros to nb bits. 

Encryption / decryption of text messages was performed 
using the NeuralNet program [7], written in C # in 
Microsoft Visual Studio 2013. 

The NeuralNet program provides two modes of 
operation: “Training” – training the neural network on 
the basis of the input training pairs formed from NS=70 
characters; “Work” – encryption or decryption of arbitrary 
text messages based on the trained MLNN. 

Neural network training is performed in one of the 
implemented methods: BP (sequential), BP (batch), RProp, 
QuickProp. To configure the NeuralNet program in the 
training mode, it is necessary to read the file with the 
input training pairs and specify the following data: 

– the activation function steepness (0<alfa≤1); 
– the neural network learning rate (0<η≤1); 
– the network training error (eps); 
– the error (eps1) of the neural network outputs 

against their desired values; 
– the initial value for the initialization of network 

weights; 
– the number of inputs n of the network; 
 –the number of hidden layers; 
 –the number of neurons in the hidden layers; 
 –the number of network outputs; 
 –the number of training pairs; 
 –the maximum number of network learning epochs. 
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The choice of initial values of neuron weight coefficients 
and biases in the network affects the rate of its learning 
and synchronization of neural networks of the sender and 
receiver of messages. The weight coefficients initialization 
procedure implemented allows one to set their initial 
values to be the same from the interval (-0.5; 0.5) for 
different MLNN exercises or to change them. This makes it 
possible to get the same weights of the network after its 
being trained by the sender and receiver of messages. 

The NeuralNet program implements the following 
criterion for complete training of the neural network 
using the error backpropagation algorithm: the value of 
the objective function (expressions (6) or (7)) is less than 
the specified error of the network training eps or the 
number of epochs is greater than the specified maximum 
value. When training the neural network, the training 
results are saved in a text file lerning.txt. 

To switch to the encryption or decryption mode 
using a trained MLNN, go to the “Work” tab of the main 
interface window and select the appropriate mode. Then 
download the input file to encrypt the message or the 
encrypted file to decrypt it. When encrypting, the program 
will display information on the results of encryption: the 
number of input pairs; pair recognition accuracy in 
percentage; the number of unrecognized pairs. When 
decrypting messages, the received input pairs and characters 
are displayed in the ASCII format. 

Consider an example of encryption and decryption 
of the following message: 

Multilayer neural networks. 
This message consists of 27 characters that are part 

of the NS=70 base characters used in MLNN training. 
Convert it to the ASCII format and create a set of input 
pairs for encryption. Here is a message in the ASCII 
code: 

0x4D 75 6C 74 69 6C 61 79 65 72 20 6E 65 
  75 72 61 6C 20 6E 65 74 77 6F 72 6B 73 
  2E 
and the training pairs (NTr=27) for n=8 and nb=1: 

01001101 – 1-а, 
01110101 – 2-а, 
01101100 – 3-а, … 
Step 1. Before encrypting this message, train the 

MLNN by specifying its architecture and generating a 
training pair file for the set of NS=70 characters: 

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkl
mnopqrstuvwxyz0123456789space!.,-?() 

The training results of a MLNN with different 
architectures and by different methods are presented in 
Table 1. Training of all MLNNs was performed by the 
NeuralNet program with the initialization of identical 

initial values of weights, errors eps = 0.0001,  eps1 = 0.1. 
Other network parameters – alfa = 1.0,  η = 0.8. The 
selected errors were sufficient for 100 % network training. 
For the 16_8_16_16, 16_12_16_16 network architecture, 
the training error was eps = 0.005.  100 % of its training 
therewith was also obtained. The bit rate of the input 
data is selected nb=1. For nb>2 it was not possible to 
teach MLNN 100 %. As the complexity of the network 
(architecture 16_8_16_16, 16_12_16_16) increases, so 
does the time of its training. 

Table 1 
MLNN training  results  

for a 70-character input basic set 

Architecture 
MLNN 

Training 
Algorithm NTr, NW NEpoch 

4_4_4 BP (Sequential) 140, 40 666 

4_4_4_4 RProp 140, 60 611 

4_8_4_4 QuickProp 140, 96 25 

4_12_4_4 BP (Sequential) 140, 132 426 

8_8_8 BP (Sequential) 70, 144 2348 

8_8_8_8 BP (Sequential) 70, 216 2009 

8_12_8_8 BP (Sequential) 70, 284 2421 

16_16_16 BP (Sequential) 35, 544 5308 

16_8_16_16 BP (Batch) 35, 552 238542 

16_12_16_16 BP (Batch) 35, 684 170186 
 
Step 2. Encrypting a message. Suppose a trained 

network has an 8-8-8 architecture. A message input file 
is downloaded by the program functioning in its Encryption 
mode. The values of the outputs of the hidden layer will 
be the encrypted message. Each input pair is encrypted 
with 8 output values. The following code is obtained for 
the 1st input pair: 

0,968486351114214 0,989043133425048 
0,813025661203787 0,011391139946895 
0,064313178643986 0,652372929720987 
0,789000493082475 0,668199366103064 
For NTr=27, the dimension of the incoming message is 

27 Byte, and the encrypted message is 27⋅8⋅8=1728 Byte. 

Step 3. Decrypting a message. A public key is also 
transmitted in the file with the message encrypted. This 
key specifies the network architecture, its basic parameters 
and the starting value for the initialization of the network 
weight coefficients. The receiver of the message reads the 
public key data from the file and trains the network. In our 
case, the architecture and parameters of the network are 
the same as for step 1. After that, the program loads the 
encrypted data in the Decryption mode and decrypts them. 
As a result, we get a file in which each character is 
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represented in the ASCII format. The first 10 characters of 
the decrypted message are as follows: 

01001101 → 'M' 01110101 → 'u' 
01101100 → 'l' 01110100 → 't' 
01101001 → 'i' 01101100 → 'l' 
01100001 → 'a' 01111001 → 'y' 
01100101 → 'e' 01110010 → 'r' 
Analyzing the results of decryption, we see that the 

received message coincides with the incoming message 
that was encrypted. 

4. Conclusion 
An algorithm for encrypting / decrypting text messages 

based on an MLNN has been developed. This encryption 
algorithm, as well as the asymmetric encryption methods, 
uses public and private keys. The public key, which 
includes a network architecture, basic parameters for the 
algorithms of its training, an initial value for the 
initialization of network weight coefficients, is transmitted 
together with an encrypted message. The private key is 
the MLNN weight coefficients obtained after its training 
with the public key parameters before decrypting the 
message. 

The result of encryption of each input training pair of 
messages results in the outputs of the last hidden layer  
(8-byte real numbers). The dimension of the message 
encrypted in Byte is defined as: 27⋅8⋅8=1728, where NTr is 
the number of input pairs formed from the message being 
encrypted, t is the number of neurons in the last hidden 
layer. The incoming message dimension: NS Byte. 

For an encrypted message to be decrypted, it is fed 
to the input of the output layer of the MLNN trained by 
the receiver. These are the outputs of the output layer 
where we get the input training pairs in the ASCII 
format, which are converted into a text message. 

A necessary condition for encrypting / decrypting text 
messages with this MLNN-based algorithm is its 100 % 
training by both the sender  and the receiver of the message. 
Therewith the weight coefficients of the network in both 
cases must be the same. This condition affects the choice of 
the number of bits for input pairs. Thus, the experimental 
studies have shown the possibility of 100 % network 
training when choosing the bit size nb=1, 2. For nb>2, it is 
not possible to train the network with a given error eps1. 
Thus, for nb=4, given the normalization of the input data in 
the range 0…1, the error eps1 must be several times less 
than 1 / (24 -1) = 0.06 (6). 

The encryption / decryption of text messages using 
NeuralNet written in C # in Visual Studio 2013 is 
considered. The results of training the MLNN of different 
architecture by the BP (Sequential), BP (Batch), Rprop, 
QuickProp methods for the basic set of input pairs according 
to the number of necessary epochs are given. In all cases, 
100 % network training has been obtained: at the network 
output we obtain the target value that coincides with the 

input training pair with an error of eps1. An example of 
encrypting / decrypting a text message has been considered. 
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ШИФРУВАННЯ ТЕКСТОВИХ 
ПОВІДОМЛЕНЬ З ДОПОМОГОЮ 
БАГАТОШАРОВИХ НЕЙРОННИХ 

МЕРЕЖ  

Володимир Бригілевич, Назар Пелипець,  
Василь Рабик 

Розглянуто алгоритм шифрування/ дешифрування текс-
тових повідомлень з використанням MLNN, який складається  
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з трьох кроків: навчання нейронної мережі на основі нав-
чаючих пар, сформованих з базового набору символів, що 
зустрічаються в тексті; шифрування повідомлення з викорис-
танням ваг прихованих шарів; його дешифрування з викорис-
танням ваг вихідного шару. Сформовано необхідні умови для 
успішного шифрування/ дешифрування цим алгоритмом, 
підкреслено його обмеження. Описано архітектуру і алгоритм 
навчання MLNN. Приведено експериментальні дослідження з 
допомогою програми NeuralNet: навчання MLNN методами 
BP(Sequential), BP(Batch), Rprop, QuickProp; приклад шифру-
вання/ дешифрування текстового повідомлення. 

 

 

Volodymyr Brygilevych – PhD, 
Associate Professor of the Institute of 
Technical Engineering at the State 
Higher School of Technology and 
Economics in Jarosław,  Poland. 

Research interests:   mathematical 
modeling of processes in mechatronic 
sysstems, diagnosis of electronic 
systems. 

 

 
 

Nazar Pelypets – master student 
of the Department of Sensor and 
Semiconductor Electronics at Ivan 
Franko National University of Lviv. 
His research interests are connected 
with the development and implemen-
tation on computers neuron networks 
and their application for data forcasting, 
image recognition.  

 

Vasyl Rabyk – Ph.D, associate 
professor of the Department of Radio-
Physics and Computer Technologies at 
Ivan Franko National University of 
Lviv. He graduated from Ivan Franko 
State University of Lviv, Faculty of 
Physics, speciality RadioPhysics and 
Electronics Scientific and pedagogical 
interests are asociated with theoretical    

and practical aspects of diagnosis of electronic circuits, develop-
ment of electronic devices on microcontrollers, FPGA, applica-
tion of neuron networks for data forecasting, in cryptography. 

 
 

Received: 20.05.2020. Accepted: 25.07.2020. 
 
 
 
 
 

 


