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A statistical approach to description of the charge carrier transfer processes in hybrid
nanostructures taking into account electromagnetic fields is proposed using the method of
the nonequilibrium statistical operator Zubarev. Generalized transfer equations are ob-
tained, which describe non-Markov processes of charge transfer in the system taking into
account magnetic and polarization processes under the influence of external and induced
internal electromagnetic fields. Weakly nonequilibrium charge transfer processes in nanos-
tructures are considered, and a nonequilibrium statistical operator is obtained, by means
of which the magneto-diffusion transfer equations for electrons in layered nanostructures
are obtained. A generalized Cattaneo-type diffusion equation in time fractional derivatives
is obtained for electrons with a characteristic relaxation time and a generalized model is
proposed that takes into account the complexity of relaxation electro-magnetic diffusion
processes for electrons in layered nanostructures.
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1. Introduction

Studies of the influence of magnetization and polarization processes in the electronic subsystem and
intercalated layers of complexes on the current flow in the system remain relevant [1–4]. In a recent
paper [2] for the system SiO2〈SmCl3〉 Nyquist diagrams were constructed — display of full impedance
in a complex plane with coordinate axes its real and imaginary parts — ReZ − ImZ. The diagram
shows that after encapsulation of SmCl3 the real component of the specific complex impedance (ReZ)
in the lowest frequency region (corresponding to the current passage of mainly delocalized carriers)
decreases more than four times. At the same time, appearance of the impedance hodograph in the
dark changes — a horizontal low-frequency “tail” appears. It is most likely related to the distribution
of active resistance (due to the discretization of the energy spectrum). Interestingly, it is stored in a
constant magnetic field of 2.75 kOe, which causes a negative magnetoresistive effect, due to Zeeman’s
delocalization of carriers from trap centers located near the Fermi level. In addition, the effect of the
transition in the low-frequency section of the impedance hodograph to the IV-inductive quadrant of
the complex impedance plane under illumination was interesting. Similar behavior was observed in
Nyquist diagrams for GaSe [4–6] and from the point of view of theoretical research was interpreted
as a subdiffusion impedance based on the Cattaneo-type subdiffusion equations in time fractional
derivatives.

The detected phenomenon of photoinduced “negative” capacitance can find its application to solve
the problem of forming non-gyratory nano-dimensional delay lines with optical control. The appearance
of a giant negative photocapacity is most likely related to the photoexcitation of electrons from occupied
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states below the Fermi level and thus the formation of trap centers for injected electrons with a
relaxation time greater than half the sinusoidal signal. To elucidate the mechanisms of such processes,
the microscopic approaches to the description of current flow in such systems are required, taking into
account their electromagnetic nature.

The effect of external magnetic field on the molecular structure of nanolayers 〈β − CD〈FeSO4〉〉
containing iron sulfate, the cationic structure of which has a large magnetic moment in the layered
structure of GaSe can lead to magnetization of these layers, which affects the change in resistance.
If the magnetizations of the layers are parallel, then the electric current associated with the tunnel-
ing electrons between these layers through the semiconductor layer will increase, and therefore the
resistance will decrease. Conversely, if the magnetizations of the layers are antiparallel, then the prob-
ability of electron tunneling decreases sharply, and therefore the resistance increases. The effect of
giant magnetoresistance arises due to dependence of the electrons scattering on the direction of their
spin relative to the magnetization vector. Electrons whose spin is directed opposite to the direction of
magnetization scatter more intensely than those electrons whose spin is oriented in the direction way
as the magnetization. Therefore, when magnetizations in the layers are antiparallel, the resistance will
increase, and vice versa, when the magnetizations are parallel, the resistance will decrease. It is obvious
that the magnetization processes in the layers affect the spin dynamics of the electronic subsystem.
This can lead to significant correlations between electron charge fluxes (holes) with correspondingly
directed spins and electron charge density gradients. A significant change in charge flux can occur
due to induced magnetoelectric interactions. These processes are essentially nonlinear with the com-
plex behavior of relaxation processes associated with magnetoelectric interactions (including internal
electric and magnetic fields), leading to magnetization and polarization processes, as evidenced by the
dielectric function dependence on frequency and impedance. Internal electric and magnetic fields have
a significant effect on the asymmetry of the density of states above and below the Fermi level, which
ensures the nature of the current flow. Such processes can also stimulate the emergence of traps for
charge carriers, which will affect the current flow, as evidenced by the impedance dependences. The
answer to these questions should be sought in studies of the magnetization and polarization processes
in the electronic subsystem and intercalated layers of complexes 〈β −CD〈FeSO4〉〉. It is important to
take into account the system fractality when construction the electron transfer equations and Maxwell’s
equations for electromagnetic fields. The possible processes of electron tunneling between the modified
complexes through the semiconductor matrix layer require a separate study. Similar physical processes
of current passage will occur in clathrates GaSe〈SmCl3〉 with the greatest possible manifestation of
magnetic processes.

In terms of models that could be used to describe the correlations between particle fluxes and
their density gradients, this is primarily a subdiffusion model based on the Cattaneo equations [4–7],
which was used for the modeling system by modifying β-cyclodextrin without FeSO4. However, the
modification of the Cattaneo equation must take into account the influence of FeSO4, as well as the
influence of an external magnetic field. It is important to note that a number of phenomenological [8–11]
and semi-phenomenological [12, 13] studies are devoted to the development of kinetic theory on the
basis of fractional-differential transfer equations to describe the processes of charge carrier transfer in
semiconductor structures.

The second section presents the Hamiltonian model of hybrid multilayer nanostructures in an elec-
tromagnetic field. The third section proposes a statistical approach to the description of transfer pro-
cesses in these systems using the method of non-equilibrium statistical operator (NSO) Zubarev [14,15].
To describe the nonequilibrium processes of charge carrier transfer in hybrid nanostructures taking into
account magnetism, the nonequilibrium average values of the electron density operators 〈nσ(r)〉

t, com-
plexes 〈nc

σ̄(r)〉
t, and their corresponding densities of magnetic moments 〈m(r)〉t, 〈M ef(r)〉

t are chosen
for the parameters of the reduced description. Here averaging is performed using the nonequilibrium
statistical operator ̺(t), which is the NSO method as a delayed solution of the Liouville quantum
equation. In the fourth section, using the nonequilibrium statistical operator for the parameters of
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the reduced description, generalized transfer equations are obtained, which describe non-Markov cur-
rent flow processes in the system taking into account magnetic and polarization processes under the
influence of external and induced internal electromagnetic fields. In the fifth section, weakly nonequilib-
rium current-flow processes in nanostructures are considered and a nonequilibrium statistical operator
is obtained, by means of which the magneto-diffusion transfer equations for electrons in layered nanos-
tructures are written in the sixth section. In the seventh section, a generalized Cattaneo-type diffusion
equation with time fractional derivatives is obtained for electrons with a characteristic relaxation time,
and in the eighth section, a generalized model is proposed that takes into account the complexity of
relaxation electromagnetic diffusion processes for electrons in layered nanostructures.

2. Hamiltonian of the system

From the point of view of theoretical research, it is important to consider the model of a hybrid
multilayer nanostructure GaSe〈β−CD〈FeSO4〉〉 in the fields of light, electric and magnetic fields. The
Hamiltonian of this model can be represented as:

H(t) = He +He−ph +He−m +Hm−ph +Hm−m +Hph, (1)

He(t) =
~
2

2m2

Ne
∑

j=1

(

∇j −
e

c
A(rj ; t)

)2
+Hee +Hs +Hef(t) +

Ne
∑

j=1

eΦ(rj; t) (2)

is the Hamiltonian of the electronic subsystem, Hee is the Hamiltonian of effective electron-electron
interaction and He−ph is the Hamiltonian of the electron-phonon interaction in the nanostructure.
A(rj ; t), Φ(rj ; t) there are vector and scalar potentials of the electromagnetic field acting on electrons
and macromolecules in the nanostructure, including internal and external fields. He−m is the Hamilto-
nian of the interaction of electrons and polarized macromolecules, in particular β-cyclodextrin modified
FeSO4.

The complexes 〈β−CD〈FeSO4〉〉 are dipole superparamagnetics in a layered GaSe structure. There-
fore, in electric and magnetic fields, they will be polarized and magnetized, respectively, and through
magnetoelectric interaction with the electronic subsystem can affect the current flow in the system.

The current passage through the molecular structure of nanolayerss, which contain iron sulfate,
may be due to primarily by the charge carriers interaction of the matrix with d-electrons of iron.

Hm−ph is the Hamiltonian of the interaction of complexes 〈β−CD〈FeSO4〉〉 in layers with a matrix
structure, and Hm−m is the Hamiltonian interaction between complexes in layers and between layers.

Hs = −~ωs

∑

j

szj (3)

is a Zeeman energy of electrons, szj is a component of the electron spin vector,

Hef(t) = −gsµ0

(

∑

j

sjB(rj ; t) +
∑

j

SjB(rj; t)

)

=

∫

drm(r)B(r; t) +

∫

drM ef(r)B(r; t) (4)

is an interaction of electron spins and complexes with an alternating magnetic field B(rj ; t), m(r) =
∑

j sjδ(r − rj) is the density of the magnetic moment of electrons, M ef(r) =
∑

j Sjδ(r − rj) is the
operator of the magnetic moment density of complexes intercalated into a nanostructure.

Hee = Vee +Hd +Hds, (5)

Vee is a potential for effective electrostatic interaction of electrons,
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Hd = −
1

2

∑

l 6=j

J(rlj)slsj (6)

is an exchange magnetic interaction of conduction electrons with the exchange integral J(rlj),

Hds = −U
∑

q

sqs̄−q (7)

is an exchange magnetic interaction of conduction electrons and localized electrons with the exchange
integral U , sq and s̄q are Fourier components of the spin densities of conduction electrons and localized
electrons, s̄q =

∑

f e
iqrf s̄f , s̄f is the spin of an electron localized at the f -node.

Obviously, this is not a complete Hamiltonian of such a complex system, but the magnetic com-
ponent is taken into account the most. In addition, it is important to take into account in Hm−m the
dipole-dipole interaction of complexes 〈β −CD〈FeSO4〉〉 in the layered structure of GaSe, as well as in
Hm−e an interaction of electrons with these dipole superparamagnetics.

In the next section, we propose a statistical approach to the description of these processes by
the method of nonequilibrium statistical operator and obtain generalized transfer equations for charge
carriers with Hamiltonian (1) to describe the processes of current passage in such hybrid nanostructures.

3. Non-equilibrium statistical system operator

To describe the nonequilibrium processes of charge carrier transfer in hybrid nanostructures taking
into account magnetism, we choose the nonequilibrium average values of the electron density operators
〈nσ(r)〉

t, complexes 〈nc
σ̄(r)〉

t, and their respective densities of magnetic moments 〈m(r)〉t, 〈M ef(r)〉
t

as the parameters of the reduced description. Here 〈(. . .)〉t = Sp(. . . ̺(t)) averaging is performed using
the nonequilibrium statistical operator ̺(t), which is the method of NSO [14,15], as delayed solutions
of the Liouville quantum equation:

̺(t) = ̺rel(t)−

∫ t

−∞

eε(t
′−t) T (t, t′)

(

1− Prel(t
′)
)

iL(t′)̺rel(t
′) dt′, (8)

where iL(t′) is the Liouville operator corresponding to the Hamiltonian of the problem (1), T (t, t′) =
exp(−

∫ t

t′
(1 − Prel(t

′′))iL(t′′)dt′′) is a generalized evolution operator with the Kawasaki–Ganton pro-
jection Prel(t

′′), the structure of which depends on the parameters of the reduced description and the
relevant (quasi-equilibrium) statistical operator ̺rel(t).

In Zubarev’s method ̺rel(t) is found from the extremum of information entropy (the Gibbs entropy)
at fixed values of the observed variables (in our case fixed) and preserved normalization conditions
∫

dΓ̺rel(t) = 1 [14, 15]:

̺rel(t) = exp

{

− Φ(t)− β(t)

(

H(t)−
∑

σ

∫

dr nσ(r) νσ(r; t)

−
∑

σ̄

∫

dr nc
σ̄(r) ν

c
σ̄(r; t)−

∫

drm(r) b(r; t)−

∫

drM ef(r) b
′(r; t)

)

}

, (9)

where nσ(r) is an electron density operator with the corresponding spin direction σ =↑, ↓, and nc
σ̄(r) is

the operator of the density of complexes in the direction of spins σ̄ =↑, ↓, intercalated into a nanostruc-
ture, β(t) is the inverse of the nonequilibrium temperature of the system, νσ(r; t) = µσ(r; t)− eϕ(r; t),
µσ(r; t) is an electrochemical and chemical potential of electrons with the corresponding direction of
spins, respectively, νcσ̄(r; t) = µc

σ̄(r; t)+def ·e(r; t) is a dipole-chemical potential of complexes with the
corresponding direction of spins, def is their effective dipole moment, ϕ(r; t) is a scalar potential of the
internal electromagnetic field with voltages e(r; t) and b(r; t). Φ(t) is the Masier–Planck functionality:
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Φ(t) = ln Sp exp

{

− β(t)

(

H(t)−
∑

σ

∫

dr nσ(r) νσ(r; t)

−
∑

σ̄

∫

dr nc
σ̄(r) ν

c
σ̄(r; t)−

∫

drm(r) b(r; t)−

∫

drM ef(r) b
′(r; t)

)

}

, (10)

in which the non-equilibrium Lagrange parameters β(t), νσ(r; t), ν
c
σ̄(r; t), b(r; t), b

′(r; t) are determined
from the terms of self-agreement:

〈H(t)〉t = 〈H(t)〉trel, 〈nσ(r)〉
t = 〈nσ(r)〉

t
rel, 〈nc

σ̄(r)〉
t = 〈nc

σ̄(r)〉
t
rel, (11)

〈m(r)〉t = 〈m(r)〉trel, 〈M ef(r)〉
t = 〈M ef(r)〉

t
rel.

Based on the Gibbs entropy definition and the conditions of self-agreement (11), we obtain the Gibbs
entropy of nonequilibrium processes in the system under consideration:

S(t) = −〈ln ̺rel(t)〉
t
rel

= Φ(t) + β(t)

(

H(t)−
∑

σ

∫

dr〈nσ(r)〉
tνσ(r; t)

−
∑

σ̄

∫

dr 〈nc
σ̄(r)〉

t νcσ̄(r; t)−

∫

dr 〈m(r)〉t b(r; t)−

∫

dr 〈M ef(r)〉
t
b
′(r; t)

)

, (12)

where

S(t) = −〈ln ̺rel(t)〉
t
rel

= Φ(t) + β(t)

(

H(t)−
∑

σ

∫

dr〈nσ(r)〉
t
(

µσ(r; t)− eϕ(r; t)
)

−
∑

σ̄

∫

dr〈nc
σ̄(r)〉

t
(

µc
σ̄(r; t) + def · e(r; t)

)

−

∫

dr〈m(r)〉tb(r; t)−

∫

dr〈M ef (r)〉
t
b
′(r; t)

)

, (13)

where, in particular, 〈nσ(r)〉
te = ρeσ(r; t) is the nonequilibrium value of the electron charge density

with the appropriate direction of the spins, 〈nc
σ̄(r)〉

tdef = dc(r; t) is the nonequilibrium value of the
dipole charge density of magnetic complexes 〈β − CD〈FeSO4〉〉.

Explaining the action of the operators iL(t), (1−Prel(t
′)) on ̺rel(t), for the nonequilibrium statistical

operator we obtain:

̺(t) = ̺rel(t)−

∫

dr′
∫ t

−∞

eε(t
′−t) T (t, t′)

(

∑

σ

Ienσ(r
′; t′, τ)β(t′) νσ(r

′; t′) (14)

+
∑

σ̄

Icnσ̄(r
′; t′, τ)β(t′)νcσ̄(r

′; t′) + Im(r′; t′, τ)β(t′)b(r′; t′) + IM (r′; t′, τ)β(t′) b′(r′; t′)

)

dt′,

where Il(r
′; t′, τ) =

∫ 1
0 ̺τrel(t

′)Il(r
′; t′)̺−τ

rel (t
′)dτ ,

Ienσ(r
′; t′) =

(

1− P (t′)
)

iL(t′)nσ(r
′), Icnσ̄(r

′; t′) =
(

1− P (t′)
)

iL(t′)nc
σ̄(r

′), (15)

Im(r′; t′) =
(

1− P (t′)
)

iL(t′)m(r′), IM (r′; t′) =
(

1− P (t′)
)

iL(t′)M ef(r
′)

are generalized flows with the Mori projection operator P (t′), built on operators Al(r): A1(r) = nσ(r),
A2(r) = nc

σ̄(r), A3(r) = m(r), A4(r) = M ef(r):

P (t)A(r) = 〈A(r)〉trel +
∑

l

∫

dr
δ〈A(r)〉trel
δ〈Al(r)〉t

(

〈Al(r)− 〈Al(r)〉
t
)

(16)
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with properties P (t)P (t′) = P (t), P (t)(1−P (t′)) = 0, P (t)Al(r) = Al(r). Generalized fluxes describe
the processes of electron transfer taking into account the magnetic-polarization processes in a system
with magnetic complexes embedded in the structure under the influence of light, magnetic field.

The nonequilibrium statistical operator (14) is a functional of the reduced description parameters
for the average values of the electron densities operators 〈nσ(r)〉

t, complexes 〈nc
σ̄(r)〉

t and their cor-
responding densities of magnetic moments 〈m(r)〉t, 〈M ef(r)〉

t and generalized streams Il(r
′; t′) is the

basis for constructing generalized transfer equations for the parameters of the reduced description.

4. Generalized transfer equations

Using the nonequilibrium statistical operator (14) for parameters of the reduced description, the gen-
eralized transfer equations can be obtained, which are presented in matrix form:

∂

∂t
〈Ã(r)〉t = 〈 ˙̃

A(r)〉trel −

∫

dr′
∫ t

−∞

eε(t
′−t) W̃II(r, r

′; t, t′) F̃ (r′; t′) dt′, (17)

where Ã(r) = col
(

nσ(r), n
c
σ̄(r),m(r),M ef(r)

)

is a vector column, Ã(+)(r) =
(

nσ(r), n
c
σ̄(r),m(r),

M ef(r)
)

is a row vector, F̃ (+)(r; t) =
(

β(t)νσ(r; t), β(t)ν
c
σ̄(r; t), β(t)b(r; t), β(t)b

′(r; t)
)

is a row vector,
˙̃
A(r) = iLÃ(r).

W̃II(r, r
′; t, t′) = Sp

(

Ĩ(r; t)T (t, t′)

∫ 1

0
̺τrel(t

′)Ĩ(+)(r′; t′)̺1−τ
rel (t′)dτ

)

=

∣

∣

∣

∣

W̃InIn W̃InIm

W̃ImIn W̃ImIm

∣

∣

∣

∣

(r,r′;t,t′)

(18)

is a block matrix of transfer nuclei, where Ĩ(r; t) = col(Ienσ(r; t), I
c
nσ̄(r; t), Im(r′; t′), IM (r′; t′)) is a

column vector and Ĩ(+)(r; t) =
(

Ienσ(r; t), I
c
nσ̄(r; t), Im(r′; t′), IM (r′; t′)

)

is a row vector of generalized

flows. The matrix W̃InIn(r, r
′; t, t′) is a block matrix with the following structure:

W̃InIn(r, r
′; t, t′) =

∣

∣

∣

∣

W̃ ee
InIn

W̃ ec
InIm

W̃ ce
ImIn

W̃ cc
ImIm

∣

∣

∣

∣

(r,r′;t,t′)

, (19)

where

W̃ ee
InIn(r, r

′; t, t′) =

∣

∣

∣

∣

∣

W ee
In↑In↑

W ee
In↑In↓

W ee
In↓In↑

W ee
In↓In↓

∣

∣

∣

∣

∣

(r,r′;t,t′)

(20)

is a matrix whose elements describe the temporal–spatial correlations of electron flows with the corre-
sponding orientations of the spins,

W̃ ec
InIn(r, r

′; t, t′) =

∣

∣

∣

∣

∣

W ec
In↑In↑

W ec
In↑In↓

W ec
In↓In↑

W ec
In↓In↓

∣

∣

∣

∣

∣

(r,r′;t,t′)

(21)

W̃ ce
InIn(r, r

′; t, t′) =

∣

∣

∣

∣

∣

W ce
In↑In↑

W ce
In↑In↓

W ce
In↓In↑

W ce
In↓In↓

∣

∣

∣

∣

∣

(r,r′;t,t′)

(22)

are the matrices, elements of which describe the temporal–spatial correlations of electron flows with
flows (dipole orientations) of complexes with corresponding spin orientations,

W̃ cc
InIn

(r, r′; t, t′) =

∣

∣

∣

∣

∣

W cc
In↑In↑

W cc
In↑In↓

W cc
In↓In↑

W cc
In↓In↓

∣

∣

∣

∣

∣

(r,r′;t,t′)

(23)
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is a matrix whose elements describe temporal–spatial correlations between flows (dipole orientations)
of complexes with corresponding spin orientations.

W̃InIM (r, r′; t, t′) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

W e
In↑Im

W e
In↑IM

W e
In↓Im

W e
In↓IM

W c
In↑Im

W c
In↑IM

W c
In↓Im

W c
In↓IM

∣

∣

∣

∣

∣

∣

∣

∣

∣

(r,r′;t,t′)

, (24)

W̃IM In(r, r
′; t, t′) =

∣

∣

∣

∣

∣

W e
ImIn↑

W e
IMIn↑

W c
ImIn↑

W c
IM In↑

W e
ImIn↓

W e
IMIn↓

W c
ImIn↓

W c
IM In↓

∣

∣

∣

∣

∣

(r,r′;t,t′)

(25)

are the matrices, elements (transfer nuclei) of which describe the temporal-spatial correlations of the
electron fluxes (dipole orientations) of complexes with corresponding spin orientations with generalized
magnetic fluxes of electrons Im(r; t) and magnetic complexes IM (r; t),

W̃IMIM (r, r′; t, t′) =

∣

∣

∣

∣

WImIm WImIM

WIM Im WIMIM

∣

∣

∣

∣

(r,r′;t,t′)

(26)

is a matrix whose elements (transfer nuclei) describe time-space correlations between generalized mag-
netic fluxes of electrons Im(r; t) and generalized fluxes of magnetic complexes IM (r; t). In expanded
form, the transfer equations have the following structure:

∂

∂t
〈nσ(r)〉

t = −

∫

dr′
∑

σ′

∫ t

−∞

eε(t
′−t)W ee

InσInσ′
(r, r′; t, t′)β(t′)

(

µσ′(r′; t′)− eϕ(r′; t′)
)

dt′

−

∫

dr′
∑

σ̄′

∫ t

−∞

eε(t
′−t)W ee

InσInσ̄′
(r, r′; t, t′)β(t′)

(

µσ̄′(r′; t′) + def · e(r
′; t′)

)

dt′

−

∫

dr′
∑

σ′

∫ t

−∞

eε(t
′−t)W ee

InσIm(r, r
′; t, t′)β(t′) b(r′; t′) dt′

−

∫

dr′
∑

σ′

∫ t

−∞

eε(t
′−t)W ee

InσIM
(r, r′; t, t′)β(t′) b′(r′; t′) dt′, (27)

∂

∂t
〈m(r)〉t = 〈ṁ(r)〉t −

∫

dr′
∑

σ′

∫ t

−∞

eε(t
′−t)W ee

ImInσ′
(r, r′; t, t′)β(t′)

(

µσ′(r′; t′)− eϕ(r′; t′)
)

dt′

−

∫

dr′
∑

σ̄′

∫ t

−∞

eε(t
′−t)W ee

ImInσ̄′
(r, r′; t, t′)β(t′)

(

µσ̄′(r′; t′) + def · e(r
′; t′)

)

dt′

−

∫

dr′
∑

σ′

∫ t

−∞

eε(t
′−t)W ee

ImIm(r, r
′; t, t′)β(t′) b(r′; t′) dt′

−

∫

dr′
∑

σ′

∫ t

−∞

eε(t
′−t)W ee

ImIM
(r, r′; t, t′)β(t′) b′(r′; t′) dt′, (28)

∂

∂t
〈nσ̄(r)〉

t = −

∫

dr′
∑

σ′

∫ t

−∞

eε(t
′−t)W ee

Inσ̄I
nσ′

(r, r′; t, t′)β(t′)
(

µσ′(r′; t′)− eϕ(r′; t′)
)

dt′

−

∫

dr′
∑

σ̄′

∫ t

−∞

eε(t
′−t)W ee

Iσ̄I
nσ̄′

(r, r′; t, t′)β(t′)
(

µσ̄′(r′; t′) + def · e(r
′; t′)

)

dt′
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−

∫

dr′
∑

σ′

∫ t

−∞

eε(t
′−t)W ee

Inσ̄Im
(r, r′; t, t′)β(t′) b(r′; t′) dt′

−

∫

dr′
∑

σ′

∫ t

−∞

eε(t
′−t)W ee

Inσ̄IM
(r, r′; t, t′)β(t′) b′(r′; t′) dt′, (29)

∂

∂t
〈M ef(r)〉

t = 〈Ṁ ef(r)〉
t −

∫

dr′
∑

σ′

∫ t

−∞

eε(t
′−t)W ee

IMInσ′
(r, r′; t, t′)β(t′)

(

µσ′(r′; t′)− eϕ(r′; t′)
)

dt′

−

∫

dr′
∑

σ̄′

∫ t

−∞

eε(t
′−t)W ee

IMInσ̄′
(r, r′; t, t′)β(t′)

(

µσ̄′(r′; t′) + def · e(r′; t′)
)

dt′

−

∫

dr′
∑

σ′

∫ t

−∞

eε(t
′−t)W ee

IMIm
(r, r′; t, t′)β(t′) b(r′; t′) dt′

−

∫

dr′
∑

σ′

∫ t

−∞

eε(t
′−t)W ee

IMIM
(r, r′; t, t′)β(t′) b′(r′; t′) dt′, (30)

where

ṁ(r) = −
∂

∂r
J

(1)
m (r)−

∂

∂r
J

(2)
m (r)−Rm(r; t), J

(1)α
m (r) =

∑

j

pα

me

sjδ(r − rj),

J
(2)α
m (r) =

1

2

∑

l 6=j

rαlj [sl × sj]

∫ 1

0
dξ δ(r − rj + ξrl), Rm(r; t) = −

∫

dr
[

B(r; t)×m(r′)
]

δ(r − r
′)

with a characteristic contribution of the spin component to the magnetic flux. Generalized transfer
equations (27)–(30) describe non-Markov current processes in the system taking into account magnetic
and polarization processes under the influence of external and induced internal electromagnetic fields,
which are reflected in the right parts of these equations. And obviously, these equations must be
supplemented by an appropriate system of Maxwell’s equations for electromagnetic fields. The obtained
transfer equations can describe both strong and weakly nonequilibrium processes in strong and weak
(or constant) electromagnetic fields, respectively. In the case of strongly nonequilibrium processes,
the transfer equations are open and require approximate (numerical) calculation methods. Due to the
fact that experimental studies use weak or constant electric and magnetic fields in the next section we
consider the case of weakly nonequilibrium processes, taking into account that paramagnetic complexes
in layers are oriented in a certain way under the action of a constant external magnetic field, creating an
effective constant magnetic field acting on the electronic subsystem, affecting the processes of current
flow. That is, in this consideration, the implemented complexes are in equilibrium.

5. Weakly nonequilibrium processes

We will consider weakly nonequilibrium processes in the system, when the values of thermodynamic
parameters and magnetic field differ little from their locally equilibrium values, ie fluctuations of
parameters δβ(t) = β(t) − β, δν↑(r; t) = ν↑(r; t) − ν↑(r), δν↓(r; t) = ν↓(r; t) − ν↓(r), δb(r; t) =
b(r; t) − b(r) are small, where νσ(r) = µσ(r) − eϕ(r), µσ(r), ϕ(r), b(r) are the locally equilibrium
values of the electrons chemical potential, electric potential and internal magnetic field. In addition,
we assume that the temperature has become: β(t) = β, namely, δβ(t) = 0. In this case, the relevant
statistical operator in the linear approximation for these fluctuations will look like:

̺0rel(t) =

(

1−

∫

dr β δν↑(r; t)n↑(r; τ)−

∫

dr β δν↓(r; t)n↓(r; τ)−

∫

dr β δb(r; t)m(r; τ)

)

̺0, (31)
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where nσ(r; τ) =
∫ 1
0 dτ̺τ0nσ(r)̺

−τ
0 , m(r; τ) =

∫ 1
0 dτ̺τ0m(r)̺−τ

0 ,

̺0 = exp

{

− Φ− β

(

H −
∑

σ

∫

dr νσ(r)nσ(r)−

∫

dr b(r)m(r)

)

}

(32)

is a large canonical Gibbs distribution, which fully describes the equilibrium thermodynamic and
structural properties of the system. To further use ̺0rel(t), it is necessary to determine the fluctuations
of the corresponding thermodynamic parameters and the magnetic field. The parameter δν↑(r; t) will
be determined from the self-agreement condition:

〈n↑(r)〉
t = 〈n↑(r)〉

t
rel, (33)

then taking into account (31), we obtain:

〈n↑(r)〉
t = 〈n↑(r)〉0 (34)

−

∫

dr′Φ↑↑(r, r
′)β δν↑(r

′; t)−

∫

dr′ Φ↑↓(r, r
′)β δν↓(r

′; t)−

∫

dr′Φ↑m(r, r′)β δb(r′; t),

where 〈(. . .)〉0 = Sp(. . .)̺0 averaging is performed with equilibrium distribution ̺0,

Φ↑↑(r, r
′) = 〈n↑(r)n↑(r

′; τ)〉0, Φ↑↓(r, r
′) = 〈n↑(r)n↓(r

′; τ)〉0 (35)

are the equilibrium correlation functions “density–density” of the Green–Kubo type for electrons with
corresponding spin orientations,

Φ↑m(r, r′) = 〈n↑(r)m(r′; τ)〉0 (36)

is an equilibrium correlation function of the Green–Kubo type, which describes the magnetostrictive
properties. Fourier images of correlation functions (35) in the space of wave vectors are equilibrium
structural factors of electrons that can be measured in neutron scattering experiments.

From (34) we find the parameter δν↑(r; t). To do this, we introduce the function Φ−1
↑↑ (r, r

′), which
is inverse to Φ↑↑(r, r

′), by the integral relation:

∫

drΦ−1
↑↑ (r

′′, r)Φ↑↑(r, r
′) = δ(r′′ − r

′). (37)

Then we multiply the equation (34) by Φ−1
↑↑ (r, r

′) and integrate by
∫

dr, and after simple transforma-
tions we get the following expression for the parameter δν↑(r; t):

β δν↑(r; t) = −

∫

dr′Φ−1
↑↑ (r, r

′)〈δn↑(r
′)〉t −

∫

dr′
∫

dr′′Φ−1
↑↑ (r, r

′′)Φ↑↓(r
′′, r′)β δν↓(r

′; t)

−

∫

dr′
∫

dr′′Φ−1
↑↑ (r, r

′′)Φ↑m(r′′, r′)β δb(r′; t), (38)

where δn↑(r
′) = n↑(r

′)−〈n↑(r
′)〉0 are fluctuations of the operator of the microscopic electrons density

with the spin direction ↑ relative to the equilibrium value of the density distribution. Now, substituting
(38) in (31) we get for ̺0rel(t):

̺0rel(t) =

(

1 +

∫

dr

∫

dr′ 〈δn↑(r
′)〉tΦ−1

↑↑ (r
′, r)n↑(r; τ)

−

∫

dr β δν↓(r; t) n̄↓(r; τ)−

∫

dr β δb(r; t)m′(r; τ)

)

̺0, (39)
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where

n̄↓(r) = n↓(r)−

∫

dr′
∫

dr′′ Φ↓↑(r, r
′′)Φ−1

↑↑ (r
′′, r′)n↑(r

′) = (1− Pn↑)n↓(r), (40)

m
′(r) = m(r)−

∫

dr′
∫

dr′′Φm↑(r, r
′′)Φ−1

↑↑ (r
′′, r′)n↑(r

′) = (1− Pn↑)m(r) (41)

are new electron density operators with spin direction ↓ and magnetic moment projected onto the space
of electron density operators with spin direction ↑. Pn↑ is a Mori-type projection operator, which has
the following structure:

Pn↑A =

∫

dr′
∫

dr′′ 〈An↑(r
′′)〉0 Φ

−1
↑↑ (r

′′, r′)n↑(r
′). (42)

It is important to note that the operators n̄↓(r), m
′(r) are orthogonal to n↑(r

′) in the sense of
average values:

〈n̄↓(r)n↑(r
′′)〉0 = 〈m′(r)n↑(r

′′)〉0 = 0. (43)

Now, having defined the parameters δν↓(r; t), δb(r; t) in a similar way from the corresponding terms
of self-agreement conditions:

〈n̄↓(r)〉
t = 〈n̄↓(r)〉

t
rel, 〈m′(r)〉t = 〈m′(r)〉trel, (44)

we get for ̺0rel(t) the following expression:

̺0rel(t) =

(

1 +

∫

dr

∫

dr′ 〈δn↑(r
′)〉t Φ−1

↑↑ (r
′, r)n↑(r; τ) (45)

+

∫

dr

∫

dr′ 〈δn̄↑(r
′)〉t Φ̄−1

↓↓ (r
′, r) n̄↓(r; τ) +

∫

dr

∫

dr′ 〈δm̄(r′)〉t Φ−1
m̄m̄(r′, r) m̄(r; τ)

)

̺0,

where δn̄↑(r
′) = n̄↑(r

′) − 〈n̄↑(r
′)〉0, Φ̄

−1
↓↓ (r

′, r), Φ−1
m̄m̄(r′, r) are functions inverse to equilibrium corre-

lation functions, respectively,

Φ̄↓↓(r
′, r) = 〈n̄↓(r

′) n̄↓(r; τ)〉0, Φ−1
m̄m̄(r′, r) = 〈m̄(r′) m̄(r; τ)〉0 (46)

by integral relations: ∫

dr Φ̄−1
↓↓ (r

′′, r) Φ̄↓↓(r, r
′) = δ(r′′ − r

′), (47)

∫

drΦ−1
m̄m̄(r′′, r)Φm̄m̄(r, r′) = δ(r′′ − r

′), (48)

in which m̄(r) is a new operator of the following structure:

m̄(r) = m
′(r)−

∫

dr′
∫

dr′′ Φm′↓(r, r
′′) Φ̄−1

↓↓ (r
′′, r′) n̄↓(r

′) = (1− Pn̄↓) (1− Pn↑)m(r), (49)

where Pn̄↓ is a projection operator built on operators n̄↓(r)

Pn̄↓A =

∫

dr′
∫

dr′′ 〈An̄↓(r
′′; τ)〉0 Φ̄

−1
↓↓ (r

′′, r′) n̄↓(r
′), (50)

in this case m̄(r) and n̄↓(r
′) are orthogonal in the sense of the mean values:

〈m̄(r) n̄↓(r
′; τ)〉0 = 0. (51)

The correlation function Φ̄↓↓(r
′, r) has the following form:

Φ̄↓↓(r
′, r) = Φ↓↓(r

′, r)− 〈Pn↑n↓(r
′)〉0 − 〈Pn↑n↓(r)〉0 + 〈Pn↑n↓(r

′)Pn↑n↓(r)〉0

= Φ↓↓(r
′, r)−

∫

dr′′
∫

dr′′′Φ↓↑(r, r
′′)Φ−1

↑↑ (r
′′, r′′′)Φ↑↓(r

′′′, r′). (52)
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Another correlation function Φm̄m̄(r, r′), which describes the magnetic properties, has the following
structure:

Φm̄m̄(r, r′) = Φmm(r, r′)−〈m(r)(Pn̄↓ + Pn↑ − Pn̄↓Pn↑)m(r′)〉0 − 〈m(r′)(Pn̄↓ + Pn↑ − Pn̄↓Pn↑)m(r)〉0

+ 〈(Pn̄↓ + Pn↑ − Pn̄↓Pn↑)m(r)(Pn̄↓ + Pn↑ − Pn̄↓Pn↑)m(r′)〉0, (53)

where Φmm(r, r
′) is a spatially inhomogeneous magnetic susceptibility of the system, the following

terms in (53) describe complex magnetostrictive correlations.
In the found linear approximation in fluctuations of nonequilibrium thermodynamic parameters

and magnetic field for ̺0rel(t) (45), the nonequilibrium statistical operator of the system will look like:

̺(t) = ̺0rel(t)−

∫

dr

∫

dr′
∫ t

−∞

eε(t
′−t) T0(t, t

′)
(

In↑(r
′; τ)Φ−1

↑↑ (r
′, r)〈δn↑(r)〉

t′

+ In̄↓(r
′; τ)Φ̄−1

↓↓ (r
′, r)〈δn̄↓(r)〉

t′ + Im̄(r′; τ)Φ−1
m̄m̄(r′, r)〈δm̄(r)〉t

′
)

̺0 dt
′, (54)

where
In↑(r) = (1− P )iLn↑(r), In̄↓(r) = (1− P )iLn̄↓(r), Im̄(r) = (1− P )iLm̄(r) (55)

are generalized electron fluxes with corresponding spin orientations and magnetic flux of spins in the
linear approximation, in which P is a Mori projection operator having the following structure:

P = Pn↑ + Pn̄↓ + Pm̄, (56)

where

Pm̄(. . .) =

∫

dr′
∫

dr′′ 〈(. . .)m̄(r′′)〉0 Φ
−1
m̄m̄(r′′, r′) m̄(r′) (57)

and has the following properties P 2 = P , (1 − P )P = 0. T0(t, t
′) = e−(1−P )iL(t′−t) is an evolution

operator (linear approximation) in time for a system corresponding to the well-known Mori theory.

6. Magneto-diffusion transfer equations for electrons in layered nanostructures

Using a nonequilibrium statistical operator (54), we can construct a system of transfer equations to
describe the processes of electronic transfer in the system, taking into account magnetic processes.
This system has the form:

∂

∂t
〈δn↑(r)〉

t = −

∫

dr′
∫ t

−∞

eε(t
′−t)WI↑I↑(r, r

′; t, t′) 〈δn↑(r
′)〉t

′

dt′

−

∫

dr′
∫ t

−∞

eε(t
′−t) WI↑I↓(r, r

′; t, t′) 〈δn̄↓(r
′)〉t

′

dt′

−

∫

dr′
∫ t

−∞

eε(t
′−t) WI↑Im̄(r, r

′; t, t′) 〈δm̄(r′)〉t
′

dt′, (58)

∂

∂t
〈n̄↓(r)〉

t = −

∫

dr′
∫ t

−∞

eε(t
′−t)WI↓I↑(r, r

′; t, t′) 〈δn↑(r
′)〉t

′

dt′

−

∫

dr′
∫ t

−∞

eε(t
′−t)WI↓I↓(r, r

′; t, t′) 〈δn̄↓(r
′)〉t

′

dt′

−

∫

dr′
∫ t

−∞

eε(t
′−t)WI↓Im̄(r, r

′; t, t′) 〈δm̄(r′)〉t
′

dt′, (59)
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∂

∂t
〈m̄(r)〉t = −

∫

dr′ iΩm̄m̄(r, r′) 〈m̄(r′)〉t

−

∫

dr′
∫ t

−∞

eε(t
′−t)WIm̄I↑(r, r

′; t, t′) 〈δn↑(r
′)〉t

′

dt′

−

∫

dr′
∫ t

−∞

eε(t
′−t)WIm̄I↓(r, r

′; t, t′) 〈δn̄↓(r
′)〉t

′

dt′

−

∫

dr′
∫ t

−∞

eε(t
′−t)WIm̄Im̄(r, r

′; t, t′) 〈δm̄(r′)〉t
′

dt′, (60)

where

iΩm̄m̄(r, r′) =

∫

dr′′ 〈iLm̄(r) · m̄(r′′)〉0 Φ
−1
m̄m̄(r′′, r′) (61)

is a normalized correlation function that describes non-dissipative magnetic properties,

WI↑I↑(r, r
′; t, t′) =

∫

dr′′ 〈In↑(r)T0(t, t
′)In↑(r

′′)〉0 Φ
−1
↑↑ (r

′′, r′), (62)

WI↑I↓(r, r
′; t, t′) =

∫

dr′′ 〈In↑(r)T0(t, t
′)In̄↓(r

′′)〉0 Φ̄
−1
↓↓ (r

′′, r′), (63)

WI↓I↓(r, r
′; t, t′) =

∫

dr′′ 〈In̄↓(r)T0(t, t
′)In̄↓(r

′′)〉0 Φ̄
−1
↓↓ (r

′′, r′), (64)

WI↑Im̄(r, r
′; t, t′) =

∫

dr′′ 〈In↑(r)T0(t, t
′)Im̄(r′′)〉0 Φ

−1
m̄m̄(r′′, r′), (65)

WI↓Im̄(r, r
′; t, t′) =

∫

dr′′ 〈In̄↓(r)T0(t, t
′)Im̄(r′′)〉0 Φ

−1
m̄m̄(r′′, r′) (66)

WIm̄Im̄(r, r
′; t, t′) =

∫

dr′′ 〈Im̄(r)T0(t, t
′)Im̄(r′′)〉0 Φ

−1
m̄m̄(r′′, r′) (67)

are generalized transfer nuclei (memory functions) that describe electronic diffusion processes tak-
ing into account the spins orientations and against the direction of the effective magnetic field, and
magnetic diffusion processes in the system. In particular, the nucleus WI↑I↑(r, r

′; t, t′) describes dissi-
pative temporal and spatial correlations between electron fluxes with the direction of spins in the field,
WI↓I↓(r, r

′; t, t′) describes the dissipative temporal and spatial correlations between electron fluxes
with the spin direction against the field, and WI↑I↓(r, r

′; t, t′) describes dissipative temporal and spa-
tial correlations between electron fluxes with spin orientations for and against the direction of the
magnetic field. The transfer core WIm̄Im̄(r, r

′; t, t′) describes the magnetic diffusion in the system, and
WI↓Iσ(r, r

′; t, t′) describes the mutual spatio-temporal correlations of electron fluxes with the corre-
sponding spin direction and magnetic flux. As we can see, the structure of the system of equations
(58)–(60) is closed. Using the Fourier transform of time to these equations, we can find exact equa-
tions for the corresponding Fourier images of the corresponding nonequilibrium values of the electron
density operators with the selected spin direction and the magnetic moment operator by solving the
corresponding integral equations. In particular, for fluctuations of the nonequilibrium mean value of
the electron density operator with the spin direction in the magnetic field 〈δn↑(r)〉

ω, we obtain the
corresponding integral equation:

iω〈δn↑(r)〉
ω = −

∫

dr′DI↑I↑(r, r
′;ω + iε) 〈δn↑(r

′)〉ω, (68)

where ω is the frequency

DI↑I↑(r, r
′;ω) = W̄I↑I↑(r, r

′;ω)−

∫

dr′′
∫

dr′′′ W̄I↑I↓(r, r
′′;ω)Σ−1

I↓I↓(r
′′, r′′′;ω) W̄I↓I↑(r

′′′, r′;ω) (69)
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is a generalized transfer core that takes into account complex dissipative correlations through transfer
cores (62)–(67) and complex renormalizations due to magnetic dissipative processes, expressed through
the corresponding transfer nuclei:

W̄I↑I↑(r, r
′;ω) = WI↑I↑(r, r

′;ω)−

∫

dr′′
∫

dr′′′ WI↑Im̄(r, r
′′;ω)Σ−1

Im̄Im̄
(r′′, r′′′;ω)WIm̄I↑(r

′′′, r′;ω),

(70)

W̄I↑I↓(r, r
′;ω) = WI↑I↓(r, r

′;ω)−

∫

dr′′
∫

dr′′′ WI↑Im̄(r, r
′′;ω)Σ−1

Im̄Im̄
(r′′, r′′′;ω)WIm̄I↓(r

′′′, r′;ω),

(71)

W̄I↓I↑(r, r
′;ω) = WI↓I↑(r, r

′;ω)−

∫

dr′′
∫

dr′′′ WI↓Im̄(r, r
′′;ω)Σ−1

Im̄Im̄
(r′′, r′′′;ω)WIm̄I↑(r

′′′, r′;ω),

(72)

W̄I↓I↓(r, r
′;ω) = WI↓I↓(r, r

′;ω)−

∫

dr′′
∫

dr′′′ WI↓Im̄(r, r
′′;ω)Σ−1

Im̄Im̄
(r′′, r′′′;ω)WIm̄I↓(r

′′′, r′;ω),

(73)
in which the function Σ−1

Im̄Im̄
(r′′, r′′′;ω) is from the integral equation

∫

dr′′ Σ−1
Im̄Im̄

(r, r′′;ω)ΣIm̄Im̄(r
′′, r′;ω) = δ(r − r

′) (74)

and is inverse of a function that already takes into account the renormalization through the magnetic
subsystem

ΣIm̄Im̄(r, r
′;ω) = iω δ(r − r

′)− Ωm̄m̄(r, r′) +WIm̄Im̄(r, r
′;ω). (75)

Accordingly, the function Σ−1
I↓I↓(r

′′, r′′′;ω) is determined from the integral relation

∫

dr′′ Σ−1
I↓I↓(r, r

′′;ω)ΣI↓I↓(r
′′, r′;ω) = δ(r − r

′) (76)

and is inverse of a function that already takes into account the renormalization through the magnetic
subsystem

ΣI↓I↓(r, r
′;ω) = iω δ(r − r

′) + W̄I↓I↓(r, r
′;ω)

= iω δ(r − r
′) +WI↓I↓(r, r

′;ω)

−

∫

dr′′
∫

dr′′′ WI↓Im̄(r, r
′′;ω)Σ−1

Im̄Im̄
(r′′, r′′′;ω)WIm̄I↓(r

′′′, r′;ω). (77)

Performing the inverse Fourier transform in (68), we obtain a generalized diffusion equation for fluc-
tuations of the mean nonequilibrium values:

∂

∂t
〈δn↑(r)〉

t =

∫

dr′
∫ t

−∞

eε(t
′−t)DI↑I↑(r, r

′; t, t′) 〈δn↑(r
′)〉t

′

dt′

=

∫

dr′
∫ t

−∞

eε(t
′−t) ∂

∂r
· D̄I↑I↑(r, r

′; t, t′) ·
∂

∂r′
〈δn↑(r

′)〉t
′

dt′, (78)

where D̄I↑I↑(r, r
′; t, t′) is a generalized diffusion coefficient for electrons with spin orientation in the

direction magnetic field and, which is determined through the nucleus (69), respectively. It should
be noted that the structure of the functions (69)–(77) is important from the point of view of both
understanding and modeling the mechanisms of the corresponding processes of current flow in systems.
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7. Cattaneo–type diffusion equation in time fractional derivatives for electrons

The generalized diffusion equation (78) for electrons describes non-Markov spatially inhomogeneous
processes, ie memory effects that are associated with the characteristic relaxation times of electronic
(including tunneling) magnetic processes in accordance with the behavior of transfer nuclei (69)–(77).
At present, it is impossible to accurately calculate the transfer nuclei. Therefore, an approximate
calculation is performed based on certain assumptions about the main possible mechanisms of current
flow in the system. For further study of the features of impedance behavior, associated with the
effects of delay, inductance, memory effects will be described on the basis of assumptions that lead to
fractional dynamics [7, 16].

For D̄I↑I↑(r, r
′; t, t′) we apply the following approximation:

D̄I↑I↑(r, r
′; t, t′) ≈ RI↑I↑(t, t

′) D̄I↑I↑(r, r
′), (79)

where RI↑I↑(t, t
′) can be defined as a function of memory over time. Using this approximation, we can

present the equation (78) as:

∂

∂t
〈δn↑(r)〉

t =

∫ t

−∞

eε(t
′−t)RI↑I↑(t, t

′)ΨI↑I↑(r; t
′) dt′, (80)

where

ΨI↑I↑(r; t
′) =

∫

dr′
∂

∂r
· D̄I↑I↑(r, r

′) ·
∂

∂r′
〈δn↑(r

′)〉t
′

. (81)

Applying the Fourier transform to the equation (80), we obtain:

iω 〈δn↑(r)〉
ω = RI↑I↑(ω)ΨI↑I↑(r;ω). (82)

Entering the relaxation time τ↑ (which characterizes the processes of electron transfer with the spin
orientation ↑ in the system), the frequency dependence of the memory function is given as:

RI↑I↑(ω) =
(iω)1−ξ

1 + iωτ↑
, 0 < ξ 6 1. (83)

Then the equation (82) can be written as follows:

(1 + iωτ↑) iω 〈δn↑(r)〉
ω = (iω)1−ξ ΨI↑I↑(r;ω). (84)

Next, we use the Fourier transform to fractional derivatives of the functions:

L(0D
1−ξ
t f(t) : iω) = (iω)1−ξL(f(t) : iω), 0D

1−ξ
t f(t) =

1

Γ(ξ)

d

dt

∫ t

0

f(τ)

(t− τ)1−ξ
dτ (85)

is a fractional Riemann–Liouville derivative. The inverse transition to the time dependence in the
equation (84) gives a generalized diffusion equation of the Cattaneo type, taking into account the time
fractality:

τ↑
∂2

∂t2
〈δn↑(r)〉

t +
∂

∂t
〈δn↑(r)〉

t = 0D
1−ξ
t

∫

dr′
∂

∂r
· D̄I↑I↑(r, r

′) ·
∂

∂r′
〈δn↑(r

′)〉t. (86)

Equations (86) contain significant spatial inhomogeneity in D̄I↑I↑(r, r
′). If the spatial heterogeneity

is neglected: D̄I↑I↑(r, r
′) = D̄I↑I↑ δ(r − r′), then we get:

τ↑
∂2

∂t2
〈δn↑(r)〉

t +
∂

∂t
〈δn↑(r)〉

t =0 D
1−ξ
t D̄I↑I↑

∂2

∂r2
〈δn↑(r)〉

t (87)

is a Cattaneo-type diffusion equation with time fractality and constant electron diffusion coefficient
with the spin orientation in the magnetic field.
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8. Electro-magnetic diffusion relaxation processes

Modeling of subdiffusion processes based on the Cattaneo-type diffusion equations in fractional deriva-
tives for charge carriers was characterized by a corresponding relaxation time and diffusion coefficient.
However, such a model obviously does not take into account the complexity of relaxation electro-
magnetic diffusion processes, which are generally described by a system of equations (58)–(60). We
will consider the model taking into account a number of relaxation processes by modeling the functions
of memory (62)–(67), for which we have a relation with generalized coefficients:

WIjIl(r, r
′; t, t′) =

∂

∂r
·DIjIl(r, r

′; t, t′) ·
∂

∂r′
(88)

for electrons with the corresponding orientation of spins, magnetic diffusion and diffusion coefficients
describing cross-processes. Next, we accept the following approximations for generalized transfer coef-
ficients:

DIjIl(r, r
′; t, t′) ≈ WIjIl(t, t

′) D̄IjIl δ(r − r), (89)

where WIjIl(t, t
′) are memory functions in time, D̄IjIl are the corresponding constant diffusion coeffi-

cients, respectively, for electrons, magnetic diffusion, which in principle can be estimated from exper-
imental studies. Using approximation (89), the system of equations (58)–(60) in the frequency-wave
Fourier image is given as:

iω 〈δn↑(k)〉ω = −k2WI↑I↑(ω) D̄I↑I↑ 〈δn↑(k)〉ω

− k2 WI↑I↓(ω) D̄I↑I↓ 〈δn↓(k)〉ω − k2 WI↑Im̄(ω) D̄I↑Im̄ 〈δm̄(k)〉ω, (90)

iω 〈δn↓(k)〉ω = −k2WI↓I↑(ω) D̄I↓I↑ 〈δn↑(k)〉ω

− k2 WI↓I↓(ω) D̄I↓I↓ 〈δn↓(k)〉ω − k2 WI↓Im̄(ω) D̄I↓Im̄ 〈δm̄(k)〉ω, (91)

iω 〈δm̄(k)〉ω = iΩm̄m̄(k) 〈δm̄(k)〉ω − k2WIm̄I↑(ω) D̄Im̄I↑〈δn↑(k)〉ω

− k2 WIm̄I↓(ω) D̄Im̄I↓ 〈δn↓(k)〉ω − k2 WIm̄Im̄(ω) D̄Im̄Im̄ 〈δm̄(k)〉ω. (92)

We find the solutions of this system of equations. From (92) we find 〈δm̄(k)〉ω:

〈δm̄(k)〉ω = −k2Σ−1
Im̄Im̄

(k;ω)WIm̄I↑(ω)D̄Im̄I↑ 〈δn↑(k)〉ω

− k2 Σ−1
Im̄Im̄

(k;ω)WIm̄I↓(ω) D̄Im̄I↓ 〈δn↓(k)〉ω, (93)

where the function Σ−1
Im̄Im̄

(k;ω) is inverted to ΣIm̄Im̄(k;ω)

ΣIm̄Im̄(k;ω) = iω − iΩm̄m̄(k) +WIm̄Im̄(ω) D̄Im̄Im̄ . (94)

Next (93) is substituted in (90) and (91), respectively, the result is:

iω 〈δn↑(k)〉ω = −k2ΣI↑I↑(k;ω) 〈δn↑(k)〉ω − k2 ΣI↑I↓(k;ω) 〈δn↓(k)〉ω, (95)

iω 〈δn↓(k)〉ω = −k2ΣI↓I↑(k;ω) 〈δn↑(k)〉ω − k2 ΣI↓I↓(k;ω) 〈δn↓(k)〉ω, (96)

where

ΣI↑I↑(k;ω) = WI↑I↑(ω) D̄I↑I↑ − k2 WI↑Im̄(ω) D̄I↑Im̄ Σ−1
Im̄Im̄

(k;ω)WIm̄I↑(ω) D̄Im̄I↑ , (97)

ΣI↑I↓(k;ω) = WI↑I↓(ω) D̄I↑I↓ − k2 WI↑Im̄(ω) D̄I↑Im̄ Σ−1
Im̄Im̄

(k;ω)WIm̄I↓(ω) D̄Im̄I↓ , (98)

ΣI↓I↑(k;ω) = WI↓I↑(ω) D̄I↓I↑ − k2 WI↓Im̄(ω) D̄I↓Im̄ Σ−1
Im̄Im̄

(k;ω)WIm̄I↑(ω) D̄Im̄I↑ , (99)

ΣI↓I↓(k;ω) = WI↓I↓(ω) D̄I↓I↓ − k2 WI↓Im̄(ω) D̄I↓Im̄ Σ−1
Im̄Im̄

(k;ω)WIm̄I↓(ω)D̄Im̄I↓ . (100)

From the system of equations (95), (96) for 〈δn↑(k)〉ω we get the following equation:

iω 〈δn↑(k)〉ω + k2
(

ΣI↑I↑(k;ω)− k2 ΣI↑I↓(k;ω)
1

iω + k2 ΣI↓I↓(k;ω)
ΣI↓I↑(k;ω)

)

〈δn↑(k)〉ω = 0. (101)
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and as a result we come to the features of the frequency-wave spectrum:

iω + k2
(

ΣI↑I↑(k;ω)− k2ΣI↑I↓(k;ω)
1

iω + k2 ΣI↓I↓(k;ω)
ΣI↓I↑(k;ω)

)

= 0. (102)

calculation, which requires setting the frequency dependence of the memory time functions WIjIl(ω), by
introducing the appropriate relaxation times that characterize the electro-magnetic diffusion processes.

9. Conclusions

A model for describing the dipole-magnetic properties of superparamagnetics 〈β−CD〈FeSO4〉〉 encap-
sulated in a semiconductor layer is constructed. The model takes into account the interaction of matrix
charge carriers with iron d-electrons, the exchange magnetic interaction of conduction electrons and
localized electrons, as well as the dipole-dipole interaction of complexes in the layered GaSe structure.
The main parameters of the reduced description of current-carrying processes are determined tak-
ing into account magnetism in hybrid nanostructures 〈β − CD〈FeSO4〉〉. A nonequilibrium statistical
system operator is obtained as a functional of the parameters of the reduced description.

Generalized transfer equations (27)–(30) are obtained, which describe non-Markov processes of
current passage in layered nanostructures taking into account magnetic and polarization processes
under the influence of external and induced internal electromagnetic fields, which are reflected in the
right parts of the data. equations. The obtained transfer equations can describe both strong and
weakly nonequilibrium processes in strong and weak (or constant) electromagnetic fields, respectively.

In the case of weakly nonequilibrium processes, the magneto-diffusion transfer equations (58)–(60)
are determined for electrons in layered nanostructures. By solutions through integral equations, a
generalized equation of electron diffusion is determined with the spin orientation in the magnetic field.
The generalized diffusion equation (78) for electrons describes non-Markov spatially inhomogeneous
processes, ie memory effects that are associated with the characteristic relaxation times of electronic
(including tunneling) magnetic processes according to the behavior of transfer nuclei (70)–(77).

By modeling the memory function with the introduction of the characteristic relaxation time, a
generalized diffusion equation of the Cattaneo type is obtained, taking into account the time fractality
for electrons with the spin orientation in the magnetic field.

A generalized model is proposed that takes into account the complexity of relaxation electro-
magnetic diffusion processes for electrons in layered nanostructures. In the approximation (89), the
system of equations (58)–(60) was solved, which led to the calculation of the corresponding frequency-
wave spectrum of electro-magnetic diffusion processes in layered nanostructures.

[1] Chabecki P., Calus D., Ivashchyshyn F., Pidluzhna A., Hryhorchak O., Bordun I., Makarchuk O., Ki-
tyk A. V. Function Energy Accumulation Photo- and Magnetosensitive Hybridity in the GaSe-Based Hier-
archical Structures. Energies. 13 (17), 4321 (2020).

[2] Grygorchak I., Calus D., Pidluzhna A., Ivashchyshyn F., Hryhorchak O., Chabecki P., Shvets R. Thermo-
galvanic and local field effects in SiO2〈SmCl3〉 structure. Applied Nanoscience. 10 (12), 4725–4731 (2020).

[3] Klapchuk M. I., Ivashchyshyn F. O. Giant magnetoresistance effect in InSe 〈β−CD〈FeSO4〉〉 clatrate. Math-
ematical Modeling and Computing. 7 (2), 322–333 (2020).

[4] Grygorchak I. I., Kostrobiy P. P., Stasyuk I. V., et al. Fizychni protsesy ta yikh mikroskopichni modeli v
periodychnykh neorhanichno/orhanichnykh klatratakh. Lviv, Rastr-7 (2015), (in Ukrainian).

[5] Kostrobij P. P., Grygorchak I. I., Ivaschyshyn F. O., Markovych B. M., Viznovych O. V., Tokarchuk M. V.
Mathematical modeling of subdiffusion impedance in multilayer nanostructures. Mathematical Modeling
and Computing. 2 (2), 154–159 (2015).

[6] Kostrobij P., Grygorchak I., Ivashchyshyn F., Markovych B., Viznovych O., Tokarchuk M. Generalized Elec-
trodiffusion Equation with Fractality of Space–Time: Experiment and Theory. Journal of Physical Chem-
istry A. 122 (16), 4099–4110 (2018).

Mathematical Modeling and Computing, Vol. 8, No. 1, pp. 89–105 (2021)



Microscopic theory of the influence of dipole superparamagnetics (type 〈β − CD〈FeSO4〉〉) . . . 105

[7] Kostrobij P. P., Markovych B. M., Viznovych O. V., Tokarchuk M. V. Generalized transport equation with
nonlocality of space–time. Zubarev’s NSO method. Physica A: Statistical Mechanics and its Applications.
514, 63–70 (2019).

[8] Sibatov R. T., Uchaikin V. V. Fractional differential approach to dispersive transport in semiconductors.
Physics-Uspekhi. 52 (10), 1019–1043 (2009).

[9] Sibatov R. T. Drobno-differencial’naja teorija anomal’noj kinetiki nositelej zarjada v neuporjadochennyh
poluprovodnikovyh sistemah. Thesis for the Degree of Doctor of Sciences in Physics and mathematics.
Uljanovsk (2012), (in Russian).

[10] Rekhviashvili S. S., Mamchuev M. O., Mamchuev M. O. Model of diffusion-drift charge carrier transport in
layers with a fractal structure. Physics of the Solid State. 58 (4), 788–791 (2016).

[11] Rekhviashvili S. S., Alikhanov A. A. Simulation of drift-diffusion transport of charge carriers in semicon-
ductor layers with a fractal structure in an alternating electric field. Semiconductors. 51 (6), 755–759
(2017).

[12] Uchaikin V. V. Fractional Derivatives Method. Uljanovsk, Artishock-Press (2008), (in Russian).

[13] Klafter J., Lim S. C., Metzler R. Fractional dynamics: recent advances. New Jersey, World Scientific (2012).

[14] Zubarev D. N. Modern methods of the statistical theory of nonequilibrium processes. Journal of Soviet
Mathematics. 16 (6), 1509–1571 (1981).

[15] Kostrobij P. P., Tokarchuk M. V., Markovych B. M., Ihnatiuk V. V., Hnativ B. V. Reaktsiino-dyfuziini prot-
sesy v systemakh “metal–gaz”. Lviv, Lviv Polytechnic National University (2009), (in Ukrainian).

[16] Kostrobij P. P., Markovych B. M., Tokarchuk M. V. Generalized diffusion equation with nonlocality of
space-time. Memory function modelling. Condens. Matter Phys. 23 (2), 23003 (2020).

Мiкроскопiчна теорiя впливу дипольних суперпарамагнетикiв
(типу 〈β − CD〈FeSO4〉〉) на струмопроходження у

напiвпровiдникових шаруватих структурах (типу GaSe, InSe)
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Запропоновано статистичний пiдхiд опису процесiв переносу носiїв заряду у гiбрид-
них наноструктурах з врахуванням електромагнiтних полiв iз застосуванням методу
нерiвноважного статистичного оператора Зубарєва. Отримано узагальненi рiвняння
переносу, якi описують немарковськi процеси переносу заряду у системi з врахуван-
ням магнiтних та поляризацiйних процесiв пiд впливом зовнiшнiх та iндукованих
внутрiшнiх електромагнiтних полiв. Розглянуто слабо нерiвноважнi процеси пере-
носу заряду у наноструктурах та отримано нерiвноважний статистичний оператор,
за допомогою якого записано магнiто-дифузiйнi рiвняння переносу для електронiв у
шаруватих наноструктурах. Отримано узагальнене рiвняння дифузiї типу Кеттано у
часових дробових похiдних для електронiв з характерним часом релаксацiї та запро-
поновано узагальнену модель, що враховує складнiсть релаксацiйних електро-магнiто
дифузiйних процесiв для електронiв у шаруватих наноструктурах.

Ключовi слова: нерiвноважний статистичний оператор Зубарєва, рiвняння ди-

фузiї типу Кеттано, дробовi похiдниi.
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