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The stability conditions for mathematical models of carbon monoxide oxidation on the
surface of gold nanoparticles are investigated. The cases of reaction mechanisms of one-
step and step-by-step transformation of reagents are consecutively considered. Using the
stability analysis by Lyapunov method, it is shown that models which take into account
the possibility of structural changes of the catalyst surface can predict the occurrence of
oscillatory mode in the system as a result of Hopf instability.
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1. Introduction

Studies of catalytic carbon monoxide (CO) oxidation is one of the most important problems in modern
science [1]. On the one hand, this process is essential for environmental and industrial applications
such as automotive emissions control, air purification, carbon dioxide lasers, CO sensors etc. On the
other hand, it is one the simplest catalytic reaction and is often used as a model system in development
of new catalysts.

Mathematical modeling of CO oxidation reaction on the surfaces of heterogeneous catalysts became
the subject of many theoretical studies after the discovery of rate oscillations in this reaction on the
surface of platinum (Pt) group catalysts. However, Pt catalysts are expensive and temperatures at
which reaction of CO oxidation takes place are high (∼500K). These disadvantages led to the study
of new structural elements of the catalyst surface, in particular from the group of noble metals.

In the late 1980s, Haruta and co-workers first showed that small particles of gold (Au) can be active
catalysts for the low-temperature CO oxidation [3]. Initially, the high activity of gold-based catalysts
was considered to be caused by the type of composite substrate — the metal oxides (reducible: TiO2,
NiO, Fe2O3 or irreducible: Al2O3, MgAl2O4). However, after detailed investigations, it was found that
the very active catalysts were small gold nanoparticles of about 2-4 nm in size [4], dispersed on these
oxides.

The purpose of this work is to investigate the stability conditions for mathematical models of
CO catalytic oxidation on the surface of gold nanoparticles. A similar problem was solved for some
mathematical models of CO oxidation on the Pt-catalyst surface [5, 6], for which the stability regions
of reaction and conditions for Hopf [7] and Turing [8] instabilities to arise were investigated.

By analogy with Pt, we assume that oxidation reaction occurs according to the Langmuir-
Hinshelwood mechanism [9]. That is, interaction between the reactants is possible only in the adsorbed
layer, where there are free active sites of two different types (S1 and S2). The reaction scheme consists
of two elementary steps: the reversible molecular adsorption of CO and oxygen (O2) on the catalyst
surface:

CO + S1 CO·S1, (1)

O2 + S2 O2 · S2 (2)
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and the surface reaction between adsorbed CO and O2 molecules to form the reaction product carbon
dioxide (CO2)

2 (CO·S1) + O2 · S2 2CO2 + 2S1 + S2. (3)

Sometimes, instead of a concerted (one-step) reaction (3), a step-by-step transformation of reagents
is considered. First a surface reaction between adsorbed CO and O2 molecules occurs to form CO2

and the intermediate — adsorbed O atoms:

CO·S1 + O2 · S2 CO2 + O·S2 + S1, (4)

then adsorbed CO and O interact with each other:

CO·S1 + O·S2 CO2 + S1 + S2. (5)

It is considered that CO molecules adsorb only on the free active sites of the first type (S1), whereas
O2 and O — only on the active sites of the second type (S2).

It is known that reaction of catalytic CO oxidation can significantly influence the structure of the
catalyst surface. For platinum group metals, structural changes in the course of reaction (for example,
1×1→1×2 structural transition on Pt(110) [10]) lead to appearance of an oscillatory mode [2], when
the self-sustained (undamped) rate oscillations arise in a system without any external periodic forces
acting on it [11]. In some cases, such non-steady-state conditions may lead to higher reaction rate or
better average process performance [12].

On the surface of gold nanoparticles CO and oxygen can cause their restructuring [13]. At higher
CO pressures Au nanoparticles are faceted (the structure of “type 1”), whereas at lower CO pressures
they become rounded (the structure of “type 2”) (see [13]). Such reconstruction of the catalyst surface
may cause changes in its characteristics, especially with respect to the adsorption and desorption
properties.

In order to establish regularities of the influence of such changes on the course of reaction processes,
we consider mathematical models of catalytic CO oxidation on the surface of gold nanoparticles for
the cases of one-step (scheme (1)–(3)) and step-by-step (scheme (1)–(2), (4)–(5)) reactions. Using the
Lyapunov method [14], the stability analysis of solutions of the respective systems is carried out. It is
established that structural changes of the catalyst surface have a significant influence on the process
of CO oxidation, in particular the presence of rate oscillations.

2. Mathematical models

2.1. One-step reaction

First we consider a mathematical model of catalytic CO oxidation on the surface of gold nanoparticles
according to the reaction mechanism (1)–(3). The system of kinetic equations that describe the tem-
poral change of surface coverages of adsorbed CO (u) molecules on the sites of the first type S1 and
O2 (v) molecules on the sites of the second type S2 is proposed in [15] and has the following form:

du

dt
= PuIusu (1− u)− duu− 2ru2v, (6)

dv

dt
= PvIvsv (1− v)− dvv − ru2v. (7)

Here Pu, Pv are the partial pressures of CO and O2, respectively; Iu, Iv are the impingement rates; su,
sv are the sticking coefficients (probabilities); du, dv are the desorption rate coefficients; r is the rate
coefficient of reaction (3).
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By introducing a dimensionless time variable:

t̃ =
t

tc
, tc =

1

PuIu
(8)

we rewrite equations (6)–(7) in the dimensionless form:

du

dt̃
= su (1− u)− d̃uu− 2r̃u2v ≡ A (u, v) , (9)

dv

dt̃
= P̃vsv (1− v)− d̃vv − r̃u2v ≡ B (u, v) , (10)

where
P̃v =

Pv

Pu

Iv

Iu
, r̃ = tcr, d̃u,v = tcdu,v. (11)

System (9)–(10) can have steady-state solutions (us, vs) satisfying the system of algebraic equations:

A(us, vs) = 0, B(us, vs) = 0.

Note that (us, vs) must have physical values, in other words, they must satisfy constrains on the values
of surface coverages of adsorbed species:

0 6 us 6 1, 0 6 vs 6 1. (12)

The steady-state solutions of (9)–(10) can be easily found analytically (see [15]). But in [15] the
issue of system stability was not considered, therefore we analyze the stability of steady-state solutions
(us, vs) by the Lyapunov method.

Let δu(t̃), δv(t̃) be the time-dependent small deviations from the steady states (us, vs)

u(t̃) = us + δu(t̃), v(t̃) = vs + δv(t̃).

Then the linearized system (9)–(10) near (us, vs) looks as follows:

d

dt̃

∥

∥δu δv
∥

∥

T
= J ·

∥

∥δu δv
∥

∥

T
, (13)

where

J =

∥

∥

∥

∥

A′

u B′

v

A′

u B′

v

∥

∥

∥

∥

(14)

is the Jacobian matrix [17] for the system of functions (9)–(10), with all partial derivatives calculated
at a steady-state point (us, vs):

Au = −su − d̃u − 2r̃uv, A′

v = −2r̃u2,

B′

u = −2r̃uv, B′

v = −P̃vsv − d̃v − r̃u2.

We look for solutions (δu, δv) of system (13) proportional to exp(λt̃), where λ are the eigenvalues
of matrix J . Calculation of eigenvalues λ is reduced to solving the following quadratic equation:

λ2
− λ trJ + detJ = 0, (15)

where trJ , detJ are the trace and determinant of matrix J , respectively.
We know, that solutions (us, vs) are stable when Re(λ1,2) < 0. Since the discriminant of equa-

tion (15) is non-negative for any physical parameters of the model:

∆ = tr2 J − 4 detJ =
(

A′

u −B′

v

)2
+ 4A′

vB
′

u > 0,

Mathematical Modeling and Computing, Vol. 8, No. 1, pp. 116–124 (2021)



Stability of carbon monoxide oxidation process on gold nanoparticles 119

the roots

λ1,2 =
1

2

(

trJ ±

√

tr2 J − 4 detJ
)

are real and have negative values if
detJ > 0. (16)

We see, that for any physical values of model parameters (Pu,v, Iu,v, su,v, du,v, r) condition (16) is
never violated, therefore system (9)–(10) is always stable.

Now, in order to establish regularities of the influence of structural changes of the catalyst surface,
we add to mathematical model (6)–(7) the third equation. It describes the possibility of reconstruction
of the catalyst surface from the structure of “type 1” (faceted gold nanoparticles) to another structure of
“type 2” (rounded gold nanoparticles). For simplicity, we assume that this reconstruction is stimulated
only by the presence of adsorbed CO molecules on the surface (in general, it can also be caused by
adsorbed O2 molecules or other factors).

Let variable z denote the fraction of the catalyst surface in the structure of “type 1”. Then the
temporal change of z is determined by equation:

dz

dt
= kz [f (u) (1− z)− (1− f (u) z)] ,

or
dz

dt
= kz [f (u)− z] , (17)

where kz is the rate coefficient of structural transition; f(u) is a function, that takes on values in
interval [0, 1] and describes the probability of transition of the catalyst surface from one structure to
another.

Taking into account this structural transition, the sticking and desorption rate coefficients of carbon
monoxide and oxygen molecules in equations (6) and (7) are written as a linear combination of the
values for structures of “type 1” and “type 2” (by analogy with Pt [2, 16]):

sγ = sγ,1z + sγ,2 (1− z) , dγ = dγ,1z + dγ,2 (1− z) . (18)

Here sγ,1, dγ,1 (γ = u, v) are the sticking and desorption rate coefficients for the structure of “type 1”;
sγ,2, dγ,2 are the respective coefficients for the structure of “type 2”.

Equations (6)–(7), (17) are transformed into dimensionless form, using the substitution (8) and
dimensionless parameters (11):

du

dt̃
= [su,1z + su,2(1− z)] (1− u)−

[

d̃u,1z + d̃u,2(1− z)
]

u− 2r̃u2v ≡ F (u, v, z), (19)

dv

dt̃
= P̃v [sv,1z + sv,2(1− z)] (1− v)−

[

d̃v,1z + d̃v,2(1− z)
]

v − r̃u2v ≡ G(u, v, z), (20)

dz

dt̃
= k̃z [f(u)− z] ≡ H(u, z), (21)

where
k̃z = tckz, d̃γ,i = tcdγ,i, i = 1, 2. (22)

System (19)–(21) is a system of three nonlinear differential equations and can have steady-state
solutions (us, vs, zs), which satisfy the system of algebraic equations:

F (us, vs, zs) = 0, G(us, vs, zs) = 0, H(us, zs) = 0.

Solutions (us, vs, zs) can be found analytically:

zs = f(us), vs =
a− (a+ b)us

2r̃ (us)2
, (23)
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where us is the solution of equation

2r̃P̃vc(u
s)2 =

[

P̃vc+ d+ r̃ (us)2
]

[a− (a+ b)us] , (24)

with
a = f(us) (su,1 − su,2) + su,2, b = f(us)

(

d̃u,1 − d̃u,2
)

+ d̃u,2, (25)

c = f(us) (sv,1 − sv,2) + sv,2, d = f(us)
(

d̃v,1 − d̃v,2
)

+ d̃v,2. (26)

Further, we consider only the case when steady-state solutions (23) exist and satisfy conditions (12)
and constrain on the value of fraction of the catalyst surface in the structure of “type 1”:

0 6 zs 6 1. (27)

The problem of stability analysis of steady-state solutions (23) is reduced to finding the eigenvalues
of Jacobian matrix J1 for the system of functions (19)–(21):

J1 =

∥

∥

∥

∥

∥

∥

F ′

u F ′

v F ′

z

G′

u G′

v G′

z

H ′

u 0 H ′

z

∥

∥

∥

∥

∥

∥

(28)

or solving the cubic equation:

λ3
− λ2 trJ1 + λ

∑

16i<j63

det
(i,j),(i,j)

J1 − detJ1 = 0, (29)

where det
(i1...ik),(j1...jk)

J1 is the minor of order k of matrix J1, formed by elements located at the inter-

section of rows i1 . . . ik and columns j1 . . . jk.
Note that all partial derivatives in J1 are calculated at a steady-state point (us, vs, zs) and look as

follows:
F ′

u = −
(

su,1 + d̃u,1
)

z −
(

su,2 + d̃u,2
)

(1− z)− 4r̃uv,

F ′

v = −2r̃u2, F ′

z = (su,1 − su,2) (1− u)−
(

d̃u,1 − d̃u,2
)

u,

G′

u = −2r̃uv, G′

v = −
(

P̃vsv,1 + d̃v,1
)

z −
(

P̃vsv,2 + d̃v,2
)

(1− z)− r̃u2,

G′

z = P̃v (sv,1 − sv,2) (1− v)−
(

d̃v,1 − d̃v,2
)

v,

H ′

u = k̃zf
′(u), H ′

z = −k̃z.

Solutions (us, vs, zs) are stable when Re (λi) < 0, i = 1, 2, 3. According to the Routh–Hurwitz
criterion [17], for this it is necessary and sufficient that

detJ1 < 0, trJ1

∑

16i<j63

det
(i,j),(i,j)

J1 < detJ1. (30)

In order to investigate the conditions for appearance of rate oscillations in system (19)–(21) we
consider the possibility of Hopf instability [7] to exist in the model. It is a local dynamic instability
which causes the steady-state point to loose stability, and a limit cycle (the auto-oscillations) arises
in the system. In this case all eigenvalues of the Jacobian matrix J1 of the linearized system have
negative real parts except for a pair of imaginary conjugate nonzero eigenvalues.

In our case the conditions for Hopf instability to occur are as follows:

detJ1 < 0, trJ1

∑

16i<j63

det
(i,j),(i,j)

J1 = detJ1. (31)
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Therefore, unlike model (6)–(7), which does not take into account the possibility of structural
changes of the catalyst surface and remains stable for any physical parameters of the model, sys-
tem (19)–(21) is stable only when conditions (30) are satisfied. Moreover, for some model parameters
(see conditions (31)), an auto-oscillatory mode occurs in the system as a result of Hopf instability.
Under these conditions the phase trajectory should spiral into the closed curve — the limit cycle, while
the average adsorbate coverages u, v and the fraction of catalyst surface z should undergo periodic
oscillations. The amplitude and period of auto-oscillations are determined only by the properties of
the system itself.

2.2. Step-by-step transformation of reagents

Now we consider a mathematical model of catalytic CO oxidation when adsorption of reagents oc-
curs according to equations (1)–(2) and reaction between the adsorbed substances — according to
scheme (4)–(5). The corresponding system of kinetic equations for describing the temporal change of
surface coverages of adsorbed CO (u), O2 (v) and O (w) is proposed in [15]:

du

dt
= PuIusu(1− u)− duu− r1uv − r2uw, (32)

dv

dt
= PvIvsv(1− v − w)− dvv − r1uv, (33)

dw

dt
= r1uv − r2uw. (34)

Here r1, r2 are the rate coefficients of reactions (4) and (5), respectively.
We nondimensionalize system (32)–(34), using the substitution (8) and dimensionless parame-

ters (11):
du

dt̃
= su(1− u)− d̃uu− r̃1uv − r̃2uw ≡ C(u, v, w), (35)

dv

dt̃
= P̃vsv(1− v − w)− d̃vv − r̃1uv ≡ D(u, v, w), (36)

dw

dt̃
= r̃1uv − r̃2uw ≡ E(u, v, w), (37)

with
r̃1,2 = tcr1,2 (38)

System (35)–(37) can have steady-state solutions (us, vs, ws), which satisfy the system of algebraic
equations:

C(us, vs, ws) = 0, D(us, vs, ws) = 0, E(us, vs, ws) = 0,

and can be found analytically (see [15]). We consider the case when steady-state solutions (us, vs, ws)
exist and satisfy conditions (12) and constrain on the value of adsorbed O surface coverage:

0 6 ws
6 1. (39)

Again we analyze the stability of steady-state solutions (us, vs, ws) and search for the eigenvalues
of Jacobian matrix J2 for the system of functions (35)–(37):

J2 =

∥

∥

∥

∥

∥

∥

C ′

u D′

v E′

w

C ′

u D′

v D′

w

C ′

u D′

v E′

w

∥

∥

∥

∥

∥

∥

, (40)

where all partial derivatives are calculated at a steady-state point (us, vs, ws):
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Cu = −su − d̃u − r̃1v − r̃2w, C ′

v = −r̃1u, C ′

w = −r̃2u,

D′

u = −r̃1v, D′

v = −P̃vsv − d̃v − r̃1u, D′

w = −P̃vsv,

E′

u = r̃1v − r̃2w, E′

v = r̃1u, E′

w = −r̃2u.

Since the eigenvalue equation for matrix J2 has the form of equation (29), the steady-state solu-
tions (us, vs, ws) are stable if and only if conditions similar to (30) are satisfied. It can be seen that
these conditions are true for any physical values of model parameters (Pu,v, Iu,v, su,v, du,v, r1,2), so
system (35)–(37) is always stable.

Now we supplement system (35)–(37) with equation (17), which describes the possibility of catalyst
surface structure reconstruction, and represent su,v and du,v as (18). After nondimensionalization using
substitution (8) and dimensionless parameters (11), (22) and (38), this new system can be rewritten
as follows:

du

dt̃
= [su,1z + su,2(1− z)] (1− u)−

[

d̃u,1z + d̃u,2(1− z)
]

u− r̃1uv − r̃2uw ≡ K(u, v, w, z), (41)

dv

dt̃
= P̃v [sv,1z + sv,2(1− z)] (1 − v − w)−

[

d̃v,1z + d̃v,2(1− z)
]

v − r̃1uv ≡ L(u, v, w, z), (42)

dw

dt̃
= r̃1uv − r̃2uw ≡ M(u, v, w), (43)

dz

dt̃
= k̃z [f(u)− z] ≡ H(u, z). (44)

System (41)–(44) can have steady-state solutions (us, vs, ws, zs), which satisfy the system of alge-
braic equations:

K(us, vs, ws, zs) = 0, L(us, vs, ws, zs) = 0, M(us, vs, ws) = 0, H(us, zs) = 0,

namely:

zs = f(us), ws =
r̃1

r̃2
vs, vs =

a− (a+ b)us

2r̃1us
, (45)

where us is the solution of equation

2r̃1P̃vcu
s =

[

P̃vc

(

1 +
r̃1

r̃2

)

+ d+ r̃1u
s

]

[a− (a+ b)us] , (46)

with values a, b, c, d determined by (25)–(26). Again we consider only the case when steady-state
solutions (45) exist and satisfy constrains (12), (27) and (39).

The problem of stability analysis of steady-state solutions (45) is reduced to finding the eigenvalues
of Jacobian matrix J3 for the system of functions (41)–(44):

J3 =

∥

∥

∥

∥

∥

∥

∥

∥

K ′

u K ′

v K ′

w F ′

z

L′

u L′

v L′

w G′

z

M ′

u M ′

v M ′

w 0
H ′

u 0 0 H ′

z

∥

∥

∥

∥

∥

∥

∥

∥

, (47)

or solving the following 4th degree equation:

λ4
− λ3 trJ3 + λ2

∑

16i<j64

det
(i,j),(i,j)

J3 − λ
∑

16i<j<k64

det
(i,j,k),(i,j,k)

J3 + detJ3 = 0.

Elements of the Jacobian matrix J3 are calculated at a point (us, vs, ws, zs) and have the form:

K ′

u = −
(

su,1 + d̃u,1
)

z −
(

su,2 + d̃u,2
)

(1 − z)− r̃1v − r̃2w,

K ′

v = −r̃1u, K ′

w = −r̃2u, K ′

z =
(

su,1 − su,2
)

(1− u)−
(

d̃u,1 − d̃u,2
)

u,
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L′

u = −r̃1v, L′

w = −P̃v

[

sv,1z + sv,2(1− z)
]

,

L′

v = −
(

P̃vsv,1 + d̃v,1
)

z −
(

P̃vsv,2 + d̃v,2
)

(1− z)− r̃1u,

L′

z = P̃v (sv,1 − sv,2) (1− v − w)−
(

d̃v,1 − d̃v,2
)

v,

M ′

u = r̃1v − r̃2w, M ′

v = r̃1u, M ′

w = −r̃2u,

H ′

u = k̃zf
′(u), H ′

z = −k̃z.

We use the Routh–Hurwitz criterion to analyze the necessary and sufficient conditions for the
eigenvalues λi, i = 1, 2, 3, 4 of matrix J3 to have negative real parts. In our case, system (41)–(44) is
stable if and only if the following conditions are satisfied:

detJ3 > 0, ∆1 > 0, detJ3 tr
2
J3 < ∆1

∑

16i<j<k64

det
(i,j,k),(i,j,k)

J3, (48)

where
∆1 =

∑

16i<j<k64

det
(i,j,k),(i,j,k)

J3 − trJ3

∑

16i<j64

det
(i,j),(i,j)

J3.

The necessary and sufficient conditions for Hopf instability to occur in the system are as follows:

detJ3 > 0, ∆1 > 0, detJ3 tr
2
J3 = ∆1

∑

16i<j<k64

det
(i,j,k),(i,j,k)

J3. (49)

Thus, as in the previous case, taking into account the possibility of reconstruction of the catalyst
surface influences the stability region of a system. Unlike the model (35)–(37), proposed in [15], which
does not take into account the possibility of structural changes, system (41)–(44) becomes unstable
when at least one of conditions (48) is violated. In addition, if conditions (49) are satisfied, periodic
rate oscillations (temporal variations of the surface coverages of the species involved in the reaction)
may occur in the system as a result of Hopf instability.

3. Conclusions

In present paper the stability conditions for mathematical models of carbon monoxide oxidation on
the surface of gold nanoparticles are investigated. The cases of reaction mechanisms of one-step
and step-by-step transformation of regents are consecutively considered. Using the stability analysis
by Lyapunov method, it is shown that models which take into account the possibility of structural
changes of the catalyst surface can predict occurrence of oscillatory mode in a system (as a result of
Hopf instability). Whereas the solutions of systems which don’t take such changes into account are
stable under any physical values of model parameters, so no bifurcations, i.e. qualitative changes in
the dynamic behavior of the system, can be observed.

The obtained stability conditions (30) and (48) (or conditions (31) and (49) for Hopf instability to
arise in the system) depend on the experimental values of a number of parameters (Iu,v, su,1,2, sv,1,2,
du,1,2, dv,1,2, r1,2), as well as on the form of a model function f(u). Unfortunately, not all of these
parameters are experimentally defined, so constructing a theoretical stability region of parameter space
(as well as the region of an oscillatory mode of reaction) to compare with experimental data for specific
nanoparticles is a difficult task that needs further investigation.
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Стiйкiсть процесу окиснення монооксиду вуглецю на
наночастинках золота

Костробiй П. П., Рижа I. А.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Дослiджено умови стiйкостi математичних моделей окиснення монооксиду вуглецю
на поверхнi наночастинок золота. Послiдовно розглянуто випадки реакцiйних ме-
ханiзмiв одноетапного та поетапного перетворення реагентiв. За допомогою аналiзу
стiйкостi методом Ляпунова показано, що моделi, якi враховують можливiсть струк-
турних змiн поверхнi каталiзатора, дозволяють змоделювати виникнення автоколи-
вань у системi, якi є результатом нестiйкостi Хопфа.

Ключовi слова: реакцiя каталiтичоного окиснення, моделювання оксинення СО,

наночастинки золота.
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