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The component GARCH (CGARCH) is suitable to better capture the short and long term
of the volatility dynamic. Nevertheless, the parameter space constituted by the constraints
of the non-negativity of the conditional variance, stationary and existence of moments, is
only ex-post defined via the GARCH representation of the CGARCH. This is due to the
lack of a general method to determine a priori the relaxed constraints of non-negativity of
the CGARCH(N) conditional variance for any N > 1. In this paper, a CGARCH param-
eter space constructed from the GARCH(1,1) component parameter spaces is provided a
priori to identifying its GARCH form. Such a space fulfils the relaxed constraints of the
CGARCH conditional variance non-negativity to be pre-estimated ensuring the existence
of a QML estimation in the sense of the stochastic approximation algorithm. Simulation
experiment as well as empirical application to the S&P500 index are presented and both
show the performance of the proposed method.
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1. Introduction

One of the stylized facts common to the financial return series which is related to the time series
dependencies in volatility is that returns show a little serial correlation while the squared returns
are highly serially correlated. The introduction of the ARCH model [1] generalized to the GARCH
model [2] allowed to account this feature. A process εt is called GARCH(p, q) if it satisfies :

εt = σtηt, ηt ∼ iid(0, 1), (1)

σ2t = ω +

p∑

i=1

αiε
2
t−i +

q∑

j=1

βjσ
2
t−j , t ∈ Z (2)

with ω > 0, αi > 0 for i = 1, . . . , p and βj > 0 for j = 1, . . . , q.
In particular, one has the autocorrelation function for the GARCH(1,1) process at lag k, when the

fourth moment exists [3], as follows:

ρk =

(
α1 +

α2
1β1

1− 2α1β1 − β21

)
(α1 + β1)

k−1. (3)

Which is approximately given [4] by

ρk ≈
(
α1 +

1

3
β1

)
(α1 + β1)

k−1.
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Nevertheless, it is clear that the autocorrelation function still decreases exponentially which is in
contrast to the long memory property that have been pointed out in several empirical studies. Indeed,
it has been revealed that the sample autocorrelation function of the S&P500 absolute returns decreases
very fast at the beginning, and then decreases very slowly and remains significantly positive [5], which
is different from an exponentially decreasing function. Works of Andersen and Bollerslev [6], Andersen
et al. [7], Bollerslev and Wright [8], Karanasos [9] are among others that empirically highlighted the
presence of the long memory property. Ding et al. [5], Ding and Granger [4] claim that a such empirical
behaviour reveals the existence of different components of volatility dominating different periods. Some
components of volatility can have a very significant effect in the short term, but fall very fast. Others
may have a relatively smaller short term effect, but last for a long time. In this sense, Ding and
Granger [4] introduce the CGARCH (Component GARCH) model as a new specification of volatility
by decomposing it into several GARCH component specifications, allowing some to capture the long-
term dynamics of volatility, and others to capture its short-term fluctuations.

Thus, it is said that εt is a CGARCH(N) process in the sense of Ding and Granger [4] if it verifies:

εt = σtηt, ηt ∼ iid(0, 1),

σ2t =

N∑

i=1

wiσ
2
i,t,

N∑

i=1

wi = 1,

σ2i,t = ωi + αiε
2
t−1 + βiσ

2
i,t−1, i = 1, . . . , N. (4)

Following the specification (4), all the statistical properties of the GARCH model hold for the
CGARCH because indeed, any CGARCH(N) composed of N GARCH(1,1), is expressed as a re-
stricted GARCH(N,N). In this sense, Karanasos [9] has managed to make explicit the specification
GARCH(N,N) of a CGARCH(N) composed of a IGARCH(1,1) and (N−1) GARCH(1,1) (Lemma 3.1
in [9]).

Let us focus on the non-negativity constraints of the CGARCH conditional variance. So, we consider
the CGARCH model of Ding and Granger [4] in the unweighted form used by Maheu [10], that is

εt =

(
N∑

i=1

σ2i,t

) 1

2

ηt = σtηt, ηt ∼ iidN(0, 1),

σ2i,t = ωi + αiε
2
t−1 + βiσ

2
i,t−1, i = 1, . . . , N. (5)

Obviously, non-negativity constraints of σ2t are necessary to be imposed. They are generally iden-
tified from the GARCH(N,N) specification associated with CGARCH(N). For instance, for N = 2,
the CGARCH(2) is expressed as a GARCH(2,2) as follows

σ2t = a0 + a1ε
2
t−1 + a2ε

2
t−2 + b1σ

2
t−1 + b2σ

2
t−2,

where a0 = ω1(1−β2)+ω2(1−β1), a1 = (α1+α2), a2 = −(α1β2+α2β1), b1 = β1+β2 and b2 = −β1β2.
Thus, to keep σ2t > 0, it is sufficient in the sense of Bollerslev [2] that the CGARCH parameters

verify a0 > 0 and ai > 0 (resp. bj > 0) for i = 1, 2 (resp. j = 1, 2). These constraints can be relaxed
in the sense of Nelson and Cao [10] to obtain the following inequality set [11]

0 < α2 + β2 < α1 + β1 < 1, α1 < β2, 0 < α1, 0 < α2, 0 < ω1 and 0 < ω2,

which defines, in addition to the conditions of stationary and existence of moments, the finder parameter
space of a QML estimation.

Now, for N = 3, one derives the GARCH(3,3) specification arising from the CGARCH(3) model,
that is

σ2t = a0 + a1ε
2
t−1 + a2ε

2
t−2 + a3ε

2
t−3 + b1σ

2
t−1 + b2σ

2
t−2 + b3σ

2
t−3,

where a0 = ω1(1−β2−β3−β2β3)+ω2(1−β1−β3−β1β3)+ω3(1−β1−β2−β1β2), a1 = (α1+α2+α3),
a2 = −α1(β2 + β3)−α2(β1 + β3)−α3(β1 + β2), a3 = −α1β2β3 − α2β1β3 − α3β1β2, b1 = β1 + β2 + β3,
b2 = −β1β2 − β2β3 − β1β3, and b3 = −β1β2β3.

Mathematical Modeling and Computing, Vol. 8, No. 3, pp. 379–390 (2021)



Quasi-maximum likelihood estimation of the Component-GARCH model using . . . 381

Contrary to the CGARCH(2), the relaxation of constraints on the CGARCH(N) parameters re-
sulting from the GARCH(N,N) specification for N > 3 is not obvious even in the sense of Nelson and
Cao [10] which does not provide an explicit formulation of these constraints for GARCHs of orders
p, q > 3. Although the general form of the GARCH model associated with a given CGARCH model
had been established by Karanasos [9], the relaxed formulation of the conditions of non-negativity of
σ2t for any N > 1 remains an open question. Consequently, the determination of a suitable parameter
space for the QML estimation, is only possible ex-post via its GARCH representation. Thus, the
pre-estimation of σ2t is only ex-post feasible in order to construct the quasi-likelihood.

Settar et al. [12] put forward a new approach to deal with the non-negativity of the conditional
variance generated by the GARCH(1,1) model without any prior constraints on the parameters except
for those of weak stationary and the existence of moments. To this aim, a constrained Kalman filter
via a state space representation is implemented to predict the conditional variance which is used to
estimate the quasi-likelihood function. GARCH parameters are subsequently estimated by the quasi-
maximum likelihood using the simultaneous perturbation stochastic approximation (SPSA) [13–15].
This method is called robust estimation of the conditional variance and the parameter estimation is
denoted QCKSA. Besides, the use of such kind of optimization algorithm is due to the randomness
of the quasi-likelihood construction. But his relevance goes beyond that as its performance does not
depend on the number of parameters. In what therefore context does the method proposed in Settar
et al. [12] overlap with the estimation of the CGARCH model? Indeed, it is interesting to note that

(i) The CGARCH belongs foremost to the GARCH family being a restricted GARCH(N,N) whose
parameters are given according to the parameters of the N GARCH(1,1) components [4, 9].
Hence the QCKSA method is as valid for the estimation of the CGARCH as the GARCH.

(ii) As claimed previously, the CGARCH is not only subject to the non-negativity constraints of
its parameters ensuring the positivity of its conditional variance [2], but these constraints can
be ex-post relaxed in the sense of Nelson and Cao [10] after the derivation of its GARCH
representation. This shows the usefulness of the robust estimation of the conditional variance
proposed by Settar et al. [12], by imposing directly the non-negativity of the conditional variance
without constraining the model parameters a priori.

(iii) It is well known that the more the conditional variance of the CGARCH is decomposed into
more volatilities, the more significant the model is by better capturing the volatility dynamics.
This consequently leads to a higher number of parameters. Hence the interest of the SPSA
algorithm in the estimation of the CGARCH independently of its dimension.

Thus, within the framework of the GARCH estimation (i), given on the one hand the eventual
high order of the CGARCH resulting from (iii) and the requirement to identify the constraints on the
parameters relaxing the CGARCH as mentioned in (ii) on the other hand, the prior determination of
the parameter space ensuring the convergence of the SPSA algorithm applied to the CGARCH may
be flexible so as to avoid the ex-post identification of the parameter space resulting from the GARCH
specification of the CGARCH model. In this vein, we show in this paper that the construction of such
a space is always feasible as the product of the parameter spaces of each GARCH(1,1) component.

This paper is organized as follows. The next section reviews the QCKSA approach steps. Section 3
provides results of convergence analyses of the QCKSA algorithm applied to the CGARCH model (5).
Section 4 examines the performance of our method via Monte Carlo experiment. Further, empirical
application to the S&P500 return series is presented in Section 5. Finally, Section 6 concludes.

2. Preliminary

Consider the i-th GARCH(1,1) specification associated with the conditional variance component σ2i,t,
i = 1, . . . , N . Thus, we outline succinctly the steps of the QML estimation of the i-th GARCH(1,1)
parameter vector θi = t(ωi, αi, βi) ∈ Θi ⊂ R

+∗ × R
+2 based on the the robust estimation of the

conditional variance and the SPSA algorithm [12]. Henceforth, we respectively denote σ̂2i,t : Θi → R
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and σ̃2i,t : Θi → R
+∗ the conditional variance predicted by the Kalman filter and its robust pre-

estimation, of unknown parameter θi.
Conditions of the weak stationary and the existence of the fourth moment that define Θi are

respectively given by

αi + βi < 1, (6)

β2i + 2αiβi + 3α2
i < 1. (7)

Under these assumptions we pre-estimate σ2i,t using the Kalman filter via the following state space
representation:

σ2i,t = ωi + (αi + βi)σ
2
i,t−1 + αiνi,t−1,

ε2t = σ2i,t + νi,t,

where νi,t = ε2t − σ2i,t = ε2t − E(ε2t |ε2t−1, . . . , ε
2
1) is by definition the linear innovation of the i-th

GARCH(1,1) since from the specification (5), σ2i,t is the forecast of ε2t based on its own lagged values.
Then, under the initial conditions:

σ̂2i,0|0 = E(σ2i,0) =
ωi

1− αi − βi
,

and

P0|0 = Var(σ2i,0) =
2ω2

i α
2
i

(1− αi − βi)2(1 − β2i − 2αiβi − 3α2
i )
.

We get the Kalman filter equations allowing to predict in a first step σ2i,t by σ̂2
i,t|t−1

, that are

σ̂2i,t|t−1
(θi) = ωi + (αi + βi)σ̂

2
i,t−1|t−1

(θi), (8)

Pt|t−1(θi) = (αi + βi)
2Pt−1|t−1(θi) + α2

i ν(θi), (9)

Kt(θi) = Pt|t−1(θi)(Pt|t−1(θi) + ν(θi))
−1, (10)

σ̂2i,t|t(θi) = σ̂2i,t|t−1(θi) +Kt(θi)(ε
2
t − σ̂2i,t|t−1(θi)), (11)

Pt|t(θi) = (1−Kt(θi))Pt|t−1(θi). (12)

In a second step, we apply the density truncation algorithm 1 under the non-negativity constraint
1

N1−τ
6 σ2t 6 N1−τ which depends on a threshold N1−τ given for a confidence level 1 − τ and for any

t = 1, . . . , n, as

1− τ = P

{
1

N1−τ
6 σ2t 6 N1−τ

}
(13)

One obtains a non-negative robust estimate of σ2i,t(θi), namely σ̃2i,t(θi) given by

σ̃2i,t =
√
Pt|t−1 µΣ + σ̂2i,t|t−1

. (14)

Then, using the SPSA algorithm 2 for p = q = 1 (see also Allal and Benmoumen [13] for the
standard GARCH(1,1)), a QCKSA estimate of θi ∈ Θi is given by

θ̂i = arg min
θi∈Θi

l̂i,n(θi),

where

l̂i,n(θi) =
1

n

n∑

t=1

ε2t
σ̃2i,t (θi)

+ log
(
σ̃2i,t(θi)

)
(15)

and
Θi =

{
θi ∈ R

3/ ωi > 0, αi + βi < 1, β2i + 2αiβi + 3α2
i < 1

}
.

Numerically, θ̂i is obtained as the solution of the recursion equation given in (2) by

θ̂k+1 = θ̂k − akĝ(θ̂k). (16)
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Algorithm 1 Constrained Kalman filtering by Pdf truncation

Require: τ = 0.5%, Z0.995 = 2.575: The (1− τ)th quantile of the standard Gaussian distribution;
1: for t = 1, . . . , n
2: σ2

t|t−1 ∼ N(σ̂2
t|t−1, Pt|t−1);

3: Σt =
σ2
t|t−1 − σ̂2

t|t−1√
Pt|t−1

∼ N(0, 1);

4: N1−τ =
√
Pt|t−1 Z0.995 + σ̂2

t|t−1;

5: lt =
1−N1−τ σ̂

2
t|t−1

N1−τ

√
Pt|t−1

and ut =
N1−τ − σ̂2

t|t−1√
Pt|t−1

;

6: f̃(x) =

√
2√

π
[
erf(ut/

√
2)− erf(lt/

√
2)
] exp

(
−x2/2

)
1[lt,ut] (x), f̃ : The Gaussian truncated density of Σt

normalized between lt and ut. erf(.): the truncation error function
7: µΣ = E

f̃
(Σt);

8: σ̃2
t|t−1 =

√
Pt|t−1 µΣ + σ̂2

t|t−1.

Algorithm 2 Simultaneous Perturbation Stochastic Approximation

Require: (a, c, λ) = (0.16, 0.2, 0.602) and A = I/10, I: number of iterations;
1: initialization: θ0 ∈ Θ1;
2: for k = 1, . . . , I
3: ak = a(A+ k + 1)−λ;

4: {∆k,l}l ∼ iidBer

(
±1,

1

2

)
, ∆k = t (∆k,1, . . . ,∆k,p+q+1) ∈ R

p+q+1;

5: if θk = t(ω1,k, α1,k, β1,k) ∈ Θ1 then

6: {δ−k ,δ+k } ∼ iidU [0, 1];

7: y+k (θ̂k) = l̂i,n(θ̂k + c∆k) + δ+k and y−k (θ̂k) = l̂i,n(θ̂k − c∆k) + δ−k ;

8: ĝ(θ̂k) =
y+k (θ̂k)− y−k (θ̂k)

2c
t
(
∆−1

k,1, . . . ,∆
−1
k,p+q+1

)
;

9: θ̂k+1 = θ̂k − akĝ(θ̂k);

10: if ‖θ̂k+1 − θ̂k‖ > ε then

11: k = k + 1;
12: else

13: Return θ̂k;
14: else

15: θ̂k = θ̂k−1;

3. Sketch of convergence

The purpose of this section is to prove the existence of a QML estimate of the CGARCH(N) parameters
by specifying a parameter space providing the convergence of the SPSA algorithm. Before that, we
demonstrate such convergence for the i-th GARCH(1,1), i = 1, . . . , N .

3.1. GARCH(1,1) model

In order to analyse the convergence of the SPSA algorithm applied to the GARCH(1,1), we refer to
the assumptions (5.1)–(5.6) [16].

First, we note that the assumptions (5.2)–(5.4) are satisfied by the choices of ak, ∆k and δk made
respectively at steps 3, 4 and 6 ( [16], p. 45). Assumption (5.5) can be practically satisfied through
ex-post checks made in step 5 to avoid the divergence of the sequence of iterations (θk) in cases of
non-stationary or non-existence of moments. Returning to the assumption (5.1), an idea that allows
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to satisfy it is to extract from Θi the smallest compact (bounded and closed subset of Θi) over which
l̂i,n is smooth in the sense of (5.1). Thus, we need to assume that ωi is bounded, i.e. η 6 ωi 6 ωi for
some η > 0 and ωi > 0.

Therefore, we consider the subset Θi,η ⊂ Θi defined by

Θi,η =
{
θi ∈ R

3/ η 6 ωi 6 ωi, αi + βi 6 1− η, β2i + 2αiβi + 3α2
i 6 1− η

}
.

It follows that Θi,η is compact since it is both closed as a union of closed intervals of R3, and is bounded
since for any θi ∈ Θi,η, 0 < ωi 6 ωi, 0 < αi < 1 et 0 < βi < 1. Moreover, Θi,η → Θi as η → 0+.

Lemma 1. For all η > 0, l̂i,n is smooth over Θi,η in the sense of (5.1).

Proof. Let η > 0 and let’s respectively denote by φt, ψt and ν the functions defined over Θi,η, and for
any t ∈ N

∗ by
φt(θi) = σ̂2i,t|t−1

(θi), ψt(θi) = Pt|t−1(θi) and ν(θi) = Eνi,t,

where [2]

ν(θi) =
2ω2

i (1 + αi + βi)

(1− αi − βi)
(
1− 3α2

i − β2i − 2αiβi
) . (17)

From (8), (10) and (11), one easily obtains that

φt(θi) = ωi +
(αi + βi)

(
ν(θi)φt−1(θi) + ψt−1(θi)ε

2
t−1

)

ψt−1(θi) + ν(θi)
. (18)

Likewise, it is deduced from (9), (10) and (12) that

ψt(θi) =

[
(αi + βi)

2 ψt−1(θi)

ψt−1(θi) + ν(θi)
+ α2

i

]
ν(θi). (19)

First, we prove by mathematical induction that

ψt ∈ C∞(Θi,η), ∀ t ∈ N
∗. (20)

Indeed, for t = 1, ψ1 ∈ C∞(Θi,η) is a function of P1|0 being, according to (9), a function of P0|0 ∈
C∞(Θi,η) given (6) and (7).

Now assume that ψt ∈ C∞(Θi,η). Then, under (6) and (7),

ν ∈ C∞(Θi,η). (21)

Since
ψt(θi) + ν(θi) > 0, ∀ θi ∈ Θi,η. (22)

Then
ψt+1 ∈ C∞(Θi,η).

Hence the result (20).
Now, let’s show by mathematical induction that

φt ∈ C∞(Θi,η) ∀ t ∈ N
∗. (23)

Indeed, for t = 1, φ1 ∈ C∞(Θi,η) is as a function of σ̂2
i,1|0 being according to (8), a function of

σ̂2
i,0|0 ∈ C∞(Θi,η) given (6).

Assuming that φt ∈ C∞(Θη), given (20), (21) and (22), one can deduce that φt+1 ∈ C∞(Θi,η). From
which results (23).

Mathematical Modeling and Computing, Vol. 8, No. 3, pp. 379–390 (2021)
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Therefore, according to (14), it follows the next

σ̃2i,t|t−1
∈ C∞(Θi,η). (24)

By deduction, given (15) the next is true

l̂i,n ∈ C∞(Θi,η).

Since Θi,η is a compact, then l̂i,n is quite smooth over Θi,η in the sense of (5.1). �

Based on the above, the following proposition can be formulated ensuring the almost sure conver-
gence of the recursive equation (16).

Proposition 1. Let H be the set of local minima of l̂i,n satisfying (5.6). Then for all η > 0, there
is c > 0 such as for all c ∈ ]0, c],

θi → Hη a.s.,

where Hη is a H-neighbour given by

Hη = {θi ∈ Θi,η/ ‖θi − θ∗i ‖ < η, θ∗i ∈ H} .

Proof. Theorem 5.3 in [16] is applied to l̂i,n by checking the assumptions (5.1)–(5.5). Indeed, l̂i,n
satisfies the assumption (5.1) according to the lemma (1). Further, the assumptions (5.2)–(5.5) are
verified by the choice of the sequences ak, ∆k and δ±k made previously ( [16], p. 45). Thus, assuming
(5.6), the claim follows. �

3.2. CGARCH(N) model, N > 1.

Now, the existence of a QCKSA estimate of each GARCH(1,1) parameter composing the CGARCH(N)
is proved over Θi,η for η > 0 and i = 1, . . . , N . In the sequel, the quasi-log likelihood of the

CGARCH(N) is maximized according to the parameter space Θ̃η =
∏N

i=1
Θi,η, η > 0.

Since the quasi-log likelihood is given for all θ = t(ω1, α1, β1, . . . , ωi, αi, βi, . . . , ωN , αN , βN ) ∈ Θ̃η

by

L̂n(θ) = −n
2
log(2π)− n

2

(
1

n

n∑

t=1

ε2t
σ̃2
t|t−1

(θ)
+ log

(
σ̃2t|t−1

(θ)
))

.

Then, maximizing L̂n means in other words minimizing the criterion l̂n given by

l̂n(θ) =
1

n

n∑

t=1

ε2t
σ̂2t (θ)

+ log(σ̂2t (θ)), (25)

where σ̂2t is the conditional variance estimated for any θ ∈ Θ̃η by

σ̂2t (θ) =

N∑

i=1

σ̃2i,t(θi). (26)

By construction σ̂2t is non-negative one so that l̂n is well defined Θ̃η.

Remark 1. (26) is in line with our approach based on the estimation of CGARCH model with-
out the need to its GARCH representation, because otherwise the pre-estimation of σ2i,t for the

GARCH(1,1) [12] remains applicable to such a representation to pre-estimate σ̂2t , which does not
correspond to the aim of our approach. Hence, we don’t have to apply the algorithm 1 but we exploit
directly the algorithm 2 to minimize l̂n with respect to θ = t(ω1, α1, β1, . . . , ωi, αi, βi, . . . , ωN , αN , βN ),
by substituting Θ1 by Θ̃ for some η > 0 and setting p = q = N as described by the following algorithm.
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Algorithm 3 QCKSA

1: for i = 1, . . . , N
2: Apply the algorithm 1 to compute the constrained conditional variances σ̃2

i,t;

3: Apply the algorithm 2 to l̂i,n to obtain the SPSA-estimation θ̂i = arg min
θi∈Θi,η

l̂i,n(θi) ;

4: for t = 1, . . . , n
5: σ̂2

t (θ) =
∑N

i=1 σ̃
2
i,t(θ̂i);

6: Apply the algorithm 2 to l̂n to obtain the estimate θ̂ = arg min
θ∈Θ̃η

l̂n(θ).

The following Lemma provides the smoothness of l̂n over Θ̃η which verifies (5.1).

Lemma 2. For all η > 0, l̂n is smooth over Θ̃η in the sense of (5.1).

Proof. Let η > 0. It follows from (24) and (26) that σ̂2t ∈ C∞(Θ̃η) as a sum of functions that belong

to C∞ class over the portions of Θ̃η.

Therefore, given (25), one can obtain that l̂n ∈ C∞(Θ̃η). Moreover, Θ̃η is a compact as a product
of the (Θi,η)i=1,...,N compacts. Hence the result. �

The following proposal leads to minimize locally l̂n over Θ̃η.

Proposition 2. Let L be the set of local minima of l̂n verifying (5.6). Then, for any η > 0, there is
c′ > 0 such that for any c ∈ ]0, c′],

θ → Lη a.s.,

where Lη is a η-neighbour of L given by

Lη =
{
θ ∈ Θ̃η/ ‖θ − θ∗‖ < η, θ∗ ∈ L

}
.

Proof. Assuming (5.6), it is reasonable to apply this time Theorem 5.3 in [16] to l̂n since the latter
verifies (5.1) according to the lemma (2) and (5.2)–(5.5) are satisfied by the choice of the sequences
ak, ∆k and δ±k made previously. Hence the result. �

Remark 2. θ∗ still possesses the asymptotic properties of a quasi-maximum likelihood estimate under
the assumptions A1–A6 given in Francq and Zakoian ( [17], Chapter 7).

4. Simulation experiment

Our aim in this section is to check through a Monte Carlo experiment that the proposed algorithms
improve the estimations obtained by quasi-maximum likelihood [4] for a large size of observations.

Let’s consider the CGARCH(2) model:

εt =
(
σ21,t + σ22,t

) 1

2 ηt = σtηt, ηt ∼ iidN(0, 1), (27)

σ21,t = 0.005 + 0.04ε2t−1 + 0.9σ21,t−1, (28)

σ22,t = 0.5 + 0.4ε2t−1 + 0.3σ22,t−1. (29)

Note that the GARCH(1,1) specifications (28) and (29) are both weak stationary and of finite 4-th
moments according respectively to conditions (6) and (7).

Then, there are generated 150 replications of sample size n = 10000. First, we estimate the
CGARCH parameters using the QML method [4]. The obtained parameter estimates denoted θ̂QML are
used as initial values of θ to apply the QCKSA algorithm 3 to the generated data whereby algorithms 1
and 2 are applied to pre-estimate σ21,t and σ22,t from which we obtain a pre-estimation of σ2t as given

by (26). Afterwards, the likelihood criterion l̂n (25) is minimized using algorithm 2. As claimed
earlier, the identification of the GARCH(2,2) specification resulting from the CGARCH(2) (27) is not
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required, nor the resulting relaxed restrictions on the parameters. The obtained parameter estimator
is denoted θ̂QCKSA. The mean squared error (MSE) is used to compare the accuracy of the parameter
estimations. As can be clearly seen from Table 1, the QCKSA method has outperformed the the QML
method by recording the smallest MSE values.

Table 1. Estimation accuracy of CGARCH(2) parameters by QCKSA and QML.

θ ω1 α1 β1 ω2 α2 β2
θ0 0.005 0.04 0.9 0.5 0.4 0.3

θ̂QCKSA 0.0047 0.0381 0.8905 0.4991 0.4003 0.2921
MSE < 0.0001 < 0.0001 0.0001 < 0.0001 < 0.0001 0.0001

θ̂QML 0.0179 0.0301 0.7418 0.6810 0.3702 0.3856
MSE 0.1650 0.0031 0.0409 0.0398 0.0010 0.0074

5. Empirical illustration

There is presented an empirical application of the QCKSA method for the estimation of CGARCH
parameters according to the specification (5). The application concerns the series of daily returns
of the S&P500 index over the period from 28/10/2010 to 27/11/2020 with a sample size n = 2539
observations (figure 1). The data used for the analysis can be freely downloaded from the website
http://finance.yahoo.com.

Table 2. Descriptive statistics of S&P500 returns. Qr(10) and Qr2(10) are Ljung-Box’s Q-statistics at lag 10.

Min Max Mean Variance kurtosis Qr(10) Qr2(10)

−5.5438 3.8948 0.0192 0.2289 20.8808 66.817 602.29
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Fig. 1. S&P500 index (left) and the corresponding series of returns
(right) from October 28, 2010 to November 27, 2020.

The statistics reported in Ta-
ble 2 reveal the presence of the
standard features of excess kur-
tosis and significant autocorre-
lation of the series of returns
and squares of returns as shown
by the Q-statistics of Ljung–
Box (e.g., at order 10). Thus,
the series of returns denoted rt
is fitted by an AR(1) with a
CGARCH(2) noise, i.e.,

rt = φ0 + φ1rt−1 + εt, (εt|εt−1, εt−2, . . . ε1) ∼ iidN(0, σ2t ) (30)

εt = (σ21,t + σ22,t)
1

2 ηt = σtηt, ηt ∼ iidN(0, 1)

σ2i,t = ωi + αiε
2
t−1 + βiσ

2
i,t−1, i = 1, 2 (31)

Firstly, there are estimated by QML the parameters of the CGARCH given by (30), namely ω1, α1,
β1, ω2, α2 and β2. Then, there are estimated by QCKSA the CGARCH(2) parameters as given by
the algorithm 3 using the QML parameter estimates as initial values. Table 3 represents the estimates
obtained in addition to the corresponding log-likelihood values.

The estimation results presented in Table 3 show that the σ21,t component captures long term

volatility fluctuations while the second component σ22,t captures the short-term volatility fluctuations.

Indeed, using the QML (resp. QCKSA) method, σ21,t starts small in amplitude (0.0079 (resp. 0.0062)),
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Table 3. Estimation of CGARCH(2) parameters by QML and QCKSA. Log-lik represents the log-lik likelihood.

AR(1) CGARCH(2)

φ̂0 φ̂1 ω̂1 α̂1 β̂1 ω̂2 α̂2 β̂2 log-Lik

QML 0.0191 −0.1621 0.0079 0.0007 0.9944 0.0877 0.2118 0.7355 −992.6334
QCKSA 0.0191 −0.1621 0.0062 0.0004 0.9913 0.0833 0.1821 0.7351 −985.7104

but decreases very slowly with a decrease rate of 0.9944 (resp. 0.9913), while σ22,t starts strongly in
amplitude (0.0877 (resp. 0.0833)), but decreases very fast with a decrease rate of 0.7355 (resp. 0.7351)
(Figures 2 and 3). This is also in line with the persistence estimates for each component, given by
α̂i + β̂i, i = 1, 2, whereby the σ21,t component captures the persistence effect of σ2t recording 0.9973

(resp. 0.9917) exceeding that of σ22,t which records 0.9473 (resp. 0.9172). Moreover, σ21,t is much less

sensitive to shocks ε2t−1 than σ22,t (0.0007 < 0.2118 and 0.0004 < 0.1821).

Note in particular that the QCKSA estimation distinguishes better the behaviour of σ2t in terms of
volatility persistence for each component since it reflects better the low persistence of σ22,t compared to
that obtained by QML (0.9172 < 0.9473). Thus, it provided results in accordance with the structure of
the CGARCH capturing both the short and long term behaviour of the volatility, while also recording
a relatively higher likelihood value (−985.7104 > −992.6334).
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Fig. 2. Volatility of the long-term component σ2
1,t (left) and the short-term component σ2

2,t (right) estimated
by QML.
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Fig. 3. Volatility of the long-term component σ2
1,t (left) and the short-term component σ2

2,t (right) estimated
by QCKSA.

6. Conclusion

In this paper, the convergence of the SPSA algorithm applied to the CGRACH has been proven in a
parameter space defined a priori from the parameter spaces of its GARCH(1,1) components allowing
the pre-estimation of its conditional variance and satisfying the relaxed constraints of Nelson and Cao.
The simulation experiment show that our estimation method outperforms the existing QML approach
in term of the accuracy of the parameter estimation. Further, the empirical study of the S&P500
return series showed the performance of the QCKSA estimation to capture the short and long term
dynamics of the CGARCH volatility, by maximizing its likelihood compared to the QML estimation.
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Квазiмаксимальна оцiнка правдоподiбностi моделi
Component-GARCH за допомогою алгоритму стохастичного

наближення iз застосуванням до S&P500

СеттарА.1, ФатмiН. I.1, БадауїМ.1,2

1IPIM, Нацiональнi школи прикладних наук Хорiбги,

Унiверситет Султана Мулея Слiмана, Марокко
2LaMSD, Вища технологiчна школа Уджди

Перший унiверситет Мохаммеда, Марокко

Компонент GARCH (CGARCH) пiдходить для кращого вiдображення короткостро-
кової та довгострокової динамiки волатильностi. Тим не менше, простiр параметрiв,
що складається з обмежень невiд’ємностi умовної дисперсiї, нерухомостi та iснуван-
ня моментiв, є лише попередньо визначеним через представлення GARCH CGARCH.
Це пов’язано з вiдсутнiстю загального методу визначення апрiорi слабких обмежень
невiд’ємностi умовної дисперсiї CGARCH(N) для будь-якого N > 1. У цiй робо-
тi простiр параметрiв CGARCH, побудований iз просторiв параметрiв компонента
GARCH(1,1), апрiорi надається для iдентифiкацiї його форми GARCH. Такий простiр
виконує слабкi обмеження невiд’ємностi умовної дисперсiї CGARCH, що попередньо
оцiнюється, забезпечуючи iснування оцiнки QML у значеннi алгоритму стохастичного
наближення. Представлено iмiтацiйний експеримент, а також емпiричне застосування
до iндексу S&P500, i обидва вони показують ефективнiсть запропонованого методу.

Ключовi слова: компонент GARCH, умовна дисперсiя, стохастичне наближення,

фiльтр Кальмана, квазiмаксимальна ймовiрнiсть.
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