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In this paper, we examine the fractional order analysis of a diffusion competition spa-
tial model describing the interactions between the externally introduced grey and local
red squirrel under the Atangana–Baleanu–Caputo (ABC) sense. Also, we establish the
existence and uniqueness analysis of the fractional order spatial model of the squirrel pop-
ulation dynamics, while the numerical computation of the fractional order spatial model
is carried out using the two dimensional Fractional Order Differential Transform Method
(FODTM). Simulations of the variables of the model reveal that as the system evolves,
the grey squirrels increase in density with increase in time, while the red squirrels decrease
in density with increase in time. Also the simulations show that the FODTM is efficient
and convergent with low computational cost.
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1. Introduction

Mathematical models have long been used to depict species interactions in ecological systems. In
1926, Lotka and Volterra [1], derived mathematical models to describe dynamics of species and later
Kermack and McKendrik [2], Anderson and May [3] proposed compartmental models divided into
Susceptible-Infected-Recovered (SIR) population model to describe the interactions between man and
its environment [4]. Between the 18th to 21st centuries, the grey squirrel named, Sciurus carolinensis

was released from various places in Britain, where the grey squirrel has spread immensely in England,
Wales and Scotland [5–7]. About the same time, the indigenous red squirrel named, “Sciurus Vulgerns”

disappeared from these communities. An hypothesis was proposed, which led to the disappearance
of red squirrel; Firstly, there is competition with the grey squirrel, secondly, environmental changes
reduces the red squirrel population independent of the grey squirrel and thirdly, squirrel flu disease
transmitted from the grey squirrel to the local red squirrels led to their extinction [8–13]. Reasonably,
an interaction between the two species through indirect or direct competition for resources and space
acted in favor of grey squirrel to drive out red squirrels [14, 15]. In recent times, fractional derivatives
and integrals have been applied to real life problems, which gives better results than the classical order,
because it produces better and accurate results due to the memory effect and ability to recall past
information [16–18]. Several fractional operators like Caputo [19], Caputo–Fabrizio [20], Riemann–
Lioville and host of others have been used to analyze nonlinear models, but the fractional operator of
interest in this study is the Atangana–Baleanu–Caputo (ABC) operator. ABC operator arises from
the fact that Caputo and Fabrizio proposed a fractional order derivative based on exponential function
to solve problems of singular kernel. They also showed that their derivative was appropriate for some
groups of physical problems. Furthermore, some issues were shown against this derivative as the kernel
was non-singular and non-local which showed that the integral associate is not a fractional operator. In
order to solve the issue of non-sigular and non-local kernel, Atangana and Baleanu derived two fractional
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derivatives in the sense of Caputo and Riemann–Liouville. In their results, the derivatives now have
fractional integral as anti-derivative of their operators. Therefore, since the nonlinear dynamics and
crossover effect of several physical and biological phenomena cannot be explained appropriately with
the classical order derivative because of its singular kernel, a generalized Mittag–Leffler function as
non local and non singular kernel is explored by Atangana and Baleanu [21,22].

In addition, obtaining the exact or approximate solution of several linear and nonlinear classical or
fractional order models using analytical or semi-analytical techniques is of interest to many authors.
The numerical method of interest in this work is the Differential Transform Method (DTM). The DTM
was first examined and studied by Zhou [23], where he solved linear and nonlinear problems involving
electric circuit analysis. Several authors have applied DTM to one or two dimensional ordinary or
partial differential equations describing real phenomena [24–29]. Iteratively, this method is based on
Taylor’s series expansion which establish an analytic solution in form of a polynomial. Merits of DTM
includes low computational cost and no discretization, while the demerit of DTM is that, it results to
a truncated series solution that does not reveal the actual behavior of the problem but forms a good
approximation in a very small neighborhood [30–32]. Motivated by the work on spatial modeling of
squirrel dynamics, fractional calculus and application of semi analytical DTM to solve nonlinear models,
this work examines and extend the work of Okubo et al., [33]. In their work, a diffusion competition
mathematical model describing the competition between grey and local red squirrel species in great
Britain is formulated, given by











∂S1

∂T
= D1∇

2S1 + a1S1(1− b1S1 − c1S2),

∂S2

∂T
= D2∇

2S2 + a2S2(1− b2S2 − c2S1),

(1)

where, for i = 1, 2, ai are the net birth rates of the red and grey squirrels respectively. 1
bi

denote
the carrying capacities, ci denote competition coefficients and Di represent diffusion coefficients which
are all nonnegative. In order to investigate the possibility of traveling waves of grey squirrels invasion
which drives out the reds. Eq. (1) is non-dimensionalized by setting











θi = biSi, i = 1, 2, t = a1T, x =
( a1

D1

)
1
2
X,

γ1 =
c1

b2
, γ2 =

c2

b1
, ko =

D2

D1
, α1 =

a1

a2
.

(2)

The quantities in Eq. (2) denote the non-dimensional population densities at dimensionless time t

and spatial coordinate x. Also, ko = D2
D1

is defined to be the ratio of diffusion of red squirrel to the
grey squirrels, where α1 = a1

a2
denote the ratio of red squirrel to grey squirrel growth rate. All these

assumptions results to










∂θ1

∂T
= D1∇

2θ1 + α1θ1(1− b1θ1 − γ1θ2),

∂θ2

∂T
= D2∇

2θ2 + α2θ2(1− b2θ2 − γ2θ1).

(3)

In view of Eqs. (1)–(3) and motivated by the importance of fractional calulus, Eq. (3) is changed from
the classical to a integer order spatial model system given by















∂τθ1

dt
=
∂2θ1

dx2
+ θ1(1− θ1 − γ1θ2),

∂γθ2

dt
= ko

∂2θ2

dx2
+ α1θ2(1− θ2 − γ2θ1).

(4)

The existence and uniqueness of Eq. (4) is analyzed under the ABC sense in Section 2, while Section 3
involves obtaining the approximate solutions of Eq. (4) using the FODTM. Finally, Section 4 discusses
the numerical simulations and conclusion of the work.
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2. Preliminaries, existence and uniqueness criteria

2.1. Preliminaries

In recent times, Atangana and Baleanu [21,22] proposed new fractional differential operators based on
Mittag–Leffler law, known as ABC-fractional derivative and integral operators.

Definition 1 (Refs. [21, 22]). The ABC fractional derivative operator is given by

ABCDα
τ ψ(τ) =

B(α)

(1− α)

∫ τ

c

ψ′(s)Eσ

[(−α(τ − s)α)

(1− σ)

]

ds, (5)

where B(α) satisfy the property B(0) = B(1) = 1.

Definition 2 (Refs. [21, 22]). The ABC fractional integral operator is given by

ABCIατ ψ(τ) =
1− α

B(α)
ψ(τ) +

α

B(α)Γ(α)

∫ τ

c

ψ(s)(τ − s)α−1ds. (6)

Applying the ABC fractional order operator to Eq. (4) yields

{

ABCDτ
t θ1(t) = ∇2θ1(t) + θ1(t)(1− θ1(t)− γ1θ2(t)),

ABCD
γ
t θ2(t) = ko∇

2θ2(t) + α1θ1(t)(1 − θ2(t)− γ2θ1(t)).
(7)

Subject to the boundary conditions θ1(x, t) = 1, θ2(x, t) = 0, θ2(x, t) = 1 and θ1(x, t) = 0. Hereafter,
we shall be referring to Eq. (7) in subsequent sectional analysis.

2.2. Existence analysis of the fractional order spatial model

Here, the fixed point technique for the existence of solutions of ABC fractional order spatial model in
Eq. (7) is utilized by applying ABC-fractional integral operator in Definition 2, to obtain











































θ1(t)− θ1(0) =
1− τ

B(τ)

(

∇2θ1(t) + θ1(t)
(

1− θ1(t)− γ1θ2(t)
))

+
τ

B(τ)Γ(τ)

∫ t

0
(t− α)τ−1

(

∇2θ1(t) + θ1(t)
(

1− θ1(t)− γ1θ2(t)
))

dα,

θ2(t)− θ2(0) =
1− γ

B(γ)

(

ko∇
2θ2(t) + αθ1(t)

(

1− θ2(t)− γ2θ1(t)
))

+
γ

B(γ)Γ(γ)

∫ t

0
(t− α)γ−1

(

ko∇
2θ2(t) + α1θ1(t)

(

1− θ2(t)− γ2θ1(t)
))

dα.

(8)

We assume that
K1(t, θ1) = ∇2θ1(t) + θ1(t)

(

1− θ1(t)− γ1θ2(t)
)

(9)

and
K2(t, θ2) = ko∇

2θ2(t) + α1θ1(t)
(

1− θ2(t)− γ2θ1(t)
)

. (10)

Let
p(t) =

(

1− θ1(t)− γ1θ2(t)
)

(11)

and
q(t) = α1

(

1− θ2(t)− γ2θ1(t)
)

. (12)

— (A1) For continuous functions f, g and θ1, θ2, θ11 , θ21 ∈ L[0, 1], there exist some constants δ1, δ2 > 0,
such that the following holds true;
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{

‖f(t, θ1)− f(t, θ11)‖ 6 δ1‖θ1 − θ11‖,

‖g(t, θ2)− f(t, θ21)‖ 6 δ2‖θ2 − θ21‖.
(13)

— (A2) For continuous functions γ2(t), γ1(t), θ1(t), θ11(t), θ2(t), θ21(t), there exist some constants
δ3, δ4, δ5, δ6 > 0, such that the following holds true:























‖p(t).∇θ1(t)− p(t).∇θ11(t)‖ 6 δ3‖p(t)‖‖θ1 − θ11‖,

‖q(t).∇θ2(t)− q(t).∇θ21(t)‖ 6 δ4‖q(t)‖‖θ2 − θ21‖,

‖∇θ1(t)−∇θ11‖ 6 δ5‖θ1 − θ11‖,

‖∇θ2(t)−∇θ21‖ 6 δ6‖θ2 − θ21‖.

(14)

Theorem 1 (Refs. [21, 22]). Assume that (A1) and (A2) are satisfied. Then, for ‖ko(t)‖ 6 m1,
‖p(t)‖ 6 m2, ‖q(t)‖ 6 m3, the functions K1(t, θ1),K2(t, θ2), defined in Eqs. (9) and (10), respectively
satisfy the Lipschitz conditions and are contractions provided m1δ6+m3δ4+δ1<1 andm3δ3+δ5+δ2<1.

Proof. In order to show that K1(t, θ1) satisfies the Lipschitz condition, consider

‖K1(t, θ1)−K1(t, θ11)‖

=
∥

∥∇2θ1(t) + θ1(t)(1− θ1(t)− γ1θ2(t))− (∇2θ11(t) + θ11(t)(1− θ11(t)− γ1θ21(t))
∥

∥

6
∥

∥∇2
∥

∥ ‖θ1(t)− θ11(t)‖+ ‖p(t) · θ1(t)− p(t) · θ11(t)‖

6 m1δ6‖θ1 − θ11‖+m3δ4‖θ1 − θ11‖+ δ1‖θ1 − θ11‖

= (m1δ6 +m3δ4 + δ1)‖θ1 − θ11‖, (15)

and

‖K2(t, θ2)−K2(t, θ21)‖

=
∥

∥ko∇
2θ2(t) + θ2(t)(1 − θ2(t)− γ1θ2(t))− (∇2θ21(t) + θ21(t)(1− θ21(t)− γ1θ11(t))

∥

∥

6
∥

∥∇2
∥

∥ ‖θ2(t)− θ21(t)‖ + ‖p(t) · θ1(t)− p(t) · θ21(t)‖

6 m3δ3‖θ2 − θ21‖+ δ5‖θ1 − θ21‖+ δ2‖θ1 − θ21‖

= (m3δ3 + δ5 + δ2)‖θ2 − θ21‖. (16)

Using Eqs. (15) and (16), the functions K1(t, θ1) and K2(t, θ2) satisfies the Lipschitz condition and
they are contractions with β1 = m1δ6 +m3δ4 + δ1 < 1 and β2 = m3δ3 + δ5 + δ2 < 1. This completes
the proof. �

Furthermore, using Eqs. (9) and (10) and Eq. (8), we obtain















θ1(t) = θ1(0) +
1− τ

B(τ)
K1(t, θ1(t)) +

τ

B(τ)Γ(τ)

∫ t

0
(t− α)τ−1

(

K1(α, θ1)
)

dα,

θ2(t) = θ2(0) +
1− γ

B(γ)
K2(t, θ2(t)) +

γ

B(γ)Γ(γ)

∫ t

0
(t− α)γ−1

(

K2(α, θ2)
)

dα.

(17)

From Eq. (17), the following recursive formulas are defined as:















θ1n(t) =
1− τ

B(τ)
K1(t, θ1(n−1)(t)) +

τ

B(τ)Γ(τ)

∫ t

0
(t− α)τ−1

(

K1(α, θ1(n−1))
)

dα,

θ2n(t) =
1− γ

B(γ)
K2(t, θ2(n−1)(t)) +

γ

B(γ)Γ(γ)

∫ t

0
(t− α)γ−1

(

K2(α, θ2(n−1))
)

dα

(18)

with the conditions θ10(t) = θ1(0) and θ20(t) = θ2(0). Furthermore, the following differences are
considered.
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









































φn+1(t) = (θ1n+1 − θ1n)(t) =
1− τ

B(τ)

(

K1(t, θ1n(t))−K1(t, θ1n−1(t))
)

+
τ

B(τ)Γ(τ)

∫ t

0
(t− α)τ−1

(

K1(α, θ1n(α)) −K1(α, θ1n−1(α))
)

dα,

ψn+1(t) = (θ2n+1 − θ2n)(t) =
1− γ

B(γ)

(

K2(t, θ2n(t))−K2(t, θ2n−1(t))
)

+
γ

B(γ)Γ(γ)

∫ t

0
(t− α)γ−1

(

K2(α, θ2n(α)) −K2(α, θ2n−1(α))
)

dα.

(19)

By considering the norms

‖φn+1(t)‖ = ‖(θ1n+1 − θ1n)‖

=

∥

∥

∥

∥

1− τ

B(τ)

(

K1(t, θ1n(t))−K1(t, θ1n−1(t))
)

+
τ

B(τ)Γ(τ)

∫ t

0
(t− α)τ−1

(

K1(α, θ1n(α))−K1(α, θ1n−1(α))
)

dα

∥

∥

∥

∥

6

∥

∥

∥

∥

1− τ

B(τ)

(

K1(t, θ1n(t))−K1(t, θ1n−1(t))
)

+
τ

B(τ)Γ(τ)

∫ t

0
(t− α)τ−1

(

K1(α, θ1n(α))−K1(α, θ1(n−1)(α))
)

dα

∥

∥

∥

∥

, (20)

and

‖ψn+1(t)‖ = ‖(θ2n+1 − θ2n)(t)‖

=

∥

∥

∥

∥

1− γ

B(γ)
K2(t, θ2n−1(t)) +

γ

B(γ)Γ(γ)

∫ t

0
(t− α)γ−1

(

K2(α, θ2n(α))−K2(α, θ2(n−1)(α))
)

dα

∥

∥

∥

∥

6

∥

∥

∥

∥

1− γ

B(γ)

(

K1(α, θ2n(α))−K2(t, θ2(n−1)(t))
)

+
γ

B(γ)Γ(γ)

∫ t

0
(t− α)γ−1

(

K2(α, θ2n(α)) −K2(α, θ2n−1(α))
)

dα

∥

∥

∥

∥

. (21)

Eqs. (20) and (21), proved the existence of solution for the fractional order spatial model in Eq. (7) in
the subsequent Theorem 2.

Theorem 2 (Refs. [21, 22]). The fractional order spatial model system in Eq. (7) has a solution
provided that the following holds true:

β = max {m1δ6 +m3δ4 + δ1, m3δ3 + δ5 + δ2} < 1. (22)

Proof. Assume the functions Fn(t) = θ1n+1(t)− θ1(t) + θ1(0), Gn(t) = θ2n+1(t)− θ2(t) + θ2(0). Then,
by Eqs.(20) and (21), we obtain

‖Fn(t)‖ =

∥

∥

∥

∥

1− τ

B(τ)

(

K1(t, θ1n(t))−K1(t, θ1(t))
)

+
τ

B(τ)Γ(τ)

∫ t

0
(t− α)τ−1

(

K1(α, θ1n(α)) −K1(α, θ1(α))
)

dα

∥

∥

∥

∥

,

6
1− τ

B(τ)

∥

∥K1(α, θ1n(α)) −K1(α, θ1(t)))
∥

∥

+
τ

B(τ)Γ(τ)

∫ t

0
(t− α)τ−1

∥

∥

(

K1(α, θ1n(α)) −K1(α, θ1(α))
)

dα
∥

∥

6

[

1− τ

B(τ)
‖θ1n − θ1‖+

‖θ1n − θ1‖

B(τ)Γ(τ)

]

(m1δ6 +m3δ4 + δ1) (23)
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6

[

1− τ

B(τ)
+

1

B(τ)Γ(τ)

]n

‖θ1n − θ1‖β
n → 0, as n→ ∞. (24)

Similarly, we have

‖Gn(t)‖ =

∥

∥

∥

∥

1− γ

B(γ)
(K2(t, θ1n(t))− (K2(t, θ1(t)))

+
γ

B(γ)Γ(γ)

∫ t

0
(t− α)γ−1(K2(α, θ2n(α)) −K2(α, θ2(α)))dα

∥

∥

∥

∥

6
1− γ

B(γ)

∥

∥K2(α, θ2n(α)) −K1(α, θ2(t))
∥

∥

+
γ

B(γ)Γ(γ)

∫ t

0
(t− α)γ−1

∥

∥K1(α, θ1n(α)) −K1(α, θ1(α))dα
∥

∥

6

[

1− γ

B(γ)
‖θ2n − θ2‖+

‖θ1n − θ1‖

B(γ)Γ(γ)

]

(m3δ3 + δ5 + δ2)

6

[

1− γ

B(γ)
+

1

B(γ)Γ(γ)

]n

‖θ2n − θ2‖β
n → 0, as n→ ∞. (25)

Thus, Eqs. (23) and (25) implies that the functions Fn(t), Gn(t) → 0, as n → ∞ for β < 1, which
shows that lim

n→∞
θ1n+1 = θ1 and lim

n→∞
θ2n+1 = θ2. Consequently, the solutions of the fractional order

spatial model in Eq. (7) exist. �

2.3. Uniqueness of solutions of fractional order spatial model

This section is devoted to the uniqueness analysis of solutions of fractional order spatial model in
Eq. (7) which is based on the assumptions (A1), (A2).

Theorem 3 (Refs. [21, 22]). Assume that (A1), (A2) are satisfied and

∧ = min

{

1−

[

1− τ

B(τ)
+

1

B(τ)Γ(τ)

]

(m1δ6 +m3δ4 + δ1), 1−

[

1− γ

B(γ)
+

1

B(γ)Γ(γ)

]

(m3δ3 + δ5 + δ2)

}

,

(26)
then the fractional order spatial model in Eq.(7) has a unique solution.

Proof. For the uniqueness of solution of the fractional order spatial model Eq. (7), we assume contrarily
for the proof. That is, let there exist some solution (θ1, θ2, θ11 , θ21) satisfying the integral system
given by



















θ11(t) = θ11(0) +
1− τ

B(τ)

(

K1(t, θ11(t)) +
τ

B(τ)Γ(τ)

∫ t

0
(t− α)τ−1(K1(α, θ11))

)

dα

θ21(t) = θ21(0) +
1− γ

B(γ)

(

K2(t, θ21(t)) +
γ

B(γ)Γ(γ)

∫ t

0
(t− α)γ−1(K2(α, θ21))

)

dα.

(27)

For the fractional order spatial model in Eq. (7), we have θ11(0) = θ21(0) = 0. Consider

‖θ1(t)− θ11(t)‖ =
1− τ

B(τ)

∥

∥K1(t, θ1(t))−K1(t, θ11(t))
∥

∥

+
τ

B(τ)Γ(τ)

∫ t

0
(t− α)τ−1

∥

∥K1(α, θ1(t))−K1(α, θ11(t))
∥

∥dα

6

[

1− τ

B(τ)
+

1

B(τ)Γ(τ)

]

‖θ1 − θ11‖
(

m1δ6 +m3δ4 + δ1
)

, (28)
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which implies that

‖θ1(t)− θ11(t)‖

(

1−

[

1− β

B(β)
+

1

B(β)Γ(β)

]

(m1δ6 +m3δ4 + δ1)

)

6 0. (29)

Similarly we obtain

‖θ2(t)− θ21(t)‖ =
1− γ

B(γ)

∥

∥K2(t, θ2(t))−K2(t, θ21(t))
∥

∥

+
γ

B(γ)Γ(γ)

∫ t

0
(t− α)γ−1

∥

∥K2(α, θ2(t))−K2(α, θ21(t))
∥

∥dα

6

[

1− γ

B(γ)
+

1

B(γ)Γ(γ)

]

‖θ2 − θ21‖
(

m2δ3 + δ4 + δ2
)

, (30)

which implies that

‖θ2(t)− θ21(t)‖

(

1−

[

1− γ

B(γ)
+

1

B(γ)Γ(γ)

]

(

m3δ3 + δ5 + δ2
)

)

6 0. (31)

By the condition in Eq. (26), and Eqs. (27)–(31) we obtain ‖θ1 − θ11‖ → 0 as well ‖θ2 − θ21‖ → 0.
Consequently, θ1(t) = θ11(t) and θ2(t) = θ21(t). Thus, the solution of the fractional order spatial model
in Eq. (7) under the ABC sense is unique. �

3. The two dimensional fractional order differential transform method (FODTM)

In order to apply the two-dimensional FODTM to the fractional order spatial model in Eq. (7), a
function of two variables, u(r, s) is considered and suppose that it can be represented as a product
of two single variable functions, i.e., u(r, s) = f(r)g(s), based on the properties of a generalized two-
dimensional FODTM [32], the function u(r, s) can be represented as

u(r, s) =
∞
∑

k=0

Fτ (k)(r − r0)
kτ

∞
∑

h=0

Gγ(h)(s − s0)
hγ =

∞
∑

k=0

∞
∑

h=0

Uτ,γ(k, h)(r − r0)
kτ (s − s0)

hγ , (32)

where 0 < α, β 6 1, Uτ,γ(k, h) = Fτ (k)Gγ(h) is called the spectrum of u(r, s). The generalized
two-dimensional FODTM of the function u(r, s) is given by

Uτ,γ(k, h) =
1

(Γ(τk + 1)Γ(γh + 1))

[

(Dτ
r )

k(Dγh
s )u(r, s)

]

(r0,s0)
. (33)

Hence, the generalized two-dimensional FODTM properties are tabulated below.

Table 1. Basic operational properties of a two dimensional FODTM.

Basic Function Transform Function

u(r, s) = v(r, s) ± w(r, s) Uτ,γ(k, h) = Vτ,γ(k, h)(r, s) ±Wτ,γ(k, h)(r, s)

u(r, s) = av(r, s) Uτ,γ(k, h) = aVτ,γ(k, h)

u(r, s) = v(r, s)w(r, s) Uτ,γ(k, h) =
∑r

a=0

∑s
b=0 Vτ,γ(a, h − b)Wτ,γ(k − a, b)

u(r, s) = (r − r0)
nτ (s− s0)

mγ Uτ,γ(k, h) = δ(k − n)δ(h −m)

u(r, s) = Dτ
r v(r, s) Uτ,γ(k, h) =

Γ(τ(k+1)+1)
(Γ(τk+1)) Vτ,γ(k + 1, h)

u(r, s) = ∂v(r,s)
∂r

Uτ,γ(k, h) = (k + 1)Vτ,γ(k + 1, h)
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Applying the two-dimensional FODTM to Eq. (7), we obtain

θ11,τ (k, s+1)
Γ(τk + 1)

Γ(τ(k + 1) + 1)
= [(k+1)(k+2)θ11,τ (k+2, s)+ θ1(k, s)(1− θ1(k, s)− γ1θ2(k, s))], (34)

so that

θ11,τ (k, s+1) =
Γ(τ(k + 1) + 1)

Γ(τk + 1)
[(k+1)(k+2)θ11τ (k+2, s) + θ1(k, s)(1− θ1(k, s)− γ1θ2(k, s))], (35)

and

θ21,γ (k, s+1)
Γ(γk + 1)

Γ(γ(k + 1) + 1)
= [k0(k+1)(k+2)θ21,γ (k+2, s)+α1θ1(k, s)(1−θ2(k, s)−γ2θ1(k, s))], (36)

so that

θ21,γ (k, s+1) =
Γ(γ(k + 1) + 1)

Γ(γk + 1)
[k0(k+1)(k+2)θ21,γ (k+2, s)+α1θ1(k, s)(1−θ1(k, s)−γ2θ1(k, s))]. (37)

Solving Eqs. (35) and (37) and transforming the boundary conditions in Eq. (8), we obtain























































θ1(0) = θ1(1) = 0,

θ1(2) =
Γ

Γ(τ + 1)
(2!),

θ1(3) =
Γ(τ + 1)

Γ(τ + 2)
(3!),

θ1(4) =
Γ(τ + 2)

Γ(τ + 3)

(

13
Γ

Γ(τ + 1)
(2!)−

( Γ

Γ(τ + 1)
(2!)

)2
− γ1

Γ

Γ(τ + 1)
(2!)

Γ

Γ(γ + 1)
(2!k0)

)

,

θ1(5) =
Γ(τ + 3)

Γ(τ + 4)

(

21
Γ(τ + 1)

Γ(τ + 2)
(3!)−

(Γ(τ + 1)

Γ(τ + 2)
(3!)

)2
− γ1

Γ(τ + 1)

Γ(τ + 2)
(3!)

Γ(γ + 1)

Γ(γ + 2)
(3!k0)

)

,

(38)

and






















































































θ2(0) = θ2(1) = 0,

θ2(2) =
Γ

Γ(γ + 1)
(2!k0),

θ2(3) =
Γ(γ + 1)

Γ(γ + 2)
(3!k0),

θ2(4) =
Γ(γ + 2)

Γ(γ + 3)

(

12(k0 + α1)
Γ

Γ(γ + 1)
(2!k0) + α1

( Γ

Γ(γ + 1)
(2!k0)

)2

− γ2α1
Γ

Γ(γ + 1)
(2!k0)

Γ

Γ(τ + 1)
(2!)

)

,

θ2(5) =
Γ(γ + 3)

Γ(γ + 4)

(

12(k0 + α1)
Γ(γ + 1)

Γ(γ + 2)
(3!k0) + α1

(Γ(γ + 1)

Γ(γ + 2)
(3!k0)

)2

+ γ2α1
Γ(τ + 1)

Γ(τ + 2)
(3!)

Γ(γ + 1)

Γ(γ + 2)
(3!k0)

)

.

(39)

Furthermore, substituting Eqs. (38) and (39) into Eq. (7) after some simplification and re-arrangement,
the closed form solution of Eq. (7) is given by;

θ1(x, t) = 1 + t+

(

Γ

Γ(τ + 1)
(2!)

)

t2 +

(

Γ(τ + 1)

Γ(τ + 2)
(3!)

)

t3

+

(

Γ(τ + 2)

Γ(τ + 3)

(

13
Γ

Γ(τ + 1)
(2!) −

( Γ

Γ(τ + 1)
(2!)

)2
− γ1

γ

Γ(τ + 1)
(2!)

Γ

Γ(γ + 1)
(2!k0)

)

t4 (40)
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+
Γ(τ + 3)

Γ(τ + 4)

(

21
Γ(τ + 1)

Γ(τ + 2)
(3!) −

Γ(τ + 1)

Γ(τ + 2)
(3!)

)2

− γ1
Γ(τ + 1)

Γ(τ + 2)
(3!)

Γ(γ + 1)

Γ(γ + 2)
(3!k0)

)

t5 + . . . ,

and

θ2(x, t) = 1 + t+
Γ

Γ(γ + 1)
(2!k0)t

2 +

(

Γ(γ + 1)

Γ(γ + 2)
(3!k0)

)

t3

+
Γ(γ + 2)

Γ(γ + 3)

(

12(k0 + α1)
Γ

Γ(γ + 1)
(2!k0) + α1

(

Γ

Γ(γ + 1)
(2!k0)

)2

− γ2α1
Γ

Γ(γ + 1)
(2!k0)

Γ

Γ(τ + 1)
(2!)

)

t4

+

(

Γ(γ + 3)

Γ(γ + 4)

(

12(k0 + α1)
Γ(γ + 1)

Γ(γ + 2)
(3!k0) + α1

Γ(γ + 1)

Γ(γ + 2)
(3!k0)

)2

+ γ2α1
Γ(τ + 1)

Γ(τ + 2)
(3!)

Γ(γ + 1)

Γ(γ + 2)
(3!k0)

)

t5 + . . . . (41)

4. Numerical simulations

Having obtained the closed form solutions in Eqs. (40) and (41) we adopt the following parameter
values; γ1 = 0.2, γ2 = 1.5, α1 = 0.82

0.61 , ko = 1, D1 = D2 = 104, a1 = 0.82, a2 = 0.61 as seen in
the work of Okubo et al., [33]. Figures 1a–1d displays the spreading wave of the density of the red
squirrel population. As the system evolves, the red squirrels gradually decrease in density as time t
increases (t = 20 weeks) at different fractional orders (τ = 0.2−0.8) due to the action of the externally
introduced grey squirrels in driving out the red squirrels.
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Fig. 1. Model simulations of the population of the red squirrels θ1(x, t) using FODTM
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Figures 2a–2d displays the spreading wave of the density of the grey squirrel population. As the
system evolves, the grey squirrels gradually increase in density as time t increases (t = 20 weeks) at
different fractional order values (γ = 0.2 − 0.8) due to the action of the externally introduced grey
squirrels in driving out the red squirrels.
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Fig. 2. Model simulations of the population of the grey squirrels θ2(x, t) using FODTM

5. Conclusions

In this work, we studied the diffusion competition model describing the interactions between invading
grey squirrels and local red squirrels in Great Britain. Since this model is a classical order diffusion
model, we extend it by changing the classical order to an integer order, studied under the ABC sense.
Further, we established the existence and uniqueness results of the fractional order spatial model.
We performed the numerical simulations by solving the fractional order spatial model using the two
dimensional FODTM. Our results reveal that the population of the grey squirrel increases faster as
the system evolves and drives out the red squirrels, leading to their decrease as time increases at
different fractional order values. This shows the effectiveness of FODTM with low computational cost
and effectiveness. In order to curtail this, the grey squirrel population needs to be controlled and the
red squirrel population needs to be preserved through the application of optimal control theory. Also,
other fractional operators like the Grunwald Letnikov, Caputo–Fabrizio, Atangana bi-order operators
etc., can be applied to the model.

[1] Hirsch M. W. Systems of differential equations that are competitive or cooperative II: Convergence almost
everywhere. SIAM Journal on Mathematical Analysis. 16 (3), 423–439 (1985).

Mathematical Modeling and Computing, Vol. 8, No. 3, pp. 432–443 (2021)



442 Ogunmiloro O. M., Fadugba S. E., Titiloye E. O.

[2] Kermack W. O., Mckendrick A. G. A contribution to the mathematical theory of epidemics. Proceedings
of the Royal Society A. 115 (772), 700–721 (1927).

[3] Anderson R. M., May R. M. Population biology of infectious diseases: Part I. Nature. 280, 361–367 (1979).

[4] Bolt D. J. Changes in the concentration of lutenizing hormone in plasma rams following the administration
of oestradiol, progesterone or testosterone. Journal of Reproductive Fertility. 24 (3), 435–438 (1971).

[5] Lloyd H. G. The Distribution of Squirrels in England and Wales, 1959. Journal of Animal Ecology. 31 (1),
157–165 (1962).

[6] Lloyd H. G. Past and present distribution of red and grey squirrels. Mammal Review. 13 (1), 69–80 (1983).

[7] Murray J. D., Stanley E. A., Brown D. L. On the spatial spread of rabies among foxes. Proceedings of the
Royal Society B. 229 (1255), 111–150 (1986).

[8] Reynolds J. C. The interaction of red and grey squirrels. Ph.D. thesis, University of East Anglia, Norwich,
U.K. (1981).

[9] Shorten M. A survey of the distribution of the American grey squirrel (Sciurus carolinensis) and the British
red squirrel (S. Vulgaris leucourus) in England and Wales in 1944-5. Journal of Animal Ecology. 15 (1),
82–92 (1946).

[10] Shorten M. Notes on the distribution of the grey squirrel (Sciurus carolinensis) and the red squirrel (Sciurus
vulgaris leucourus) in England and Wales from 1945 to 1952. Journal of Animal Ecology. 22 (1), 134–140
(1953).

[11] Shorten M. Squirrels in England, Wales and Scotland, 1955. Journal of Animal Ecology. 26 (2), 287–294
(1957).

[12] Shorten M. Squirrels in Britain. In Symposium on the gray squirrel (ed. V. Flyger), pp. 375–378. Md
Dept Res. Ed. Maryland, U.S.A.: publication no. 162 (1959).

[13] Shorten M., Courtier E. A. A population study of the grey squirrel (Sciurus carolinensis) in May 1954.
Annals of Applied Biology. 43, 494-510 (1955).

[14] Murray J. D. Spatial dispersal of species. Trends in Ecology & Evolution. 3 (11), 307–309 (1988).

[15] Murray J. B. Mathematical Biology, Biomathematics. 3, 105–115, Springer Verlag, Berlin, Germany
(1993).

[16] Diethelm K., Ford N. J. Analysis of fractional differential equations. Journal of Mathematical Analysis and
Applications. 265 (2), 229–248 (2002).

[17] Diethelm K., Freed A. The FracPECE Subroutine for the numerical solution of differential equation of
fractional order. Orschung und Wissenschaftliches Rechnen. 57–71 (1999).

[18] Ogunmiloro O. M. Mathematical analysis and approximate solution of a fractional order Caputo fascioliasis
disease model. Chaos Solitons & Fractals. 146, 110851 (2021).

[19] Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel. Progress in
Fractional Differentiation and Applications. 2 (1), 1–11 (2015).

[20] Caputo M., Fabrizio M. On the notion of fractional derivative and applications to the hysteresis phenomena.
Meccanica. 52, 3043–3052 (2017).

[21] Atangana A., Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: Theory and
application to heat transfer model. Thermal Science. 20 (2), 763–769 (2016).

[22] Baleanu D., Jajarmi A., Hajipour M. On the nonlinear dynamical systems within the generalized fractional
derivatives with Mittag–Leffler kernel. Nonlinear Dynamics. 94, 397–414 (2018).

[23] Zhou J. K. Differential transformation and its Application for Electrical Circuit. Huazhong University
Press, Wuhan, China (1986).

[24] Abazari R., Borhanifar A. Numerical study of the solution of the Burgers and coupled Burgers equations
by a differential transformation method. Computers & Mathematics with Applications. 59 (8), 2711–2722
(2010).

[25] Arikoglu A., Ozkol I. Solution of fractional differential equations by using differential transformation
method. Chaos, Solitons & Fractals. 34 (5), 1473–1481 (2007).

[26] Arikoglu A. Application of differential transforms method to linear-nonlinear engineering problems. MS
thesis, Istanbul Technical University (2004).

Mathematical Modeling and Computing, Vol. 8, No. 3, pp. 432–443 (2021)



On the existence, uniqueness and computational analysis of a fractional order spatial model . . . 443

[27] Arikoglu A., Ozkol I. Solution of difference equations by using differential transformation method. Applied
Mathematics and Computation. 174 (2), 1216–1228 (2006).

[28] Ayaz F. Solutions of the systems of differential equations by differential transform method. Applied Math-
ematics and Computation. 147 (2), 547–567 (2004).

[29] Ogunmiloro O. M., Abedo F. O., Kareem H. A. Numerical and stability analysis of the transmission dy-
namics of SVIR epidemic model with standard incidence rate. Malaysian Journal of Computing. 4 (2),
349–361 (2019).

[30] Borhanifar A., Abazari R. Exact solutions for non-linear Schrödinger equations by differential transforma-
tion method. Journal of Applied Mathematics and Computing. 35 (1), 37–51 (2011).

[31] Jang M. J., Chen C. L., Liu Y. C. On solving the initial value problems using differential transformation
method. Applied Mathematics and Computations. 115 (2–3), 145–160 (2000).

[32] Soltanalizadeh B., Branch S. Application of differential transformation method for solving a fourth-order
parabolic partial differential equations. International Journal of Pure and Applied Mathematics. 78 (3),
299–308 (2012).

[33] Okubo A., Maini P. K., Williamson M. H., Murray J. D. On the spatial spread of the grey squirrel in
Britain. Proceedings of the Royal Society B. 238 (1291), 113–125 (1989).

Про iснування, єдинiсть та обчислювальний аналiз просторової
моделi дробового порядку для динамiки популяцiї бiлок за

оператором Атангана–Балеану–Капуто

Огунмiлоро О. М.1, Фадугба С. Е.2, Тiтилоє Е. О.2

1Кафедра математики природничого факультету Державного унiверситету Екiтi, Адо-Екiтi, Нiгерiя
2Кафедра математики факультету фiзичних наук Унiверситету Iлорiн, штат Квара, Нiгерiя

У цiй роботi дослiджується аналiз дробового порядку просторової моделi дифузiй-
ної конкуренцiї, що описує взаємодiю мiж введеною iззовнi сiрою та мiсцевою рудою
бiлкою в розумiннi Атангана–Балеану–Капуто (АБК). Також встановлено iснування
та аналiз єдиностi просторової моделi дробового порядку динамiки популяцiї бiлки,
тодi як чисельний розрахунок просторової моделi дробового порядку проводиться за
допомогою двовимiрного методу диференцiального перетворення дробового порядку
(МДПДП). Моделювання змiнних моделi показує, що популяцiя сiрих бiлок збiль-
шується зi збiльшенням часу, тодi як популяцiя червоних бiлок зменшується. Також
моделювання показують, що МДПДП є ефективним та конвергентним iз низькими
обчислювальними витратами.

Ключовi слова: Атангана–Балеану–Капуто (АБК), модель дифузiйної конкурен-
цiї, метод диференцiального перетворення дробового порядку (МДПДП).
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