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1. Introduction

Axial rotation of celestial bodies is an attribute of their existence and one of the formation factors
of their internal structure. Stars of early spectral classes have high angular velocity, and stars of
classes later than F5 rotate slowly. For example, o Eridani (B8V) with mass 4.9 M, and equatorial
radius R, = 12 R, rotates with velocity 3-107°s~!, and Sun (yellow dwarf G2V) has angular velocity
3-1076s7 1.

The polytrope theory is a kind of express method to research the influence of different factors
on formation of the stars internal structures. It concerns gas stars, white dwarfs, neutron stars,
circumstellar disks, as well as binary star systems. This theory based on the polytropic equation of

tate P(r) = Kp*1n(r), (1)
where P(r) is the sum of gas and light pressure in the point with radius-vector 7, p(r) is the local
density of matter, K and n are constants. A specific star corresponds a model with parameter K,
index n, density in center p. and angular velocity w.

Model with n = 0 corresponds to the rotation ellipsoid with constant density of matter. It is
considered that the model with small index (1 < n < 1.5) corresponds to the stars with convective
equilibrium and therefore is suitable for the description of massive stars of main sequence. Model with
n = 3 corresponds to the stars with significant contribution of light pressure, as well as cold white
dwarfs. Models with indices 4 < n < 5 are suitable for description of stars, which are in the phase
of accretion. Correct description of stars with the degenerate core, as well as hot low-massive white
dwarfs demands using two-phase models, when core and periphery are described by polytropes with
the different indices n [1].

Main variants of the problem solution about equilibrium of stars in the polytropic theory are de-
scribed in the first part of our work [2|. Usually, it is used differential form of the star equilibrium
equation, and integration constants are determined approximately according to the continuity con-
dition of the gravitational potential on its surface. In works [3-5] was proposed a different way to
solve the problem: substitution of the general analytical solution of the differential equation in the
integral equilibrium equation yields the system of the linear algebraic equations for finding integration
constants. Such approach allows us to describe more accurately the structure of star in the surface
region, that is especially important at angular velocities, close to the critical ones causing the instabil-
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ity. At small angular velocities the surface of rotational polytrope is the surface of rotational ellipsoid.
Therefore, in all previous works there are given values of the polar and equatorial radii as functions of
angular velocity and polytropic index [6,7]. In our work [2] it was shown that the model with index
n = 0 is the rotational ellipsoid. In the case n = 1 the polytrope surface deviates from the surface of
rotational ellipsoid with the same radii, and deviation is 5% near the critical value of angular velocity.
It is consistent with the numerical integration, described in works [8,9].

The aim of our work is to find the solutions of equilibrium equation for the rotational polytropes
with indices n > 1 by generalizing the method of work [2]. There are calculated the polar and
equatorial radii of rotational polytropes, deviation of the surface shape from the ellipsoidal, mass,
moment of inertia relative to the rotation axis, as well as distribution of matter density along the
radius as functions of polytropic index and angular velocity. The comparison with results of the other
authors is presented.

2. The system of equilibrium equations

In the non-inertial reference frame in the presence of rotation the equilibrium equation takes the
form [10]

VP(r) = —p(r) {VPgay(r) + VPc(r)}, (2)
where ®ga () is the gravitational potential inside a star, and ®.(r) is the centrifugal potential.
According to expression (1) relation (2) is the equation for the distribution of matter density

K(1+n)Ap " (r) = —4xGp(r) + % w?A(r?sin? 9). (3)

The model with the solid rotation (w = const)is considered. In equation (2), it is used the spherical
coordinate system with the axis Oz coinciding to the rotation axis. A symmetrical model of star, With
p(r) = p(r,0) = p(r,m — @), where 6 is the polar angle, A is the Laplace operator is studied. In the
dimensionless variables

E=r/An, Y (§,0) = [p(r, 0)/p6]1/n, (4)
equation (3) transforms as
Aﬁﬂ Yn(fv 9) =07 - [Yn(§70)]n7 (5)
if the scale of length A\, and dimensionless angular velocity §2 are determined by relations
K(1+n)=47G)2 pl=t/n, Q = w@2rGp.) V2, (6)
and the Laplace operator is written as
1 10 0 0 0
Arg=A+=5 A A === [r2= Ay = —(1—12) =
=Bt 5, ay (P5) M—ga-B g @

t = cosf. Equation (5) is the second-order partial differential equation with the constant coefficients
and the boundary conditions Y, (0,0) = 1, 0Y,,(£,0)/0¢ = 0 at £ = 0, where appear two dimensionless
parameters n and 2.

Equation (5) can be rewritten into an integral form

02¢2 1
Val6) =14 2o (1= Pat) + 5 [ (€00 Q6. de’ ©
with the kernel
QEE)=¢-¢I™ - (), (9)

where Py (t) is Legendre polynomial of 2i-th order, and integration is performed over volume of the
polytrope, the surface of which is close to the surface of rotational ellipsoid.

At n > 1 equations (5) and (8) are nonlinear, however Q? is small parameter, moreover Qax(n) ~
217" nax (1) &~ 0.28 - 27" where Quay(n) is the maximal value of , at which instability of star
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occurs in the vicinity of equator with index n. Because of that, in the internal region of star, which
corresponds to the model without rotation, we use substitution

VI(E,0) =y (6) + Q*V,(£,0),  0<E<&(n),

where y,,(§) is the solution of equations (5) or (8) at 2 = 0 (the Emden function for the model with
index n), and &;(n) is the dimensionless radius of star without rotation (the Emden radius), minimal
root of the equation y,,(¢) = 0. In the linear approximation for Q2 the function ¥,,(¢,6) is determined
by equation

(10)

Ay Un(&,0)=1—nyp (&) T,

Since Emden function satisfies the boundary conditions

0
y(0) =1, Fem(©) =0 at £=0,

(&,0). (11)
(12)

then U, (0,0) =0, 0¥,,(£,0)/0§ = 0 at £ = 0. By analogy with the solution of equation (8) at n =1

(see form. (64) of work [2]) we used expansion for the Legendre polynomials

\I/n(g 6 wnO +Za21 P2l wn 2l(§)

>1

(13)

(n)

where a,,” are integration constants, 1, 0(£) and 1, 2(§) are universal functions of the variable £ for
the fixed value n and determined by the system of independent linear equations

Aghno(€) = 1 —nyn='(€) Pno(8),
2 o1 (14)
Aethpa(§) = {2020+ 1) €7 —nyp (&)} ()
with zero boundary conditions
¥n,0(0) = ¥ 2(0) =0, OMn,0(§)/0& = Oy 2(€) /06 = 0 (15)

at £ = 0. In the region £ < 1, where y,, ~ 1—¢2/6+ ..., and asymptotics of functions 9, 9;(£) coincide
with asymptotics of the spherical Bessel functions of the first kind,

62
TR VYn,2(§) = ju(§)+
Therefore, asymptotics of functions Y,,(§, ) coincide with asymptotics of function Y7 (€, 6) in the limit
¢ < 1. For the first time functions v, 0(£) and 1, 2(£) were calculated numerically in the region
0 <& < &(n)in [6]. These functions are sufficient for approximate calculation of the polytrope
characteristics with small angular velocities. We calculated functions ¥y, o(§), ¥n,2(€) and 1y, 4(€) for
the polytrope with indices n = 1;2;3 (see Figs. 1-3).

Yno(§) = 1=jo(§)+... = = (1) (€ <), 1> 1. (16)

1
0.9
038
0.7
0.6
05
0.4
0.3
0.2
0.1

0

W08

2

3

3

2
18
16
14
12

1
0.8
0.6
04
0.2

¥,,(8)

2
3

3

0

05

Fig. 1.

1

15

2

25

3

35

Dependence of functions

0

0

05

Fig. 2.

1

15

2

25

3

35

4

45

Dependence of functions

0

Fig. 3.

1

2

Dependence of functions

3

1,21(€) on the variable £&. Curve 1 3 9;(£) on the variable . Notations
corresponds to [ = 0, curve 2 — are the same as in Fig. 1.
l=1,curve 3 — 1 =2.

t3.21(€) on the variable £. Notations
are the same as in Fig. 1.
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The region of variables, in which Q2 > [Y,,(£,)]", is the star periphery. In zero approximation,
equation (5) in this region is replaced by equation

Ae o Yn(€,0) = Q2 (17)

the general solution of which is

202
vie0) = S (1 o) + 0 5 &P et +92Z£1+21P2l N, e>am, (9

>0 >0
(n)

where c,,;”, bgll) are integration constants. Accounting for the term [Y},(,6)]"™ on the right side of
equation (5) can be realized by the method of perturbation theory. Continuous solution of equation (5)

can be obtained by stitching solutions (10) and (18) on the sphere of radius &;(n). Substituting the
(n)

function Y;/(£,0) in equation (8), we determine integration constants ay,’, because this equation is
inhomogeneous, and functions y, (), ¥n0(), ¥n2(§) are known. Note that integration over variables
&', 0 should be performed within that region of the polytrope, which is inside the Emden sphere
(0 < £ <& (n)). Determining ag?) in an independent way, integration constants for the periphery can
be found from the stitching conditions

vI(.0) = Y (€,0), —gf(s 6) = %Y”@,e) at €= &i(n), (19)

equating multipliers for the same Legendre polynomials.

3. The approximation of small velocities

Considering in expression (10) agll) = 0at [ > 2, and in expression (18) cgll) =0atl>1, bgll) =0 at
(n)

l > 2, we obtain the approximation of small velocities. From conditions (19), the coefficients a, ’~ and

c(()") can be determined, bén), bg")

e = {wn,o(gl) + 511%,0(51)} & +& yn(&) =& y"égl),
2
— &1 mote) - L - e} = ¢t y"(&),
2
0 = e o unalen) + 21, (20

W _ 5 !
ay” = 5 5%{37/%,2(51) + 517/)%,2(51)} at & = &1(n),
() = = (), Yhal€1) = e tina(6)
ynl—d&ynu n,gl—d& n,2(81)-
Because Y,/Z(¢,0) is an extrapolation Y,/(£,6) in the region & > & (n), then the expression for the
polytrope surface can be found from condition Y,/ (£,0) = 0 or from condition Y,/(£,60) =0

4(6) % ) + s {wn o(61) + o) Pyl 2<51>} (21)
(n)

Expressions for a, ' and §y(6) were given in [6], and the solution in form (10), (18) in approxima-
tion (20) corresponds to [11]. Approximation (20) corresponds to the multipole expansion of the
gravitational potential in peripheral region of the polytrope in form 2120 bgl)Pgl(t)f_l_zl . In fact,
such expansion is permissible only in the region £ > &, where & is the equatorial radius. And the
general solution (18) of equation (17) in peripheral region has more multipole terms cél Py (t)¢%. In

addition, solution (17) is approximate one. Therefore, the determination of constants agl), which ap-
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pear in the function Y,/ (¢, ), from the stitching conditions leads to errors at describing of the internal

(n)

polytrope region. In this regard, we determine constants a,’ by independent way, and the set of
(n) (n)

constants c,,” and bg) — from the stitching conditions, as the result, they become functions of a.,”.

4. Determination of integration constants

According to relations (5), (10) and (13),

Y (€,0) = yal6) + 92{wn,o<s> 3 aé’i’Pm(t)wn,zl(@}, (22)
=1
and Y,/7(¢,0) we determine by expression (18).

Integration constants agl) and ch) bgl) at arbitrary n,due to the division of the polytrope volume
into two regions, must be determined self-consistently, generalizing the method of work [2]. In the
internal region, equation (8) transforms to the form

2 S ) Q2
() + 9 QU o(6) + D agy Pa(t)im(€) p = 1+ —2—(1— Pa(t)
=1

+$ VdE’Q(E,E’){yZ(f’)JrQ%yZ e [wno +Z“2l Pt 1/’”21(5)”

+ 4i Qe N0 (2
T JVis
Integration regions over the variable £ schematically are shown in Fig. 4.
Region V7 is the part of the polytrope volume, which
is inside Emden sphere with radius &;(n) and is bounded
by solid curve

0<E<&HE) at 1>
0<¢<&(n) at 0<

where £y(t') is the meridional section of the polytrope sur-

face, which is close to the surface of rotational ellipsoid.

Region Vir is the part of the polytrope volume, which is

Y outside the Emden sphere,

z : z &i(n) <€ <&HE) at 0Kt <ty (25)

p <1 e

Fig.4. Schematic representation of the in-  Herewith ¢, = cosf,, and the angle 6,, is determined by
tegration region in formula (23). the intersection of the Emden sphere and the polytrope

surface

e I i S SO |

El’ ..................... "-~._.,...“.,,,.

&p —
| ~ (24)

e
RN

6,
g

G- -6)) 2= b, (26)

where ¢, is the polar radius of the surface.

Note that the “thickness” of region V7; (namely &, —£&1(n)) is proportional to 22, and the subintegral
function in the integral for the region is proportional to 2”. Therefore, the integral over the region V;;
is proportional to Q272 and there is a small value at “large” values of the polytropic index (n > 1.5).
That’s why we neglect the integral for the region Viy, which simplifies the calculation of integration
constants.

Equality (23) can be given a simpler form, using the integral form of equation for Emden function
(equation (8) at €2 = 0, which describes the polytrope with spherically symmetry)

13 "2
m© =1+ - [Qeennerde =1+ [ )| C-

- —s]ds, (27)
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at £ < &1(n) and y, (&) =0 at £ = & (n). Also, let us use the integral form of equation for the function
¥n,0(§), namely

Polé ———/QEE N Y o(€) V€ =

13 AV
— [[E5 -¢] - m @] as 0<s<am. e
Next, the integral calculation
i) = 3= | Qe ag (29)

Expanding the kernel Q(¢,¢') in series for Legendre polynomials, in the region 1 (0 < € < &) we
obtain

I3 AV
TW (1) = /0 ds’ym{@ - s’} £ epy ()

g >1
1 &o(t') tn &1(n)
/ / ! n/e N1—-21 / / ! /el N\1—21
X{/tndtpﬂ(”/g de'yn (€ (E) +/O dth(t)L de'y (€)(€)) } (30)

Taking into account the properties of the Legendre polynomials
1

/ Py(t)dt=0 at 1 >1, (31)
0
it can be found, that

TV (€)= yn(€) — 1+ An(&, 1),
1 1(n)
() == S Pale) [ atrue) [ g

I>1 tn &o(t')

(32)

According to definition (26) at the small values €2, when &, is close to £1(n), we find that ¢, ~ 1 — Q2.
Because of that the sum over the index [ in formula (32) is a small value (~ Q%). In the region 2

(gp <£<£1)

1 13 "2
20 =) -1+ A - [ar [ e {EE ¢ ae

13 14l ¢l
e [Carrae) [ e TS e 3

= €o(t) §2l+1(§/)2l 1

Herewith ¢ > t,, therefore 1 —t ~ Q2 £1(n) — &) ~ 02, & — &(n) ~ Q2 so the both integral terms
are proportional to Q6 and are small. It is reasonable to neglect them and at arbitrary values ¢ in the
region V7 to use the approximation

Tn(&:t) = yn — 1+ An(&,0). (34)
The integral

. , Q&€ ny () unol€) d€' (35)
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which appears in the region (23), is represented in the form

i e — o [ Qe - €unol)h o
2 2
:—%—%Zm)s%? - [HEE e i mi @ mnote) i - 3 a3
=1 =1

The following notations are introduced
1
M = —2/ Po(t){In & (') — In &y (n) }at,
tn

1
Iézn) = (- 1)_1/ Pyt {[eo()]* % — [&1(n)]* 2 }at’ at 1> 2,

tn

1 €1(n) (37)
DgL) — / Pgl(t/) dt// (5/)1_2l{A§'¢n,0(f,)}d§/ _
tn Eo(t))

:/tl Pgl(t’)dt’{<(£’)1_2l %) &1 (n) _/;m)(%“)(g) 2 dwno(é)dg}

fov) S0t ae’
Expressions (27)—(37) allow us to simplify equality (23) to the next form

Z CLS)Pm(t)wn,m(f) =——= P2 Z Pyt §2l{ ) - Dé?)}
>1 >1
o [ Q&) nu €)Y ) Pt () d€', (39)
A Jv; , " I>1 . ,
where . 1)
L) = [Carrae) [T ) e (39)
tn fO(t)

To calculate the integral for the vector & in equation (38), we expand the kernel Q(&,¢&’) in series
for Legendre polynomials,

>l [ Pty na €)vnal€)QE € e

l>1

3 €1(n)
- Yt { @ [ e [ et e
>1

&1(n)
e [ P ar L, R~ 3 (1) P (06 S 40
>1 n 0 l,m}l
where
FS(E) = nym () vhman(€) = 20 (20 + 1)E 2y 1 (E) — Acthp 2 (€) (41)

according to equations (14),

1 €1(n)
S = [ a0 Pa)Pun@) [ VD€ e (2
tn Eo(t
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The sum of the first two series in formula (40) equals

Z a;7)P2l(t)¢n 2l Z a2[ P2 £2l521 20

>1 >1

552)21 =@ +1)7tg™ [(21 + )by 21(&1) + 51%1(61)]

d&y

1
+/t dtszl(t){ﬁo_zl(t) [(2l+ Don,21(€0(t)) +5°(t)%((§to)(t))}

(43)

-6 | Diate) + 6 22|
1

Because of orthogonality of the Legendre polynomials in the integral over ¢ in formula (42), it
is important only to consider the upper vicinity of boundary. Expanding subintegral function in the
vicinity &o(t) and integrating by parts, we find, that

1
%ﬁm:A}@w&mwgﬂw{kﬂ+mMm@w»+&@@@%%¥D]

- (21 = D 1) = 2 1) {21 D@0 (0) + o) 2O K o
0
Substituting expressions (40), (43) in equality (38) and equating coefficients of the products Py (t)£%,

it is the system of the linear inhomogeneous algebraic equations for the constants agll)

" . (45)
‘127)55?)21 + Z(l - 5z,m)ag,252l,2m = —515?) - Lg) — Dgl), 1>2.
m=1

Stitching conditions (19) the relations between the integration constants agl) and the constants
c(() ), b(n) (n) are established, b(n) cfln), b(n)

2 /
= {wn,o(él) + 51%,0(61)} S yn(&),

2 02
b = él{%o(fl) _a an)}’

& = §{ 5 o [%2(51) 42 wn2(§1)}}

61 (46)
byY = 51{“2 wn2<£1>+5—1 - gcg”)},
m _ 5ag”

&1
¢y {¢n4(§1) + 1/%4(51)
"9 ¢t
b = f1{a M a(€r) — " 51} s G =&(n).
As one can see from the definitions Sél )21 and S( )217 values of these quantities depend on the
polytrope surface &y(t), which is determined by the condltlon Y, (&,0) = 0. Therefore, the problem
of calculating integration constants is self-consistent, and can be performed via the iterative method.

The surface of rotational polytrope is close to the surface of rotational ellipsoid, determined by values
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(e,&p), or (e, &), where &, i & are the polar and equatorial radii, e = {1 — 52/53}1/2 is its eccentricity.
Polar radius can be found from the condition Y,/ (¢,0) = 0, and the equatorial one from the condition
Y,I(¢,7/2) = 0. Consequently, it is necessary to find constants Ay

in each iteration, b

(n)

o) = ) —

= Cy 21

(n)

(n)

iterations even at the maximum value of angular velocity Qpax(n).

The calculating results of the dependence of geometrical elements on the polytrope surface (&, &, €)
on angular velocity for the case n = 2.5 are shown in Table 1. There is also shown the dependence of

at [ > 1 and constants c
o at | = 0. As zero approximation, There are used expressions (20), being
good approximation for the small values of angular velocities. We restricted ourselves with approach
= 0 at [ > 3. The iterative process is fast converging and requires no more than 5

Table 1. Dependence of the model characteristics with index n = 2.5 on angular velocity
in approximation as; = 0 at [ > 3.

L @ [ @ | 6O [ &@) [ a(? () [ (@) | (n.Q) |
0.01000 | 0.06066 | 5.35266 | 5.36254 | —10.27730 | —0.00115019 | 1.00046 | 1.00157
0.02000 | 0.12251 | 5.34499 | 5.38556 | —10.28090 | —0.00506429 | 1.00185 | 1.00632
0.03000 | 0.18449 | 5.33222 | 5.42536 | —10.28690 | —0.011586 | 1.00418 | 1.01440
0.04000 | 0.24705 | 5.31437 | 5.48437 | —10.29500 | —0.0206999 | 1.00752 | 1.02603
0.05000 | 0.31060 | 5.29147 | 5.56680 | —10.30530 | —0.0323615 | 1.01192 | 1.04159
0.06000 | 0.37578 | 5.26359 | 5.67989 | —10.31740 | —0.0464533 | 1.01748 | 1.06165
0.07000 | 0.44375 | 5.23085 | 5.83701 | —10.33070 | —0.0626984 | 1.02434 | 1.08701
0.08000 | 0.51687 | 5.19342 | 6.06661 | —10.34430 | —0.0804401 | 1.03269 | 1.11896
0.09000 | 0.60184 | 5.15169 | 6.45080 | —10.35610 | —0.0978105 | 1.04282 | 1.15961
0.09100 | 0.61171 | 5.14731 | 6.50666 | —10.35700 | —0.0993382 | 1.04395 | 1.16429
0.09200 | 0.62201 | 5.14290 | 6.56812 | —10.35770 | —0.100777 1.0451 | 1.16909
0.09300 | 0.63285 | 5.13845 | 6.63651 | —10.35840 | —0.102109 | 1.04627 | 1.17404
0.09400 | 0.64439 | 5.13398 | 6.71372 | —10.35890 | —0.103295 | 1.04747 | 1.17913
0.09500 | 0.65683 | 5.12949 | 6.80268 | —10.35920 | —0.104284 | 1.04869 | 1.18437

the relative increase of the polytrope mass n(n, Q) = M(n,Q)/M(n,0), where M (n,0) is the polytrope
mass without rotation, as well as the relative increase of the inertia moment relative to the rotation
axis ((n, ) = I(n,Q)/I(n,0), where I(n,0) is the inertia moment of the polytrope with index n at
Q) = 0. In Table 2 was shown dependence of integration constants on angular velocity for the polytrope
n = 2.5. The results of analogues calculations for the polytrope n = 3 are shown in Tables. 3 and 4.

Table 2. Dependence of integration constants for the polytrope with index n = 2.5 on
angular velocity according to expressions (46).

Q V-2 [ aolY .02 R by 0? | " b\
0.01000 | —0.408791 | 2.18321 | —0.000217104 | —0.00512369 | —6.00647 10 7 | —0.0188939
0.02000 | —0.409836 | 2.19122 | —0.000275652 | —0.0205019 | —2.64465-10 ° | —0.0831899
0.03000 | —0.411581 | 2.10623 | —0.00037308 | —0.0461562 | —6.05039-10 ° | —0.19032
0.04000 | —0.414021 | 2.20326 | —0.000504609 | —0.0821202 | —1.08098- 10 ° | —0.340032
0.05000 | —0.41716 | 2.21229 | —0.000671861 | —0.128441 | —1.68997-10 ° | —0.531595
0.06000 | —0.420995 | 2.22333 | —0.000868342 | —0.185172 | —2.42586-10 ° | —0.763077
0.07000 | —0.425529 | 2.23638 | —0.00108431 | —0.252365 | —3.27421-10 ° | —1.02993
0.08000 | —0.43076 | 2.25143 | —0.00130515 | —0.330054 | —4.20071-10 ° | —1.32137
0.09000 | —0.436688 | 2.26349 | —0.00149676 | —0.418201 | —5.10782-10 ° | —1.60671
0.09100 | —0.43732 | 2.2703 | —0.00151137 | —0.427583 | —5.1876-10 ° | —1.6318
0.09200 | —0.437958 | 2.27214 | —0.00152274 | —0.437061 | —5.26273-10 ° | —1.65544
0.09300 | —0.438603 | 2.274 | —0.0015341 | —0.446645 | —5.33220-10 ° | —1.67732
0.09400 | —0.439254 | 2.27587 | —0.00154222 | —0.456324 | —5.39423-10 ° | —1.6968
0.09500 | —0.439914 | 2.27777 | —0.0015471 | —0.466098 | —5.44588-10 ° | —1.71305

The polytrope characteristics without rotation are shown in our work [2].
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Table 3. Dependence of the model characteristics with index n = 3 on angular velocity
in approximation ag; =0 at [ > 3.

[ @ e@ | HO) [ &) | o ai(Q) [ n(n, Q) | ¢(n, Q) |
0.01000 | 0.09220 | 6.89116 | 6.92064 | —10.87250 | —0.00125638 | 1.00063 | 1.00242
0.02000 | 0.18451 | 6.87473 | 6.99482 | —10.87740 | —0.00465916 | 1.00249 | 1.00981
0.03000 | 0.27926 | 6.84737 | 7.13108 | —10.88530 | —0.0102429 | 1.00566 | 1.02260
0.04000 | 0.37855 | 6.80919 | 7.35666 | —10.89590 | —0.0177874 | 1.01024 | 1.04158
0.05000 | 0.48751 | 6.76042 | 7.74285 | —10.90790 | —0.0266846 | 1.01642 | 1.06821
0.05100 | 0.49938 | 6.75498 | 7.79677 | —10.90910 | —0.0275959 | 1.01714 | 1.07138
0.05200 | 0.51152 | 6.74945 | 7.85487 | —10.91030 | —0.0285006 | 1.01787 | 1.07466
0.05300 | 0.52398 | 6.74381 | 7.91776 | —10.91140 | —0.0293932 | 1.01863 | 1.07805
0.05400 | 0.53679 | 6.73808 | 7.98620 | —10.91250 | —0.0302697 | 1.01941 | 1.08155
0.05500 | 0.55003 | 6.73226 | 8.06117 | —10.91360 | —0.0311239 | 1.0202 | 1.08517
0.05600 | 0.56377 | 6.72634 | 8.14394 | —10.91470 | —0.0319476 | 1.02102 | 1.08892
0.05700 | 0.57813 | 6.72034 | 8.23623 | —10.91560 | —0.0327273 | 1.02186 | 1.09280
0.05800 | 0.59325 | 6.71425 | 8.34048 | —10.91650 | —0.0334517 | 1.02272 | 1.09681
0.05900 | 0.60936 | 6.70808 | 8.46027 | —10.91720 | —0.0340975 | 1.0236 | 1.10097
0.06000 | 0.62682 | 6.70183 | 8.60132 | —10.91780 | —0.0346355 | 1.02451 | 1.10529
0.06100 | 0.64624 | 6.69552 | 8.77373 | —10.91820 | —0.0350125 | 1.02544 | 1.10977
Table 4. Dependence of integration constants for the polytrope with index n = 3 on
angular velocity according to expressions (46).

Q V-2 [ aol" .02 R by 0? | " b\
0.01000 | —0.293028 | 2.01957 | —0.000201124 | —0.00752171 | —6.35822-10~" | —0.0632967
0.02000 | —0.294192 | 2.02328 | —0.000276327 | —0.0301004 | —2.35788-10=°% | —0.234729
0.03000 | —0.296133 | 2.02946 | —0.000397574 | —0.0677751 | —5.18367-10~° | —0.516039
0.04000 | —0.298851 | 2.03811 | —0.00056026 —0.120606 | —9.00175-107% | —0.896132
0.05000 | —0.302345 | 2.04924 | —0.000744432 | —0.188655 | —1.35044-10° —1.34438
0.05100 | —0.302738 | 2.05049 | —0.000762849 | —0.196298 | —1.39656-10—° —1.39029
0.05200 | —0.303137 | 2.05176 | —0.000781266 | —0.204094 | —1.44234-107° —1.43587
0.05300 | —0.303543 | 2.05306 | —0.000798149 | —0.212041 | —1.48752-10° —1.48083
0.05400 | —0.303961 | 2.05438 | —0.000815031 —0.22014 —1.53187-107° —1.52499
0.05500 | —0.304385 | 2.05573 | —0.000831914 | —0.228392 —1.5751-107° —1.56803
0.05600 | —0.304814 | 2.0571 | —0.000848796 | —0.236797 | —1.61679-10° —1.60953
0.05700 | —0.305253 | 2.05849 | —0.000862609 | —0.245349 | —1.65625-10~° —1.64881
0.05800 | —0.305699 | 2.05992 | —0.000876422 | —0.254054 | —1.69291-10° —1.6853
0.05900 | —0.306154 | 2.06136 | —0.000887166 | —0.262907 | —1.72559-10° —1.71784
0.06000 | —0.306616 | 2.06284 | —0.000896374 —0.27191 —1.75281-107° —1.74494
0.06100 | —0.307085 | 2.06433 | —0.000902513 | —0.281059 | —1.77189-107° —1.76394

As was shown in Tables. 2 and 4, integration constants are weakly dependent on angular velocity
and this dependence decreases with increasing index n. Obtained results for polar and equatorial radii
in all region of change of angular velocity with high accuracy coincide with the results of numerical
integration of equilibrium equation in [7], which is illustrated in Table 5 for the polytrope n = 3.
Note that in work cited above [11], the deviations from results of work [7] are several percent (at

Table 5. Comparison of the polytrope characteristics calculated in this study with the values obtained in the
case n = 3 in [7]. Here M () is the polytrope mass in units 47p.\3, V() is the dimensionless volume in units
103X3, g.(9) is the equatorial gravity of star in units 47Gp.\ ([*] corresponds to our results).

[ Q [&OQM[E@M [ g.(Q) - 107 [ MQ[] [ V() - 1073 [ &) [7] [ &(Q) [7] [ g.() - 102 [7] [ M(Q) [7] [ V(Q) - 1077 [7] |

0.02 | 6.87473 | 6.99482 3.99525 2.02323 1.40880 6.87504 | 6.99456 3.9975 2.02323 1.40867
0.04 | 6.80919 | 7.35666 3.17874 2.03887 1.53848 6.80949 | 7.35492 3.1874 2.03882 1.53745
0.06 | 6.70183 | 8.60132 1.24656 2.06767 1.97737 6.70013 | 8.57635 1.2763 2.06738 1.96685
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n = 3 it is 4% in the vicinity Qmax(3)). As was shown in Table 5, our results for all characteristics
of the polytrope only slightly deviate from results of [7] obtained by numerically integration of the
equilibrium equation.

7 In our research work [2]
it was shown, that the sur-
face of rotational polytrope
5 1 n =1 deviates from the
surface of rotational poly-
trope with the same val-
3 ues &, and &, and the de-
viation value is a mono-

6 ;.

2 L A tonically increasing func-
1] tion of €. Our calcula-

tions show that this effect
0+— ‘ ‘ ‘ ‘ ‘ * ‘ is also observed for poly-

1 2 3 4 5 6 7 8 9
Fig.5. The meridional section of the polytropes surface with index n = 3. . . .
Curve 1 corresponds to the surface of an ideal rotational ellipsoid at €; = 0.02. idenced .by Fig.5. QbVI_
Curve 2 — the same, but the angular velocity Qs = 0.06. Curve 3 represents ously, this could be discov-
the true surface of the polytrope at 22 = 0.06, which is determined by the ered by the author of [7],
smallest root of equation Y, (£,0) = 0 relative to £. Crosses corresponds to  if he would have calculated
é(](t)a and not on]y £p7 &11’,118 condition at Q; = 0.02.

tropes with n > 1, as ev-

5. Conclusions

Method of separate description of the internal region and periphery, proposed in [11]|, summarizes
Milne-Chandrasekhar approach [6,12] and is a very rational in finding the nonlinear equations solutions
(n > 1). However, the method of the equal determination of integration constants from the stitching
condition of solutions at the border of these regions, used in [11] does not provide sufficient accuracy
and uses the fitting parameter and suitable for the small angular velocities.

Our approach is based on the unequal description: integration constants for the important internal
region are determined by the integral form of the equilibrium equation, and integration constants
for periphery are found from the stitching condition of solutions without using fitting parameters.

12 o 10 At the same time, our approach is self-consistent, and

integration constants for the periphery obtained in the
i-th iteration, are used in determination of integration
constants for the inner region in the (i+1)-th iteration.
The rationale in favor of our approach is shown in
Fig. 6, which depicts the normalized density of matter
p(r)/pe = [Yn(&,0)]™ as function of variable £ for polar
(curve 1) and equatorial (curve 2) directions in the
case n = 2.5 at Q =~ Q. = 0.095. Dashed curve
g corresponds to the polytrope without rotation. As
‘ = ‘ ‘ ‘ was shown in Figure, in the region of periphery (at £ >
4 45 5 55 6 65 7 > . .
Fig. 6. The distribution of dimensionless density §1 (n)), the density .drops to Ze.ro .Verf?’ qu1.Ckly, _Wthh
for the polytrope with index n = 2.5 at Q = 0.095 justifies the approximate description in this region.

10 1

for polar (curve 1) and equatorial (curve 2) di- Unlike [11], calculated in this work polar and
rections. Dashed curve corresponds to the model  equatorial radii with high accuracy coincide with the
without rotation. results of [7], and all integration constants are the

functions of angular velocity. The surface of rotational polytropes calculated at n = 3 deviates from
the ideal rotational polytrope. This effect marked for the first time in our work [2], is obviously natural.
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The deviation of the polytrope surface from the surface of ideal rotational polytrope with the same
values &, and &, confirmed by the calculation of the polytrope volume,

1
V(Q) = gmi” /0 IHOLA (47)

The dimensionless volume v = VA™3 for the ideal rotational ellipsoid equals 4/ 3715251,, that at n =3
and Q = 0.06 is 2.07688-103. However, volume calculated in this study by formula (47) at these values
n and Q equals to 1.97737 - 103, which deviates from the result of [7] at 0.5% (see Table 5).
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MeTop, iHTerpanbHUX piBHAAHL Y NONITPONHI/ TEOpii 3ip 3 OCbOBUM

obepTaHHam. Il. MNMoniTponu 3 iHgekcamn n > 1

Baepyx M. B., /zikoscokuii /1. B.

JIveiscorutl nayionarvrull yrwisepcumem iment leana Pparxa,
eya. Kupuaa @ Megpodia, 8, 79005, Jlveis, Yxpaina

3alpOIIOHOBAHO HOBUIA CIIOCIO 3HAXO/ZKEHHS PO3B’A3KiB HEJIHITHIX PIBHAHD PIBHOBAIrU JIJIsi
06epTOBUX TOJIITPOI, IO TPYHTYETHCSA HA CAMOY3TO/KEHOMY OIHCI BHYTPINTHKOI 00JaCTi
Ta nepudepil Tpu BUKOPUCTAHHI iHTerpabHol hopMmu piBHAHL. Po3paxoBaHo 3aJIe2KHICTH
FeOMETPUIHUX apaMerpiB, (bopMu MOBEpPXHI, MacH, MOMEHTY iHepIil i cTajux iHTerpy-
BaHHY BiJl KyTOBOI IBUJIKOCTI /s iHIeKCiB n = 2.5 i n = 3.

Kntouosi cnosa: 3opi-noaimponu, meodnopioni eaincoiou, ocvose obepmaris, PIGHAHHA
METAHIWHOT PIBHOBA2U, CTNADIALHICTIL 31D.
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