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1. Introduction

Axial rotation of celestial bodies is an attribute of their existence and one of the formation factors
of their internal structure. Stars of early spectral classes have high angular velocity, and stars of
classes later than F5 rotate slowly. For example, α Eridani (B8V) with mass 4.9M⊙ and equatorial
radius Re = 12R⊙ rotates with velocity 3 · 10−5 s−1, and Sun (yellow dwarf G2V) has angular velocity
3 · 10−6 s−1.

The polytrope theory is a kind of express method to research the influence of different factors
on formation of the stars internal structures. It concerns gas stars, white dwarfs, neutron stars,
circumstellar disks, as well as binary star systems. This theory based on the polytropic equation of
state

P (r) = Kρ1+1/n(r), (1)

where P (r) is the sum of gas and light pressure in the point with radius-vector r, ρ(r) is the local
density of matter, K and n are constants. A specific star corresponds a model with parameter K,
index n, density in center ρc and angular velocity ω.

Model with n = 0 corresponds to the rotation ellipsoid with constant density of matter. It is
considered that the model with small index (1 . n . 1.5) corresponds to the stars with convective
equilibrium and therefore is suitable for the description of massive stars of main sequence. Model with
n = 3 corresponds to the stars with significant contribution of light pressure, as well as cold white
dwarfs. Models with indices 4 . n . 5 are suitable for description of stars, which are in the phase
of accretion. Correct description of stars with the degenerate core, as well as hot low-massive white
dwarfs demands using two-phase models, when core and periphery are described by polytropes with
the different indices n [1].

Main variants of the problem solution about equilibrium of stars in the polytropic theory are de-
scribed in the first part of our work [2]. Usually, it is used differential form of the star equilibrium
equation, and integration constants are determined approximately according to the continuity con-
dition of the gravitational potential on its surface. In works [3–5] was proposed a different way to
solve the problem: substitution of the general analytical solution of the differential equation in the
integral equilibrium equation yields the system of the linear algebraic equations for finding integration
constants. Such approach allows us to describe more accurately the structure of star in the surface
region, that is especially important at angular velocities, close to the critical ones causing the instabil-
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ity. At small angular velocities the surface of rotational polytrope is the surface of rotational ellipsoid.
Therefore, in all previous works there are given values of the polar and equatorial radii as functions of
angular velocity and polytropic index [6, 7]. In our work [2] it was shown that the model with index
n = 0 is the rotational ellipsoid. In the case n = 1 the polytrope surface deviates from the surface of
rotational ellipsoid with the same radii, and deviation is 5% near the critical value of angular velocity.
It is consistent with the numerical integration, described in works [8, 9].

The aim of our work is to find the solutions of equilibrium equation for the rotational polytropes
with indices n > 1 by generalizing the method of work [2]. There are calculated the polar and
equatorial radii of rotational polytropes, deviation of the surface shape from the ellipsoidal, mass,
moment of inertia relative to the rotation axis, as well as distribution of matter density along the
radius as functions of polytropic index and angular velocity. The comparison with results of the other
authors is presented.

2. The system of equilibrium equations

In the non-inertial reference frame in the presence of rotation the equilibrium equation takes the
form [10]

∇P (r) = −ρ(r)
{

∇Φgrav(r) + ∇Φc(r)
}

, (2)

where Φgrav(r) is the gravitational potential inside a star, and Φc(r) is the centrifugal potential.
According to expression (1) relation (2) is the equation for the distribution of matter density

K(1 + n)∆ρ1/n(r) = −4πGρ(r) +
1

2
ω2∆(r2 sin2 θ). (3)

The model with the solid rotation (ω = const)is considered. In equation (2), it is used the spherical
coordinate system with the axis Oz coinciding to the rotation axis. A symmetrical model of star, With
ρ(r) = ρ(r, θ) = ρ(r, π − θ), where θ is the polar angle, ∆ is the Laplace operator is studied. In the
dimensionless variables

ξ = r/λn, Yn(ξ, θ) = [ρ(r, θ)/ρc]
1/n, (4)

equation (3) transforms as
∆ξ,θ Yn(ξ, θ) = Ω2 − [Yn(ξ, θ)]n, (5)

if the scale of length λn and dimensionless angular velocity Ω are determined by relations

K(1 + n) = 4πGλ2n ρ
1−1/n
c , Ω = ω(2πGρc)

−1/2, (6)

and the Laplace operator is written as

∆r,θ = ∆r +
1

r2
∆θ, ∆r =

1

r2
∂

∂r

(

r2
∂

∂r

)

, ∆θ =
∂

∂t
(1 − t2)

∂

∂t
, (7)

t = cos θ. Equation (5) is the second-order partial differential equation with the constant coefficients
and the boundary conditions Yn(0, θ) = 1, ∂Yn(ξ, θ)/∂ξ = 0 at ξ = 0, where appear two dimensionless
parameters n and Ω.

Equation (5) can be rewritten into an integral form

Yn(ξ, θ) = 1 +
Ω2ξ2

6
(1 − P2(t)) +

1

4π

∫

[Yn(ξ′, θ′)]nQ(ξ, ξ′) dξ′ (8)

with the kernel
Q(ξ, ξ′) = |ξ − ξ′|−1 − (ξ′)−1, (9)

where P2l(t) is Legendre polynomial of 2l-th order, and integration is performed over volume of the
polytrope, the surface of which is close to the surface of rotational ellipsoid.

At n > 1 equations (5) and (8) are nonlinear, however Ω2 is small parameter, moreover Ωmax(n) ≈
21−nΩmax(1) ≈ 0.28 · 21−n, where Ωmax(n) is the maximal value of Ω, at which instability of star
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occurs in the vicinity of equator with index n. Because of that, in the internal region of star, which
corresponds to the model without rotation, we use substitution

Y I
n (ξ, θ) = yn(ξ) + Ω2Ψn(ξ, θ), 0 6 ξ 6 ξ1(n), (10)

where yn(ξ) is the solution of equations (5) or (8) at Ω = 0 (the Emden function for the model with
index n), and ξ1(n) is the dimensionless radius of star without rotation (the Emden radius), minimal
root of the equation yn(ξ) = 0. In the linear approximation for Ω2 the function Ψn(ξ, θ) is determined
by equation

∆ξ,θ Ψn(ξ, θ) = 1 − n yn−1
n (ξ) Ψn(ξ, θ). (11)

Since Emden function satisfies the boundary conditions

yn(0) = 1,
∂

∂ξ
yn(ξ) = 0 at ξ = 0, (12)

then Ψn(0, θ) = 0, ∂Ψn(ξ, θ)/∂ξ = 0 at ξ = 0. By analogy with the solution of equation (8) at n = 1
(see form. (64) of work [2]) we used expansion for the Legendre polynomials

Ψn(ξ, θ) = ψn,0(ξ) +
∑

l>1

a
(n)
2l P2l(t)ψn,2l(ξ), (13)

where a
(n)
2l are integration constants, ψn,0(ξ) and ψn,2l(ξ) are universal functions of the variable ξ for

the fixed value n and determined by the system of independent linear equations

∆ξ ψn,0(ξ) = 1 − n yn−1
n (ξ)ψn,0(ξ),

∆ξ ψn,2l(ξ) =
{

2l (2l + 1) ξ−2 − n yn−1
n (ξ)

}

ψn,2l(ξ),
(14)

with zero boundary conditions

ψn,0(0) = ψn,2l(0) = 0, ∂ψn,0(ξ)/∂ξ = ∂ψn,2l(ξ)/∂ξ = 0 (15)

at ξ = 0. In the region ξ ≪ 1, where yn ≈ 1−ξ2/6+ . . ., and asymptotics of functions ψn,2l(ξ) coincide
with asymptotics of the spherical Bessel functions of the first kind,

ψn,0(ξ) ⇒ 1−j0(ξ)+. . . =
ξ2

6
+. . . , ψn,2l(ξ) ⇒ j2l(ξ)+. . . = ξ2l[(4l+1)!!]−1+· · · ; (ξ ≪ 1), l > 1. (16)

Therefore, asymptotics of functions Yn(ξ, θ) coincide with asymptotics of function Y1(ξ, θ) in the limit
ξ ≪ 1. For the first time functions ψn,0(ξ) and ψn,2(ξ) were calculated numerically in the region
0 6 ξ 6 ξ1(n) in [6]. These functions are sufficient for approximate calculation of the polytrope
characteristics with small angular velocities. We calculated functions ψn,0(ξ), ψn,2(ξ) and ψn,4(ξ) for
the polytrope with indices n = 1; 2; 3 (see Figs. 1–3).
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Fig. 1. Dependence of functions
ψ1,2l(ξ) on the variable ξ. Curve 1
corresponds to l = 0, curve 2 —

l = 1, curve 3 — l = 2.

Fig. 2. Dependence of functions
ψ2,2l(ξ) on the variable ξ. Notations

are the same as in Fig. 1.

Fig. 3. Dependence of functions
ψ3,2l(ξ) on the variable ξ. Notations

are the same as in Fig. 1.
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The region of variables, in which Ω2 > [Yn(ξ, θ)]n, is the star periphery. In zero approximation,
equation (5) in this region is replaced by equation

∆ξ,θ Yn(ξ, θ) = Ω2, (17)

the general solution of which is

Y II
n (ξ, θ) =

ξ2Ω2

6

(

1 − P2(t)

)

+ Ω2
∑

l>0

c
(n)
2l ξ

2lP2l(t) + Ω2
∑

l>0

b
(n)
2l

ξ1+2l
P2l(t), ξ > ξ1(n), (18)

where c
(n)
2l , b

(n)
2l are integration constants. Accounting for the term [Yn(ξ, θ)]n on the right side of

equation (5) can be realized by the method of perturbation theory. Continuous solution of equation (5)
can be obtained by stitching solutions (10) and (18) on the sphere of radius ξ1(n). Substituting the

function Y I
n (ξ, θ) in equation (8), we determine integration constants a

(n)
2l , because this equation is

inhomogeneous, and functions yn(ξ), ψn,0(ξ), ψn,2l(ξ) are known. Note that integration over variables
ξ′, θ′ should be performed within that region of the polytrope, which is inside the Emden sphere

(0 6 ξ 6 ξ1(n)). Determining a
(n)
2l in an independent way, integration constants for the periphery can

be found from the stitching conditions

Y I
n (ξ, θ) = Y II

n (ξ, θ),
∂

∂ξ
Y I
n (ξ, θ) =

∂

∂ξ
Y II
n (ξ, θ) at ξ = ξ1(n), (19)

equating multipliers for the same Legendre polynomials.

3. The approximation of small velocities

Considering in expression (10) a
(n)
2l = 0 at l > 2, and in expression (18) c

(n)
2l = 0 at l > 1, b

(n)
2l = 0 at

l > 2, we obtain the approximation of small velocities. From conditions (19), the coefficients a
(n)
2 and

c
(n)
0 can be determined, b

(n)
0 , b

(n)
2

c
(n)
0 =

{

ψn,0(ξ1) + ξ1ψ
′
n,0(ξ1)

}

−
ξ21
2

+ ξ1
y′n(ξ1)

Ω2
= ξ1

y′n(ξ1)

Ω2
,

b
(n)
0 = ξ1

{

ψn,0(ξ1) −
ξ21
6

− c
(n)
0

}

= −ξ21
y′n(ξ1)

Ω2
,

b
(n)
2 = ξ31

{

a
(n)
2 ψn,2(ξ1) +

ξ21
6

}

,

a
(n)
2 = −

5

6
ξ21

{

3ψn,2(ξ1) + ξ1ψ
′
n,2(ξ1)

}−1

at ξ1 ≡ ξ1(n),

y′n(ξ1) =
d

dξ1
yn(ξ1), ψ′

n,2(ξ1) =
d

dξ1
ψn,2(ξ1).

(20)

Because Y II
n (ξ, θ) is an extrapolation Y I

n (ξ, θ) in the region ξ > ξ1(n), then the expression for the
polytrope surface can be found from condition Y I

n (ξ, θ) = 0 or from condition Y II
n (ξ, θ) = 0

ξ0(θ) ∼= ξ1(n) +
Ω2

|y′n(ξ1)|

{

ψn,0(ξ1) + a
(n)
2 P2(t)ψn,2(ξ1)

}

. (21)

Expressions for a
(n)
2 and ξ0(θ) were given in [6], and the solution in form (10), (18) in approxima-

tion (20) corresponds to [11]. Approximation (20) corresponds to the multipole expansion of the

gravitational potential in peripheral region of the polytrope in form
∑

l>0 b
(n)
2l P2l(t)ξ

−1−2l. In fact,
such expansion is permissible only in the region ξ > ξe, where ξe is the equatorial radius. And the

general solution (18) of equation (17) in peripheral region has more multipole terms c
(n)
2l P2l(t)ξ

2l. In

addition, solution (17) is approximate one. Therefore, the determination of constants a
(n)
2l , which ap-
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pear in the function Y I
n (ξ, θ), from the stitching conditions leads to errors at describing of the internal

polytrope region. In this regard, we determine constants a
(n)
2l by independent way, and the set of

constants c
(n)
2l and b

(n)
2l — from the stitching conditions, as the result, they become functions of a

(n)
2l .

4. Determination of integration constants

According to relations (5), (10) and (13),

Y I
n (ξ, θ) = yn(ξ) + Ω2

{

ψn,0(ξ) +
∑

l>1

a
(n)
2l P2l(t)ψn,2l(ξ)

}

, (22)

and Y II
n (ξ, θ) we determine by expression (18).

Integration constants a
(n)
2l and c

(n)
2l b

(n)
2l at arbitrary n,due to the division of the polytrope volume

into two regions, must be determined self-consistently, generalizing the method of work [2]. In the
internal region, equation (8) transforms to the form

yn(ξ) + Ω2

{

ψn,0(ξ) +

∞
∑

l=1

a
(n)
2l P2l(t)ψn,2l(ξ)

}

= 1 +
Ω2ξ2

6
(1 − P2(t))

+
1

4π

∫

VI

dξ′Q(ξ, ξ′)

{

ynn(ξ′) + Ω2nyn−1
n (ξ′)

[

ψn,0(ξ
′) +

∞
∑

l=1

a
(n)
2l P2l(t

′)ψn,2l(ξ
′)

]}

+
1

4π

∫

VII

dξ′Q(ξ, ξ′)[Y II
n (ξ′, θ′)]n. (23)

Integration regions over the variable ξ′ schematically are shown in Fig. 4.

ξp

ξ1

ξe

ξp ξ1 ξe

θn

ξ
0 (t’)

I II

Fig. 4. Schematic representation of the in-
tegration region in formula (23).

Region VI is the part of the polytrope volume, which
is inside Emden sphere with radius ξ1(n) and is bounded
by solid curve

0 6 ξ′ 6 ξ0(t′) at 1 > t′ > tn,

0 6 ξ′ 6 ξ1(n) at 0 6 t′ 6 tn,
(24)

where ξ0(t′) is the meridional section of the polytrope sur-
face, which is close to the surface of rotational ellipsoid.
Region VII is the part of the polytrope volume, which is
outside the Emden sphere,

ξ1(n) 6 ξ′ 6 ξ0(t
′) at 0 6 t′ 6 tn. (25)

Herewith tn ≡ cos θn, and the angle θn is determined by
the intersection of the Emden sphere and the polytrope

surface
ξp{1 − e2(1 − t2n)}−1/2 ∼= ξ1(n), (26)

where ξp is the polar radius of the surface.
Note that the “thickness” of region VII (namely ξe−ξ1(n)) is proportional to Ω2, and the subintegral

function in the integral for the region is proportional to Ω2n. Therefore, the integral over the region VII
is proportional to Ω2n+2 and there is a small value at “large” values of the polytropic index (n & 1.5).
That’s why we neglect the integral for the region VII , which simplifies the calculation of integration
constants.

Equality (23) can be given a simpler form, using the integral form of equation for Emden function
(equation (8) at Ω = 0, which describes the polytrope with spherically symmetry)

yn(ξ) = 1 +
1

4π

∫

Q(ξ, ξ′)ynn(ξ′) dξ′ = 1 +

∫ ξ

0
ynn(ξ′)

[

(ξ′)2

ξ
− ξ′

]

dξ′, (27)
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at ξ < ξ1(n) and yn(ξ) = 0 at ξ > ξ1(n). Also, let us use the integral form of equation for the function
ψn,0(ξ), namely

ψn,0(ξ) = −
1

4π

∫

Q(ξ, ξ′)
{

1 − n yn−1
n (ξ′)ψn,0(ξ

′)
}

dξ′ =

= −

∫ ξ

0

[

(ξ′)2

ξ
− ξ′

][

1 − nyn−1
n (ξ′)ψn,0(ξ

′)

]

dξ′; 0 6 ξ 6 ξ1(n). (28)

Next, the integral calculation

Jn(ξ, t) =
1

4π

∫

VI

Q(ξ, ξ′)ynn(ξ′) dξ′. (29)

Expanding the kernel Q(ξ, ξ′) in series for Legendre polynomials, in the region 1 (0 6 ξ 6 ξp) we
obtain

J (1)
n (ξ, t) =

∫ ξ

0
dξ′ynn(ξ′)

{

(ξ′)2

ξ
− ξ′

}

+
∑

l>1

ξ2lP2l(t)

×

{
∫ 1

tn

dt′P2l(t
′)

∫ ξ0(t′)

ξ
dξ′ynn(ξ′)(ξ′)1−2l +

∫ tn

0
dt′P2l(t

′)

∫ ξ1(n)

ξ
dξ′ynn(ξ′)(ξ′)1−2l

}

, (30)

Taking into account the properties of the Legendre polynomials

∫ 1

0
P2l(t) dt = 0 at l > 1, (31)

it can be found, that

J (1)
n (ξ, t) = yn(ξ) − 1 +An(ξ, t),

An(ξ, t) = −
∑

l>1

ξ2lP2l(t)

∫ 1

tn

dt′P2l(t
′)

∫ ξ1(n)

ξ0(t′)
dξ′ynn(ξ′)(ξ′)1−2l.

(32)

According to definition (26) at the small values Ω, when ξp is close to ξ1(n), we find that tn ≈ 1− Ω2.
Because of that the sum over the index l in formula (32) is a small value (∼ Ω4). In the region 2
(ξp 6 ξ 6 ξ1)

J (2)
n (ξ, t) = yn(ξ) − 1 +An(ξ, t) −

∫ 1

t
dt′

∫ ξ

ξ0(t′)
ynn(ξ′)

{

(ξ′)2

ξ
− ξ′

}

dξ′

−
∑

l>1

P2l(t)

∫ 1

t
dt′P2l(t

′)

∫ ξ

ξ0(t′)
ynn(ξ′)

{(ξ′)4l+1 − ξ4l+1}

ξ2l+1(ξ′)2l−1
dξ′. (33)

Herewith t > tn, therefore 1 − t ∼ Ω2, ξ1(n) − ξ0(t
′) ∼ Ω2, ξ′ − ξ1(n) ∼ Ω2, so the both integral terms

are proportional to Ω6 and are small. It is reasonable to neglect them and at arbitrary values ξ in the
region VI to use the approximation

Jn(ξ, t) ≈ yn − 1 +An(ξ, t). (34)

The integral
1

4π

∫

VI

Q(ξ, ξ′)n yn−1
n (ξ′)ψn,0(ξ

′) dξ′, (35)
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which appears in the region (23), is represented in the form

1

4π

∫

VI

Q(ξ, ξ′) dξ′ −
1

4π

∫

VI

Q(ξ, ξ′){1 − nyn−1
n (ξ′)ψn,0(ξ

′)} dξ′

= −
ξ2

6
−

1

2

∑

l>1

P2l(t)ξ
2lI

(n)
2l −

∫ ξ

0

{

(ξ′)2

ξ
− ξ′

}{

1 − nyn−1
n (ξ′)ψn,0(ξ

′)

}

dξ′ −
∑

l>1

P2l(t)ξ
2lD

(n)
2l . (36)

The following notations are introduced

I
(n)
2 = −2

∫ 1

tn

P2(t′)
{

ln ξ0(t
′) − ln ξ1(n)

}

dt′,

I
(n)
2l = (l − 1)−1

∫ 1

tn

P2l(t
′)
{

[ξ0(t′)]2−2l − [ξ1(n)]2−2l
}

dt′ at l > 2,

D
(n)
2l =

∫ 1

tn

P2l(t
′) dt′

∫ ξ1(n)

ξ0(t′)
(ξ′)1−2l{∆ξ′ψn,0(ξ

′)}dξ′ =

=

∫ 1

tn

P2l(t
′) dt′

{(

(ξ′)1−2l dψn,0(ξ
′)

dξ′

) ∣

∣

∣

∣

ξ1(n)

ξ0(t′)

−

∫ ξ1(n)

ξ0(t′)
(2l + 1)(ξ′)−2l dψn,0(ξ′)

dξ′
dξ′

}

.

(37)

Expressions (27)–(37) allow us to simplify equality (23) to the next form

∑

l>1

a
(n)
2l P2l(t)ψn,2l(ξ) = −

ξ2

6
P2(t) −

∑

l>1

P2l(t) ξ
2l

{

1

2
I
(n)
2l + L

(n)
2l +D

(n)
2l

}

+
1

4π

∫

VI

Q(ξ, ξ′)n yn−1
n (ξ′)

∑

l>1

a
(n)
2l P2l(t

′)ψn,2l(ξ
′) dξ′, (38)

where

L
(n)
2l = Ω−2

∫ 1

tn

dt′P2l(t
′)

∫ ξ1(n)

ξ0(t)
ynn(ξ′)(ξ′)1−2ldξ′. (39)

To calculate the integral for the vector ξ′ in equation (38), we expand the kernel Q(ξ, ξ′) in series
for Legendre polynomials,

1

4π

∑

l>1

a
(n)
2l

∫

P2l(t
′)n yn−1

n (ξ′)ψn,2l(ξ
′)Q(ξ, ξ′) dξ′

=
∑

l>1

a
(n)
2l P2l(t)

1

4l + 1

{

1

ξ2l+1

∫ ξ

0
(ξ′)2l+2F

(n)
2l (ξ′) dξ′ + ξ2l

∫ ξ1(n)

ξ
(ξ′)1−2lF

(n)
2l (ξ′) dξ′

}

−
∑

l>1

a
(n)
2l ξ

2lP2l(t)

∫ 1

tn

P 2
2l(t

′) dt′
∫ ξ1(n)

ξ0(t′)
(ξ′)1−2lF

(n)
2l (ξ′) dξ′ −

∑

l,m>1

(1 − δl,m)P2m(t)ξ2ma
(n)
2l S

(n)
2l,2m, (40)

where
F

(n)
2l (ξ) = n yn−1

n (ξ)ψn,2l(ξ) = 2l (2l + 1)ξ−2ψn,2l(ξ) − ∆ξψn,2l(ξ) (41)

according to equations (14),

S
(n)
2l,2m =

∫ 1

tn

dt′ P2l(t
′)P2m(t′)

∫ ξ1(n)

ξ0(t′)
(ξ′)1−2mF

(n)
2l (ξ′) dξ′. (42)
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The sum of the first two series in formula (40) equals

∑

l>1

a
(n)
2l P2l(t)ψn,2l(ξ) −

∑

l>1

a
(n)
2l P2l(t)ξ

2lS
(n)
2l,2l,

S
(n)
2l,2l = (4l + 1)−1ξ−2l

1

[

(2l + 1)ψn,2l(ξ1) + ξ1
dψn,2l(ξ1)

dξ1

]

+

∫ 1

tn

dt P 2
2l(t)

{

ξ−2l
0 (t)

[

(2l + 1)ψn,2l(ξ0(t)) + ξ0(t)
dψn,2l(ξ0(t))

dξ0(t)

]

− ξ−2l
1

[

(2l + 1)ψn,2l(ξ1) + ξ1
dψn,2l(ξ1)

dξ1

]}

.

(43)

Because of orthogonality of the Legendre polynomials in the integral over ξ′ in formula (42), it
is important only to consider the upper vicinity of boundary. Expanding subintegral function in the
vicinity ξ0(t) and integrating by parts, we find, that

S
(n)
2l,2m ≃

∫ 1

tn

P2l(t)P2m(t)ξ−2l
0 (t)

{[

(2l + 1)ψn,2m(ξ0(t)) + ξ0(t)
dψn,2m(ξ0(t))

dξ0(t)

]

− [2l(2l − 1)]−1[2l(2l + 1) − 2m(2m + 1)]

[

(2l − 1)ψn,2m(ξ0(t)) + ξ0(t)
dψn,2m(ξ0(t))

dξ0(t)

]}

dt. (44)

Substituting expressions (40), (43) in equality (38) and equating coefficients of the products P2l(t)ξ
2l,

it is the system of the linear inhomogeneous algebraic equations for the constants a
(n)
2l

a
(n)
2 S

(n)
2,2 +

∑

m>2

a
(n)
2mS2,2m = −

1

6
−

1

2
I
(n)
2 − L

(n)
2 −D

(n)
2 ,

a
(n)
2l S

(n)
2l,2l +

∑

m>1

(1 − δl,m)a
(n)
2mS2l,2m = −

1

2
I
(n)
2l − L

(n)
2l −D

(n)
2l , l > 2.

(45)

Stitching conditions (19) the relations between the integration constants a
(n)
2l and the constants

c
(n)
0 , b

(n)
0 , c

(n)
2 are established, b

(n)
2 , c

(n)
4 , b

(n)
4 , . . .

c
(n)
0 =

{

ψn,0(ξ1) + ξ1ψ
′
n,0(ξ1)

}

−
ξ21
2

+ ξ1
y′n(ξ1)

Ω2
,

b
(n)
0 = ξ1

{

ψn,0(ξ1) −
ξ21
6

− c
(n)
0

}

,

c
(n)
2 =

3

5

{

5

18
+
a
(n)
2

ξ21

[

ψn,2(ξ1) +
ξ1
3
ψ′
n,2(ξ1)

]}

,

b
(n)
2 = ξ31

{

a
(n)
2 ψn,2(ξ1) +

ξ21
6

− ξ21c
(n)
2

}

,

c
(n)
4 =

5

9

a
(n)
4

ξ41

{

ψn,4(ξ1) +
ξ1
5
ψ′
n,4(ξ1)

}

,

b
(n)
4 = ξ51

{

a
(n)
4 ψn,4(ξ1) − c

(n)
4 ξ41

}

, . . . , ξ1 ≡ ξ1(n).

(46)

As one can see from the definitions S
(n)
2l,2l and S

(n)
2m,2l, values of these quantities depend on the

polytrope surface ξ0(t), which is determined by the condition Yn(ξ, θ) = 0. Therefore, the problem
of calculating integration constants is self-consistent, and can be performed via the iterative method.
The surface of rotational polytrope is close to the surface of rotational ellipsoid, determined by values
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(e, ξp), or (e, ξe), where ξp i ξe are the polar and equatorial radii, e = {1− ξ2p/ξ
2
e}

1/2 is its eccentricity.

Polar radius can be found from the condition Y I
n (ξ, 0) = 0, and the equatorial one from the condition

Y II
n (ξ, π/2) = 0. Consequently, it is necessary to find constants a

(n)
2l at l > 1 and constants c

(n)
2l

in each iteration, b
(n)
2l at l > 0. As zero approximation, There are used expressions (20), being

good approximation for the small values of angular velocities. We restricted ourselves with approach

a
(n)
2l = c

(n)
2l = b

(n)
2l = 0 at l > 3. The iterative process is fast converging and requires no more than 5

iterations even at the maximum value of angular velocity Ωmax(n).
The calculating results of the dependence of geometrical elements on the polytrope surface (ξp, ξe, e)

on angular velocity for the case n = 2.5 are shown in Table 1. There is also shown the dependence of

Table 1. Dependence of the model characteristics with index n = 2.5 on angular velocity
in approximation a2l = 0 at l > 3.

Ω e(Ω) ξp(Ω) ξe(Ω) a2(Ω) a4(Ω) η(n,Ω) ζ(n,Ω)

0.01000 0.06066 5.35266 5.36254 −10.27730 −0.00115019 1.00046 1.00157
0.02000 0.12251 5.34499 5.38556 −10.28090 −0.00506429 1.00185 1.00632
0.03000 0.18449 5.33222 5.42536 −10.28690 −0.011586 1.00418 1.01440
0.04000 0.24705 5.31437 5.48437 −10.29500 −0.0206999 1.00752 1.02603
0.05000 0.31060 5.29147 5.56680 −10.30530 −0.0323615 1.01192 1.04159
0.06000 0.37578 5.26359 5.67989 −10.31740 −0.0464533 1.01748 1.06165
0.07000 0.44375 5.23085 5.83701 −10.33070 −0.0626984 1.02434 1.08701
0.08000 0.51687 5.19342 6.06661 −10.34430 −0.0804401 1.03269 1.11896
0.09000 0.60184 5.15169 6.45080 −10.35610 −0.0978105 1.04282 1.15961
0.09100 0.61171 5.14731 6.50666 −10.35700 −0.0993382 1.04395 1.16429
0.09200 0.62201 5.14290 6.56812 −10.35770 −0.100777 1.0451 1.16909
0.09300 0.63285 5.13845 6.63651 −10.35840 −0.102109 1.04627 1.17404
0.09400 0.64439 5.13398 6.71372 −10.35890 −0.103295 1.04747 1.17913
0.09500 0.65683 5.12949 6.80268 −10.35920 −0.104284 1.04869 1.18437

the relative increase of the polytrope mass η(n,Ω) = M(n,Ω)/M(n, 0), where M(n, 0) is the polytrope
mass without rotation, as well as the relative increase of the inertia moment relative to the rotation
axis ζ(n,Ω) = I(n,Ω)/I(n, 0), where I(n, 0) is the inertia moment of the polytrope with index n at
Ω = 0. In Table 2 was shown dependence of integration constants on angular velocity for the polytrope
n = 2.5. The results of analogues calculations for the polytrope n = 3 are shown in Tables. 3 and 4.

Table 2. Dependence of integration constants for the polytrope with index n = 2.5 on
angular velocity according to expressions (46).

Ω c
(n)
0 · Ω2 b

(n)
0 · Ω2 c

(n)
2 b

(n)
2 · Ω2 c

(n)
4 b

(n)
4

0.01000 −0.408791 2.18821 −0.000217194 −0.00512369 −6.00647 · 10−7 −0.0188939
0.02000 −0.409836 2.19122 −0.000275652 −0.0205019 −2.64465 · 10−6 −0.0831899
0.03000 −0.411581 2.19623 −0.00037308 −0.0461562 −6.05039 · 10−6 −0.19032
0.04000 −0.414021 2.20326 −0.000504609 −0.0821202 −1.08098 · 10−5 −0.340032
0.05000 −0.41716 2.21229 −0.000671861 −0.128441 −1.68997 · 10−5 −0.531595
0.06000 −0.420995 2.22333 −0.000868342 −0.185172 −2.42586 · 10−5 −0.763077
0.07000 −0.425529 2.23638 −0.00108431 −0.252365 −3.27421 · 10−5 −1.02993
0.08000 −0.43076 2.25143 −0.00130515 −0.330054 −4.20071 · 10−5 −1.32137
0.09000 −0.436688 2.26849 −0.00149676 −0.418201 −5.10782 · 10−5 −1.60671
0.09100 −0.43732 2.2703 −0.00151137 −0.427583 −5.1876 · 10−5 −1.6318
0.09200 −0.437958 2.27214 −0.00152274 −0.437061 −5.26273 · 10−5 −1.65544
0.09300 −0.438603 2.274 −0.0015341 −0.446645 −5.33229 · 10−5 −1.67732
0.09400 −0.439254 2.27587 −0.00154222 −0.456324 −5.39423 · 10−5 −1.6968
0.09500 −0.439914 2.27777 −0.0015471 −0.466098 −5.44588 · 10−5 −1.71305

The polytrope characteristics without rotation are shown in our work [2].
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Table 3. Dependence of the model characteristics with index n = 3 on angular velocity
in approximation a2l = 0 at l > 3.

Ω e(Ω) ξp(Ω) ξe(Ω) a2(Ω) a4(Ω) η(n,Ω) ζ(n,Ω)

0.01000 0.09220 6.89116 6.92064 −10.87250 −0.00125638 1.00063 1.00242
0.02000 0.18451 6.87473 6.99482 −10.87740 −0.00465916 1.00249 1.00981
0.03000 0.27926 6.84737 7.13108 −10.88530 −0.0102429 1.00566 1.02260
0.04000 0.37855 6.80919 7.35666 −10.89590 −0.0177874 1.01024 1.04158
0.05000 0.48751 6.76042 7.74285 −10.90790 −0.0266846 1.01642 1.06821
0.05100 0.49938 6.75498 7.79677 −10.90910 −0.0275959 1.01714 1.07138
0.05200 0.51152 6.74945 7.85487 −10.91030 −0.0285006 1.01787 1.07466
0.05300 0.52398 6.74381 7.91776 −10.91140 −0.0293932 1.01863 1.07805
0.05400 0.53679 6.73808 7.98620 −10.91250 −0.0302697 1.01941 1.08155
0.05500 0.55003 6.73226 8.06117 −10.91360 −0.0311239 1.0202 1.08517
0.05600 0.56377 6.72634 8.14394 −10.91470 −0.0319476 1.02102 1.08892
0.05700 0.57813 6.72034 8.23623 −10.91560 −0.0327273 1.02186 1.09280
0.05800 0.59325 6.71425 8.34048 −10.91650 −0.0334517 1.02272 1.09681
0.05900 0.60936 6.70808 8.46027 −10.91720 −0.0340975 1.0236 1.10097
0.06000 0.62682 6.70183 8.60132 −10.91780 −0.0346355 1.02451 1.10529
0.06100 0.64624 6.69552 8.77373 −10.91820 −0.0350125 1.02544 1.10977

Table 4. Dependence of integration constants for the polytrope with index n = 3 on
angular velocity according to expressions (46).

Ω c
(n)
0 · Ω2 b

(n)
0 · Ω2 c

(n)
2 b

(n)
2 · Ω2 c

(n)
4 b

(n)
4

0.01000 −0.293028 2.01957 −0.000201124 −0.00752171 −6.35822 · 10−7 −0.0632967
0.02000 −0.294192 2.02328 −0.000276327 −0.0301004 −2.35788 · 10−6 −0.234729
0.03000 −0.296133 2.02946 −0.000397574 −0.0677751 −5.18367 · 10−6 −0.516039
0.04000 −0.298851 2.03811 −0.00056026 −0.120606 −9.00175 · 10−6 −0.896132
0.05000 −0.302345 2.04924 −0.000744432 −0.188655 −1.35044 · 10−5 −1.34438
0.05100 −0.302738 2.05049 −0.000762849 −0.196298 −1.39656 · 10−5 −1.39029
0.05200 −0.303137 2.05176 −0.000781266 −0.204094 −1.44234 · 10−5 −1.43587
0.05300 −0.303543 2.05306 −0.000798149 −0.212041 −1.48752 · 10−5 −1.48083
0.05400 −0.303961 2.05438 −0.000815031 −0.22014 −1.53187 · 10−5 −1.52499
0.05500 −0.304385 2.05573 −0.000831914 −0.228392 −1.5751 · 10−5 −1.56803
0.05600 −0.304814 2.0571 −0.000848796 −0.236797 −1.61679 · 10−5 −1.60953
0.05700 −0.305253 2.05849 −0.000862609 −0.245349 −1.65625 · 10−5 −1.64881
0.05800 −0.305699 2.05992 −0.000876422 −0.254054 −1.69291 · 10−5 −1.6853
0.05900 −0.306154 2.06136 −0.000887166 −0.262907 −1.72559 · 10−5 −1.71784
0.06000 −0.306616 2.06284 −0.000896374 −0.27191 −1.75281 · 10−5 −1.74494
0.06100 −0.307085 2.06433 −0.000902513 −0.281059 −1.77189 · 10−5 −1.76394

As was shown in Tables. 2 and 4, integration constants are weakly dependent on angular velocity
and this dependence decreases with increasing index n. Obtained results for polar and equatorial radii
in all region of change of angular velocity with high accuracy coincide with the results of numerical
integration of equilibrium equation in [7], which is illustrated in Table 5 for the polytrope n = 3.
Note that in work cited above [11], the deviations from results of work [7] are several percent (at

Table 5. Comparison of the polytrope characteristics calculated in this study with the values obtained in the
case n = 3 in [7]. Here M(Ω) is the polytrope mass in units 4πρcλ

3, V (Ω) is the dimensionless volume in units
103λ3, ge(Ω) is the equatorial gravity of star in units 4πGρcλ ([∗] corresponds to our results).

Ω ξp(Ω)[∗] ξe(Ω)[∗] ge(Ω) · 102[∗] M(Ω)[∗] V (Ω) · 10−3[∗] ξp(Ω) [7] ξe(Ω) [7] ge(Ω) · 102 [7] M(Ω) [7] V (Ω) · 10−3 [7]

0.02 6.87473 6.99482 3.99525 2.02323 1.40880 6.87504 6.99456 3.9975 2.02323 1.40867

0.04 6.80919 7.35666 3.17874 2.03887 1.53848 6.80949 7.35492 3.1874 2.03882 1.53745

0.06 6.70183 8.60132 1.24656 2.06767 1.97737 6.70013 8.57635 1.2763 2.06738 1.96685
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n = 3 it is 4% in the vicinity Ωmax(3)). As was shown in Table 5, our results for all characteristics
of the polytrope only slightly deviate from results of [7] obtained by numerically integration of the
equilibrium equation.
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Fig. 5. The meridional section of the polytropes surface with index n = 3.
Curve 1 corresponds to the surface of an ideal rotational ellipsoid at Ω1 = 0.02.
Curve 2 — the same, but the angular velocity Ω2 = 0.06. Curve 3 represents
the true surface of the polytrope at Ω2 = 0.06, which is determined by the
smallest root of equation Yn(ξ, θ) = 0 relative to ξ. Crosses corresponds to

this condition at Ω1 = 0.02.

In our research work [2]
it was shown, that the sur-
face of rotational polytrope
n = 1 deviates from the
surface of rotational poly-
trope with the same val-
ues ξp and ξe, and the de-
viation value is a mono-
tonically increasing func-
tion of Ω. Our calcula-
tions show that this effect
is also observed for poly-
tropes with n > 1, as ev-
idenced by Fig. 5. Obvi-
ously, this could be discov-
ered by the author of [7],
if he would have calculated

ξ0(t), and not only ξp, ξe.

5. Conclusions

Method of separate description of the internal region and periphery, proposed in [11], summarizes
Milne–Chandrasekhar approach [6,12] and is a very rational in finding the nonlinear equations solutions
(n > 1). However, the method of the equal determination of integration constants from the stitching
condition of solutions at the border of these regions, used in [11] does not provide sufficient accuracy
and uses the fitting parameter and suitable for the small angular velocities.

Our approach is based on the unequal description: integration constants for the important internal
region are determined by the integral form of the equilibrium equation, and integration constants
for periphery are found from the stitching condition of solutions without using fitting parameters.
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Fig. 6. The distribution of dimensionless density
for the polytrope with index n = 2.5 at Ω = 0.095
for polar (curve 1) and equatorial (curve 2) di-
rections. Dashed curve corresponds to the model

without rotation.

At the same time, our approach is self-consistent, and
integration constants for the periphery obtained in the
i-th iteration, are used in determination of integration
constants for the inner region in the (i+1)-th iteration.
The rationale in favor of our approach is shown in
Fig. 6, which depicts the normalized density of matter
ρ(r)/ρc = [Yn(ξ, θ)]n as function of variable ξ for polar
(curve 1) and equatorial (curve 2) directions in the
case n = 2.5 at Ω ≈ Ωmax = 0.095. Dashed curve
corresponds to the polytrope without rotation. As
was shown in Figure, in the region of periphery (at ξ >
ξ1(n)), the density drops to zero very quickly, which
justifies the approximate description in this region.

Unlike [11], calculated in this work polar and
equatorial radii with high accuracy coincide with the
results of [7], and all integration constants are the

functions of angular velocity. The surface of rotational polytropes calculated at n = 3 deviates from
the ideal rotational polytrope. This effect marked for the first time in our work [2], is obviously natural.
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The deviation of the polytrope surface from the surface of ideal rotational polytrope with the same
values ξe and ξp confirmed by the calculation of the polytrope volume,

V (Ω) =
4

3
πλ3

∫ 1

0
ξ30(t)dt. (47)

The dimensionless volume v = V λ−3 for the ideal rotational ellipsoid equals 4/3πξ2e ξp, that at n = 3
and Ω = 0.06 is 2.07688 ·103 . However, volume calculated in this study by formula (47) at these values
n and Ω equals to 1.97737 · 103, which deviates from the result of [7] at 0.5% (see Table 5).
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Метод iнтегральних рiвнянь у полiтропнiй теорiї зiр з осьовим
обертанням. II. Полiтропи з iндексами n > 1

Ваврух М. В., Дзiковський Д. В.

Львiвський нацiональний унiверситет iменi Iвана Франка,

вул. Кирила i Мефодiя, 8, 79005, Львiв, Україна

Запропоновано новий спосiб знаходження розв’язкiв нелiнiйних рiвнянь рiвноваги для
обертових полiтроп, що грунтується на самоузгодженому описi внутрiшньої областi
та периферiї при використаннi iнтегральної форми рiвнянь. Розраховано залежнiсть
геометричних параметрiв, форми поверхнi, маси, моменту iнерцiї i сталих iнтегру-
вання вiд кутової швидкостi для iндексiв n = 2.5 i n = 3.

Ключовi слова: зорi-полiтропи, неоднорiднi елiпсоїди, осьове обертання, рiвняння

механiчної рiвноваги, стабiльнiсть зiр.
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