
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 6, Num. 1, 2021

SYSTEM FOR EFFECTIVE SMALL BUSINESS SUPPORT
Volodymyr Pavlenko, Oksana Lashko

Abstract – This paper considers the problem of developing
specialized software designed to support small businesses. It
substantiates the relevance of creating such systems;
architecture has been offered; and the results of development
have been given. For practical use, a specific subject area has
been considered, which allows to clearly understand the
purpose and outcome of the work. These materials can be used
to obtain ready-made solutions during the development of a
software package on this topic. This document can be
considered as an introductory material for the various stages
of the project to develop a system of effective support of small
business.

Index Terms: software development management, system
modeling, business data processing, reconfigurable and self-
configurable computer systems, data analysis, client-server
systems

I. INTRODUCTION
To date, the use of specialized software in business has

become widespread.
Programs designed for employees of companies have

the ability to perform a large number of routine tasks [1].
However, modern Ukrainian entrepreneurs have a very
limited set of tools to use.

In particular, there are very few programs that can help
maintain a database of goods, revenues and sales, and in
most cases, they are too cumbersome (1C Accounting) for
use by an entrepreneur who owns a small or medium
business. And there are no software systems that could be
used as a single integrated system to work with any device
(phone, PC or browser).

There is also a problem of lack of a special set of
programs (windows, android, web) that could automate the
routine work of modern employees, and help them
qualitatively assess the current state of the enterprise by
considering the calculated accounting, economic analysis
displayed in a convenient form on their work devices.
(telephones, PCs, etc.).

II. TECHNICAL TASK
Create a program for effective support of small

business on the topic of "Auto Parts Store", which should

support the work with the documents of current legislation
and conveniently organize the working space of the
employee [2].

The software package must be able to work from many
devices simultaneously using a common database.

The speed of the server part must be from 3,000
requests / hour.

The program must meet the minimum requirements for
memory up to 500 MB and disk capacity up to 5 GB.

A. A. BUSINESS RULES
Every year (01.01.xx 00:00) document numbering

must start from the beginning [3]. (eg “Invoice №1”)
The program must have special functionality for

working with documents.
Types of documents [4]:
 Score
 Sales Invoice
 Receipt
 Tax invoices
 Invoices for return
 Invoice for receipt
The required statistics to be provided by the software

include:
 Gross income,
 Top 10 buyers by their costs.

B. B. MAIN FUNCTIONALITY
The main functionality of the program is based on user

needs. Before developing, it is important to research the
subject of the program in detail.

One of the main tasks of software design is to form a
list of functionalities required by users. The list should
contain all the important functions for working with data.

It is very important to pay attention to all the needs of
users, because fixing old features or adding new features is
an expensive thing in the later stages. That’s why
programmer should pay attention to them.

Functionality of the program according to the theme
"Auto Parts Store":

Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine.
Author’s e-mail: volodymyr.pavlenko.ki.2017@lpnu.ua

https://doi.org/10.23939/acps2021.01.___
Submitted on 05.05.2021
© Pavlenko V.V., Lashko O.L., 2021

2
Volodymyr Pavlenko, Oksana Lashko

1) Automatic generation of new product code (to be
used as a barcode).

2) Download the supplier's price list.
3) Add, edit and delete documents.
4) Special numbering for each type.
5) Support for different types of sales: invoices,

expense invoices, return invoices and tax invoices.
6) Formation of special forms on the basis of types of

orders (html for printing, xml).
7) Analytics.
8) Inventory.
9) Authorization, registration.
10) Existence of administrators (privileged users).
11) Logging of performed actions by execution time.
12) Print created html-forms of documents.
13) Printing of labels with barcodes. Must contain the

price and name of the product.
14) Scan generated barcodes.

III. ARCHITECTURE
The small business support system must work

simultaneously with one database on different devices, so it
will be advisable to build an architecture of "client-server"
type[5].

C. A. CLIENT
The client program consists of modules MainWindow,

TcpClient and many classes of widgets and dialogs (Fig. 1):
 MainWindow - acts as a control center and is the

main graphical object that will contain elements
such as widgets.

 TcpClient - is responsible for communication with
the server. Is a field of the MainWindow class and
is initialized in its constructor. It implements basic
public methods through which other classes will
interact with the server.

 Widgets - a type of classes that will play a major
functional role.

 Dialogs are a type of class that is responsible for
modular, pop-up windows. Very often these
windows play the role of a dynamic application
configurator.

The MainWindow and TcpClient are in a single
instance while there are many dialogs and widgets.

Fig. 1. The structure of the client part. MainWindow and
TcpClient interact with each other and transfer information
between the GUI and the server. Widgets and dialogs are

responsible for interacting with the user

D. B. SERVER
It is important to have a good understanding of exactly

how the client and server will interact[6]. The server part
consists of 3 main modules (Fig. 2), namely:

 MainSever - the main class responsible for
managing other modules and interacting with
clients,

 XmlParser is responsible for working with xml-
data files,

 SQLiteHelper is responsible for working with the
SQLite database and performs basic computational
tasks using the query language.

Fig. 2. The structure of the server part. The XmlParser and
SQLiteHelper modules are part of the MainServer, but they
are also completely independent parts of the code and are

used only as separate objects

The SQLiteHelper module interacts with the SQLite
database. SQLite is an open source embedded relational
database.[7] The database has a specially designed
application structure (Fig. 3). Tables are linked through
primary and secondary keys.

3
System for Effective Small Business Support

Fig. 3. Example of the structure of relationships between
tables in a database. Primary keys are highlighted in bold

and secondary keys in italics.

Each table has its own special purpose (Table 1) and
plays an important role in the whole program. The database
is created immediately the first time you start the server on
a new machine.

Documents have the characteristic ListType, which is
actually an enum type, i.e., an example of a record in the
database: "3" - Document type "3", which is a "Tax
invoice". ListNumber is a unique (for the current year only)
document identifier, according to the Business Rule on
annual numbering updates.

Each list (from the Lists table) is, in fact, a document
whose rules of conduct and types are listed in the Business
Rules.

Relationships between tables can be either to each
other or to one another.

Table 1

DB tables and their purpose
Table name Description

Lists Keep a record of all the "Lists" (bills,
invoices, etc.).

Records Contain all positions of all lists

ProductTypes Contain a list of all possible types of
goods.

Users Keep a record of all users of the program.

UserLogs Keep a list of all users’ activities.

Customers Keep a record of all customers.

Cars Each customer can have multiple cars.

Sellers Keep a record of all sales.

Storage It contains a list of all those present to
"structure" (in store) products.

Each table is related to others in a special way that
implements a certain type of relationship:

 Lists and Records display lists and their records,
respectively. One-to-many connection principle.

 RecordTypes and Records - "one-many"
 Users and UserLogs - "one-many"
 Lists and Customers - "many-one". One list can

have only one buyer (seller).
 RecordTypes and Storage - "one-one"
 Customers and Cars - "one-many"

IV. DESIGNING
Software design begins during or immediately after the

completion of architecture development.
Once the requirements are established, the design of

the software can be established in a software design
document. This involves a preliminary or high-level design
of the main modules with an overall picture (such as a block
diagram) of how the parts fit together.

The language, operating system, and hardware
components should all be known at this time.

Then a detailed or low-level design is created, perhaps
with prototyping as proof-of-concept or to firm up
requirements.

One of the design stages can be considered detailed
design, which is carried out by building class diagrams
separately for the client (Fig. 4) and server (Fig. 5). During
the detailed design, it is important to plan the connections
between the classes.

The creation of business programs is more than a way
to view or automate your information process.

E. A. DETAILED DESIGN

Fig. 4. Part of the client class diagram. The diagram shows
the main class MainWindow and its connections to

Load_supplier_invoice (dialog) and Inventory (widget)

In particular, relationships such as aggregation and
composition should be indicated in the diagram and, to
improve perception, they should be summed up in the
appropriate field of the class to which they are associated.
(Fig. 5).

4
Volodymyr Pavlenko, Oksana Lashko

The class diagrams are shown from the field and the
methods of the server modules, from the program code, the
objects of the type of classes.

The diagram depicts a large amount of low-root
information, which is extremely useful for software
developers.

Fig. 5. Part of the server class diagram. The relationship
between the XmlParser and MainServer classes. In this

case, the first class is a field of the second class, which is an
example of aggregation

The final stage of design in this project is the choice of
how the client and server interact. As a basis for client-
server interaction, it was decided to choose the most
convenient way to understand "Request-Response". The
server must respond a special message to each request from
client.

In most cases, the server will be required to
acknowledge receipt or processing of information. To log
all possible types of commands, a special "request-
response" table (Table 3) has been created, which contains
all types (Table 2) of requests to the server and responses to
them for the client.

Table 2

All types of commands

Commands

Add

Del

Edit

Get

Login

Uniq
Each type of team is specially designed to minimize

their overall number. This is done to provide fast encoding
and effective further code support.

It was decided to use the ":" symbol as a delimiter. By
the way, choosing a different one or even using a group of
characters is not a problem.

The table gives examples of each of the types of the
commands in the appropriate order. The table contains: the
name of the class, client’s requests and server’s responds.

Table 3

An example of each type of command

GUI class
Request
(client:[UID]:[command][:p
arams])

Response

New_cust
omer

client:[UID]:add:Customers:[
name]:[iban]:[bank]:[edrpoy]:
[ipn]:[address]:[number]:[ema
il]

server:[bool]

Customers client:[UID]:del:Customers:I
D_Customer=[ID_Customer] server:[bool]

New_cust
omer

client:[UID]:edit:Customers:I
D_Customer=[ID_User]:["col
umn=value" / delimiter = "|"]

server:[bool]

Customer_
info

client:[UID]:get:Customer_inf
o:ID_Customer=[ID_Custome
r]

server:[Lists.Dat
eTime +
Records by
ID_Customer]

Authorizat
ion

client:[UID]:login:[login]:[pas
sword]

server:[UID or -
1]:[isAdmin]

Load_sup
plier_price
list

client:[UID]:uniq:addProduct
Types:[supplier]:[2000 or less
records]

server:[bool]

F. B. CODING
After the detailed design, the coding stage begins,

which is the conversion of the developed diagrams and
algorithms into code in the selected programming language.

During this stage, the main method of software testing
is selected and all items of the created technical task are
implemented.

It was decided to implement the user interface of the
server part in the form of a command line interface (CLI),
because the end user will not in any way configure the
server directly. It is assumed that any required settings of
the server program will be performed using the graphical
interface of the client program.

Qt framework provides a good library for developing
CLI applications [8]. In particular, they allow to work
directly with stdout and stderr streams. This allows to easily
log information.

The information that will be output by the server
program in stdout will be exclusively working information
about:
 Starting the server,
 Network server address,
 Information about new connected client programs,
 Information about disabled client programs,

5
System for Effective Small Business Support

 Errors at work.
It was decided to implement the user interface (Fig. 6)

with the client part using Qt GUI technologies [9]. The
GUI model will be based on the terms of reference.

The main control is QMenuBar from the Qt GUI
package. From this element the user will call the main
modules of the system.

Each module is a separate QWidget that runs in the
QTabWidget as a tab.

Interface structure:

Fig. 6. Customer interface structure diagram. The figure
shows all the transitions between different parts of the

graphical interface. There are 2 types of possible graphic
classes that will be called from the main window of the

program: widget (rectangle), dialog (ellipse).

The interface is developed in Qt Creator [10].

G. C. TESTING
The testing phase (Fig. 7) is a fairly broad point and

covers most of the other development stages.
Also, this stage may also cover the future phase of

maintenance, i.e., after commissioning, when the tester is an
employee of the enterprise.

The program is designed for the Ukrainian market so
you can see the Ukrainian localization.

Fig. 7. Testing of work with the list of documents. You can
see 2 records with end customers.

Each document has a list of things (Fig. 8). Therefore,
double-click to edit the mode of a specific document.

During the main stage of testing, the main validation
of the software for compliance with the technical task was
performed. A lot of information was obtained that can be
compared with the analogues of the system on the market.

Fig. 8. Testing work with list of goods from the selected
doc. List belongs to end customer and seller Olexander

Checking the correctness of the database update of all
available product types (Fig. 9).

Fig. 9. Testing the work of updating the database of all
types of goods. You should enter the path to xml-doc

After the completion of the testing and commissioning
phase, the created system of effective small business
support is a full-fledged software product and can be
compared with other analogues. Let's single out
architectural advantages:

 The developed system in comparison with the
analogue of "1C: Enterprise" has only the
necessary functionality for a small business
employee. Due to the fact that the number of
functions is much smaller, the maintenance of this
software is cheaper.

 Unlike, for example, the analogue "Athena", the
developed software supports multi-device
operation and has sufficient functionality to work
effectively with routine tasks.

Also, hardware requirements play an important role in
such systems. For example, 1C: Enterprise has minimum
requirements for hard disk (40 GB) and OP (1 GB). If the
OP is less, the program will run extremely slowly. That is
why the recommended requirements for 1C are at least 2
GB. Compared to the system developed in this bachelor's
thesis, the difference is significant, because the created
developed program uses only 500 MB of RAM.

6
Volodymyr Pavlenko, Oksana Lashko

Given the above reasons, it can be argued that the
developed system in this project provides more efficient
operations in a typical, small business environment.

V. MAINTENANCE
Maintenance is an important stage in the life cycle of

any high-quality software that works with time-varying
requirements.

If the product developer no longer supports the
software installed by the client, the transition to a new one
is problematic, and the support of the existing system is too
expensive.

During each stage of software development, the
developer must constantly check his work for errors and
correct them in advance.

If there is a technical feasibility, reengineering is
carried out - that is, the creation of a redesigned version of
the old software taking into account the new requirements.
Migration is gradual to avoid risks.

Preventative Software Maintenance helps to make
changes and adaptations to your software so that it can work
for a longer period of time. The focus of the type of
maintenance is to prevent the deterioration of your software
as it continues to adapt and change. These services can
include optimizing code and updating documentation as
needed.

Taking into account the reasons above, and also taking
into account the type of software developed, it was decided
to choose preventive software maintenance.

Preventative software maintenance helps to reduce the
risk associated with operating software for a long time,
helping it to become more stable, understandable, and
maintainable.

For all businesses and organizations, software
maintenance is an essential part of the software
development lifecycle. This isn’t something that one can
skip or avoid.

It is absolutely necessary for the success of your
software and any evolution into the future.

It is important to know that maintenance needs to go
much further than fixing issues or bugs – that is only one
steps of the software maintenance process.

Updating software environments, reducing
deterioration, and enhancing what is already there to help
satisfy the needs of all users are also included in the
software maintenance examples.

In our application project with the theme "Auto Parts
Store" we developed a program to support small businesses
working with the legislation of Ukraine, which is constantly
frequently.

As a result, the program needs to be frequently
updated and modified.

The main most frequently changing parts of the
software are modules that work with forms for printing
documents. For other changes in the legislation, editing
through the graphical interface of the program is already
provided, which greatly facilitates maintenance.

VI. CONCLUSION
Therefore, this document discusses the main points of

the process of developing specialized software to support
small businesses.

During the time allotted for the implementation of the
project, the way to develop business support systems was
studied and performed. The work was carried out according
to the numerical framework specified in the calendar plan.

This paper considers the main points of the process of
developing specialized software to support small
businesses. In particular, the main tasks were performed:

 requirements were received from end users and a
technical task was created on their basis;

 the selection of optimal means for creating this
type of software;

 developed software architecture;
 detailed design and coding;
 the created software was tested, namely its

validation for compliance with the initial
requirements.

A full-fledged software system for effective support of
small business on the subject of "Auto Parts Store" was
created, which supports the work with the documents of
current legislation and conveniently organizes the working
space of the enterprise. The created system has the
following architectural advantages

 The resulting software has the ability to work from
many devices.

 The program meets the requirements for memory
and has a size of up to 500 MB.

 The disk size is less than 5 GB. The speed of the
server part exceeds 3000 requests / hour.

 Due to the fact that the number of functions is
much smaller, the maintenance of this software is
cheaper.

After commissioning by end users, a sufficient number
of positive feedback was received, which confirms the
criterion of project success.

The developed software is effective when used in
small enterprises, as it covers the main disadvantages of
analogues in the market of business support programs:

 redundancy and high cost of maintenance,
 truncated functionality, which is not enough to

effectively perform certain tasks
 inability to work with multiple devices

simultaneously.
References

[1] Spinellis, D., (2016). Managing a Software Business. IEEE
Software, pp. 4-7.

[2] Voas, J., (2004). Software Engineering's Role in Business.
IEEE Software, pp. 26-27.

[3] Kluza, K. and Nalepa, G., (2017). A method for generation
and design of business processes with business rules.
Information and Software Technology, pp. 123-141

7
System for Effective Small Business Support

[4] Knowledge-Based Systems, (1988). Knowledge-based
decision support in business: issues and solutions.

[5] Refactoring.guru. (2021). Design Patterns. Available at:
<https://refactoring.guru/design-patterns> (Accessed 30 May
2021).

[6] Zhu, H., (2005). Software design methodology. Oxford:
Elsevier Butterworth-Heinemann.

[7] Allen, G. and Owens, M., (2010). The definitive guide to
SQLite. New York, NY: Apress. p. 24

[8] Qt Project. (2021). Qt Examples And Tutorials. Available at:
<https://doc.qt.io/qt-5/qtexamplesandtutorials.html>
(Accessed: 30 May 2021).

[9] Rischpater, R., (2013). Application development with Qt
Creator. Birmingham: Packt Publ.

[10] Qt Project. Qt Creator. (2021). (Version 4.12).
[11] Thankappan, V., (1980). Small Business Observations,

American Journal of Small Business. pp.1-2.
Pavlenko Volodymyr is a Junior C++

Qt Software developer. Nowadays he works
as a freelancer.

From 2013 to 2017, he completed his
secondary education at the Talne Lyceum of
Mathematics and Economics.

After that he entered Lviv Polytechnic
National University, where from 2017 to
2021 he received a bachelor's degree in
"Computer Engineering".

Oksana Lashko was born in 1976 in
Lviv, Ukraine. She received the B.S. and
M.S. degree in Lviv Polytechnic State
University, Lviv, in 1999. From 1999 to
2002, she was postgraduate at Lviv
Polytechnic National University. Since 2007,
she is a senior lecturer at the Computer
Engineering Department of Lviv Polytechnic
National University. Her research interests
include the development of signal processing

tools at the algorithmic and software levels, research of image
encoding and compression problems.

