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1. Introduction

There is considered the approximation of the initial boundary value problem for a non-linear parabolic
equation that reads,

8ba(t v —div(a(z,Vu) + K(u)) = f in Q,
u(z,t) =0 on 90 x(0,7), (1)
b(u)(t =0) = b(uo) in Q.

Here, Q is a bounded open set of R? (d > 2), T > 0, and Q = Q x (0,T). The stress a: 2 x R? — R? is
assumed to have the potential p: Q x R* — R*. Such an equation arises fluid dynamics and rheology
(see [1,2]).

Throughout this paper, we assume that:
the field b: R — R is a strictly increasing C*(R)-function, b(0) = 0, and there exists by € R such that

0< by < b/(S) < by =2by forall seRR. (2)

For any Musielak-function ¢ (see definition below 2.1), the stress a: 2 x R? — R? is a continuous
function such that for all £,&* € R?, for a.e. z € Q

laz, &) <P e(x, [€]), (3)
(a(z,€) - ( ENE—&) > (4)
a(x,§)€ = ve(x, [¢])  for some v >0, (5)

SO
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Discrete solution for the nonlinear parabolic equations with diffusion terms in Museilak—spaces 585

The diffusion terms K : R — R? is a continuous function such that
K (s)] < v o (:E, ;) for all s in R, for some vy > 0, (6)

and
feL'(0,T;L*()). (7)

In classical Sobolev spaces, starting with the paper [3], the authors proved an existence result of a
weak solution for the non coercive problem (1) in the stationary case b(u) = 0 using the symmetrization
method. More later Di Nardo et al. [4] has shown the existence of renormalized solution for the
parabolic version, more precisely in the linear case b(u) = u, and the uniqueness for such solutions in
the paper [5], A. Aberqi et al. |6, 7] has proved the existence of a renormalized solution for (1) with
more general parabolic terms b(z, s).

In Orlicz spaces we refer to [8] where L. Aharouch, J. Bennouna have proved the existence and
uniqueness of entropy solutions in the framework of Orlicz Sobolev spaces W01L¢(Q) assuming the
Ag-condition on the Orlicz-function ¢. Recently, the uniqueness of renormalized solution of (1) in the
general case has been proven by A. Aberqi et al. in [9] and by F. Kh. Mukminov in [10, 11] for the
Cauchy problem for anisotropic parabolic equation using Kruzhkov’s method of doubling the variable.

Concerning Musielak spaces, these are spaces that generalize Orlicz spaces, Lebesgue spaces with
weight, and Lebesgue spaces with variable exponent, we refer to [2]. To our knowledge, articles dealing
with this type of problem numerically, in these spaces, are rare. This prompt us to think about
contributing to this study.

The difficulty encountered during the proof of the existence and uniqueness of discrete solu-
tion, is the fact that Musielak spaces L,(Q) are not isometrically isomorphic to Musielak space
L,(0,7;Ly(£2)), the term K does not satisfy the coercivity condition, and the nonlinearities are char-
acterized by an Musielak—function ¢, for which the As-condition not imposed, and thus the spaces
L,(Q) and WO1 " L,(Q) are not necessarily reflexive.

In this paper, we consider the weak formulation of (1) and propose a convergent full discretization
combining a piecewise constant finite element approximation with the backward Euler scheme, also
there is constructed an approximation solution sequence for problem (1) and establish a priori estima-
tion. Our study is done on the isotropic case and generalizes [12] and [13] where the authors studied
only the case b(u) = v and K = 0.

The outline of this paper is structured as follows: in Section 2, we introduce the necessary notation,
give a brief introduction to Musielak—Orlicz spaces. The description of the numerical method we
employ, the construction of the Galerkin scheme, the proof of existence and uniqueness of the numerical
solution, and the derivation of a priori estimates for the fully discrete solution and the discrete time
derivative follow in Section 3. Finally, in Section 4, there is showed convergence towards and, thus,
existence of an exact solution (weak solution of (1)), as well as its uniqueness. An error estimate for
the temporal semidiscretization is contained in the Appendix.

2. Preliminaries and auxiliary results

2.1. Musielak function

Let © be an open subset of R? (d > 2) and let ¢ be a real-valued function defined in Q x R*. The
function ¢ is called a Musielak function if

e (x,-) is an N-function for all x € Q (i.e. convex, non-decreasing, continuous, ¢(x,0) = 0, p(z,t) >0
@t — 0 and lim 2&4 = 00)
¢ oot '

e (-, t) is a measurable function for all ¢ > 0.

for t > 0, lim
t—0
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We put ¢, (t) = ¢(z,t) and associate its non-negative reciprocal function o, ! with respect to ¢, that
is, ¢35 ' (0(z,1) = p(z, 051 (1) = t.

The Musielak function ¢ is said to satisfy the As-condition if for some C > 0, and a non negative
function h, integrable in 2,

o(x,2t) < Co(x,t) + h(x) forall x € Q and all ¢ > 0. (8)

When (8) holds only for ¢ > tg > 0, then ¢ is said to satisfy the As-condition near infinity.

Let ¢ and v be two Musielak functions, we say that ¢ dominates vy denoting v < ¢ near infinity
(respectively, globally) if there exist two positive constants ¢ and ¢y such that for a.e. x € Q, y(x,t) <
o(z,ct) for all t > ty (respectively, for all ¢ > 0). ¢ and v are equivalents, denoting ¢ ~ v if ¢
dominates v and v dominates ¢. Finally, we say that v grows essentially less rapidly t(hartl) p at

v(z,c

0 (respectively, near infinity), denoting v < ¢, if for every positive constant c, %ir% SUp Jry = 0
—Vzeq ’

' ; y(met)y
(respectively, tlggo 21618 e ) =0).

Proposition 1 (Ref. [14]). Let v < ¢ near infinity and for all ¢ > 0, sup~y(z,t) < oo, then for all
€N
€ > 0, there exists C; > 0 such that

V(@) < pla,et) + Cey VE> 0. (9)

2.2. Musielak space

Let ¢ be a Musielak function and a measurable function u: Q — R, we define the functional g, 0(u) =
Jo@(z,|u(z)])dz. The set K () = {u: @ — R measurable: g, o(u) < oo} is called the Musielak class.
The Musielak space L, () is the vector space generated by K, (§2), that is, L,(£2) is the smallest linear
space containing the set K,(2). Equivalently,

L,(Q) = {u: 2 — R measurable: o, 0 (%) < 00, for some A > 0} .

On the other hand, we put @(x, s) = sup(st—p(z, s)). P is called the Musielak function complementary
120

to ¢ (or conjugate of ¢) in the sense of Young with respect to s. A sequence of functions u,, € L,(2)
is modular convergent to u € L,(€2) if there exists a constant A > 0 such that lim g, o(*) = 0.
n—oo

This implies convergence for o([] Ly, [[ L) (see [16]).
In the space L,(€2), there are defined two following norms:

ull, = inf{/\ > 0: / o <$ M) dr < 1},
0 )

which are called the Luxemburg norm, and the so-called Musielak norm

llulllog = sup /Q fu(z)o(a)|dz,

lollz<1

where @ is the Musielak function complementary to . These two norms are equivalent [2]. K,(Q) is a
convex subset of L,(£2). E,(€) is defined as the subset of L,(£2) of all measurable functions u:  — R
such that [, ¢(z, lu(}\x)‘)dzn < oo for all A > 0. It is a separable space and (F,(£2))* = L,(92) [15].
E,(Q) = K, () if and only if ¢ satisfies the Ao-condition for the large values of ¢ or for all values of
t, according to whether 2 has finite measure or not.
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For two complementary Musielak functions ¢ and @, we have (see [16]) the Young inequality,
st < p(z,s) +p(z,t) for all 5,t > 0, x € Q, the Hélder inequality, | [ u(z)v(z)dz| < [|ullsolllv]lz.0.
for all u € L (), v € Lgp(£2).

A sequence u,, converges to u for the modular convergence in WL, (£2) or in W L, () if, for some

A >0,
N Up — U\
135 B <T) =0

Let us define the following spaces of distributions:

W L(Q) = {f eD(Q): f = (~1)*D" fa, where fo € Lg(m} ,

a<l

W EL(Q) = {f €eD'(Q): f =) (~1)*D*fa, where f, € E@(Q)} .

a<l

Lemma 1 (Ref. [15]). (Approximation result) Q be a bounded Lipschitz domain in R% and let
and @ be two complementary Musielak functions satisfying the following conditions:

e there exists a constant ¢ > 0 such that inggo(:n, 1) >e¢
S
e there exist two constants A, B > 0 such that for all x,y € Q with |z —y| < 3,

B
e 1
S Alt|"* = forall t>1,

o(,1)
o(y,t)

o [z, N)dx < oo, for any constant A\ > 0 and for every compact K C €,
e there exists a constant C' > 0 such that P(y,t) < C a.e. in .

Under these assumptions D(£2) is dense in L, (£2) with respect to the modular topology, D(€2) is dense
in W3 L,(9) for the modular convergence and D(2) is dense in W L,,(£2) for the modular convergence.
Consequently, the action of a distribution S in W=1L(£2) on an element u of W L,(Q) is well defined.
It will be denoted by (S, u).

Remark 1. The second condition in Lemma 1 coincides with an alternative log-Holder continuity
condition for the variable exponent p, namely, there exists A > 0 such that for x,y close enough and
each t € RV

A
Ip(x) — p(y)| < 171
98 o=y
2.3. Inhomogeneous Musielak—Sobolev spaces

Let  be an bounded open subset R? and let Q = Qx]0,T[ with some given T > 0. Let ¢ be an
Musielak—function, for each a € N%, denote by V¢ the distributional derivative on () of order o with
respect to the variable 2 € N¢. The inhomogeneous Musielak-Sobolev spaces are defined as follows,

WL, (Q) = {u € Lo(Q): Vou € L,(Q),Ya € N, |o| < 1} : (10)

W E(Q) = {u € B,(Q): Vou € E,(Q),Ya € N, |a| < 1} .

The last space is a subspace of the first one, and both are Banach spaces under the norm

lull = Y~ IV3ullyg.

lal<m
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One can easily show that they form a complementary system when  satisfies the Lipschitz domain [16].
These spaces are considered as subspaces of the product space IIL,(Q) which have as many copies as
there are a-order derivatives, |a| < 1. We shall also consider the weak topologies o(IIL,,I1E,) and
o(IILy,, IILy). If u € WH*L,(Q) then the function: ¢ — u(t) = u(t,-) is defined on (0,7") with values
WL, (Q).

Furthermore the following imbedding holds:

WY EL(Q) C L'(0, T, W' E,(Q)).

Lemma 2 (Ref. [17]). Under the assumptions of Lemma 1, and by assuming that ¢(x,-) decreases
with respect to one of x-coordinate, there exists a constant A > 0 which depends only on €) such that

/gp(x, ]u\)dxdté/gp(x,)\\Vu])dwdt. (11)
Q Q

Section is ended by some useful lemmas

Lemma 3. If (u,) C L'(Q) with up, — v a.e. in Q, up,u >0 ae. in Q and [ updz — [, udz, then
Up — u in LY(Q).

Lemma 4 (Ref. [18]). Let uy,u € L,(Q). If u,, — u with respect to the modular convergence, then
up — u for o(I1L,, 11 Lg).

Lemma 5 (Ref. [12]). Let {{} € L,(Q) and there exists a positive constatnt C such that
fQ o(z,|§|)dedt < C for all | € N. Then there exists £ € L,(Q) and a subsequence, denoted by

I', such that & — & weakly in L'(Q) and
/ oz, [€]) dedt < hm mf/ o(x, |&p|) dx dt.
Q Q

Now, we denote by yow the trace of w: Q — R such that yow = w on 052, for smooth w.
Lemma 6 (Ref. [12]). Let w € W, where
W = {w e WHL(0,T; L2(9): Vaw € (L,(Q))%, 70(w(-,¢)) = 0 for almost ¢ € (o,T)}.

For any € > 0 there is then a smooth function w. vanishing in 92 x (0,T') such that

|we — wllwra0,;L2(0)) <

t —
'/ w)ndxd <2

Notation. Let X be a Banach space, C([0,7T]; X), denotes the usual space of the continuous func-
tions w: [0,7] — X, and C,([0,T]; X) denotes the space of demicontinuous functions (i.e., continuous
with respect to the weak topology in X).

And let T}, denotes the truncation function at level k > 0, defined on R by

)

N ™

and for all n € Ly(Q)

Ty (r) = max(—k, min(k,r)).
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3. Description of the numerical method

Section describes the numerical method we employ, the construction of the Galerkin scheme, the proof
of existence and uniqueness of the numerical solution, and the derivation of a priori estimates for the
fully discrete solution and the discrete time derivative.

A full discretization:

1. For the spatial descritization: there is considered a generalized internal approximation (Vi )men
of the space

v ={ve Q) Vo e (B, ()00 =0}, oy = llollao + [ Vollso,

and the restriction operators R,,: V — V,, such that for any sequence {m;};cy with m; — oo as
{ — oo there holds
Ry v—vinVasl— +oo veV. (12)

Since V is separable Banach space, there exists a Galerkin basis and an internal approximation

scheme for V' (for more details, see [12,19]) and [20] for such construction of restriction operator.
2. For the temporal descritization: for N € N (N > 1), let 7 = % and t, =n7t (n=0,1,...,N),

according to Taylor—Young’s formula

b(u(z,ty)) — blu(z,th—1)) = Ob(u(x, t,—1))T + 7e(7) such that lim () =0,

T—0

then the problem is to find a {u" nN:1 C Vi, such that forn =1,2,... N

/Q [b(un) —bh + a(Vu™)Vo + K(u")w} dz = /Qf(.,tn) vdr, Yo € V. (13)

T

Here, u® € V,,, denotes a suitable approximation of the initial value ug € L?(Q).

Lemma 7. Fix u® € V,, and assume that (3)—(6) hold true, then there exists a weak solution of

A[W——Wv+a(Vu)vu+K( )w] dx_/f Jodz, Yo €V,

-
and if K satisfies the condition

|K(s) — K(s')| <wvy|s— | forall 5,8 €R, and some vy >0, (14)
then the solution is unique.
Indeed, for the existence of the weak solution to (13), we refer to [9,21].

For the uniqueness, let v and w are two solutions of (13) and taking 7} (v — w) as a test function,
thus

1 [ b(v) — b(w) 1
. /Q — Ty(v —w)de = ~Z /Q(a(Vv) —a(Vw))VTi(v — w)dz

- %/Q(K(v) — K(w))VTi (v — w)dz.
We have
Ili_)rno k:/ Tk(v —w)dr = /Q M sign(v — w)dz > l;_—o/ﬂ\v — w|dx.

), =1 [o(a(Vv) — a(Vw)) VT (v — w)dz < 0. Using (14) one can get
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1 1

—/(K(v)—K(w))VTk(v—w)dx < —/ oo —w||V T (v—w)|dz </ |V (v —w)|dz.
k Ja k Jjp—wi<k lo—w|<k

Since |V (v — w)| € L*(2) then iin%% Jo(K(v) = K(w))VTy(v — w)dz = 0.
%
Thus b
—0/ v —wldx <0
T Ja

This implies that v = w. So the conclusion is that for any u° € V;,, and f € L*(0,T; L?(R)), there
exists a unique solution {u"}_, C V;, to (13).

A priori estimates for the discrete solution: Section presents some a priori estimates, being
important to achieve the convergence of the numerical solution.

Theorem 1. Let u® € V;, and f € L'([0,T]; L*(Q)). Let {u"}\_; C V,, be the solution to (13)
and T < 19 < 1. Then there exist positive constants ¢y, ca, c3 and ¢4 depending on py, p1, v, T and
79 such that for allm=1,2,..., N,

b B o+er S b)) =b(w ) 3ater S /Q o, [V )z < es 121 o 175z e 00 B o
j=1 j=1

(15)

n
Sl — w0 < e (16)
j=1

and

Proof. Taking v = b(u") in (13) for the discrete time derivative,
Ib(u™)I3.0 = 16" )30 + [6(u") = b(u"H)[I3 o
+ 27'/ [0 (u™)a(Vu™)Vu"™ + b (u") K (Vu")Vu"] dz < 27'/ | fr(2)]|b(u™)|dx.
Q Q

Using the assumptions (11), (5), (6) and using the Young inequality, we obtain

(™) 130 = ("3, + [Ib(u™) = b(u" 1[5 o + 207bg /Q p(z, [Vu"|)dz

27/Q () [b(u™) | dz +27b1/Q [(p (:17 %) +o(z, |Vu"|)] du
< 27'/9\fn(a:)Hb(u”)\da:+47'b11/0/ﬂcp(a:,\Vu”\)dx.

2b1

Choosing 1y such that v > V0 = 4vy, and summation for all (n = 1,2,..., N) implies

1b(u ||29—|—Z\|bu3 b(w 1|3 o + 27 (vbo — 2b11p) Z/ z, |Vl |)d

< 22/9 Fa@)lIb@™)ldz + [b() 3.

Taking ||b(u")]|2,0 = [ max Io(u)l2.0 and 7375 [ £ll71 073220y < IF I o,77:12(0)) @nd using

Holder inequality,
o) B+ 3 [666) — b ~1) By + 27 — 2bu16) Z / .|V )
7j=1

< 6—2”fHL1([o,T};L2(Q)) + &™) 130 + 1b(u®)]I3
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for any 0 < e < 1. From where we have (15).
For the second inequality using only (2) to get bolu™ — u™ 1| < |b(u") — b(u™~1)| and by (15), we
deduce (16). n

4. Existence via convergence of approximate solutions

Let consider two sequences {m;};en and {Ny}sen such that my — oo, Ny — 0o as £ — oo and assume
that 7p < 79 < 1 for all £ € N.

Construction of approximate solutions (u): there is considered a sequence {u)}sen of ap-
proximation of the initial datum value such that u? € V,, and

u) — ug in L*(Q) as £ — oo. (17)

Approximate solutions are constructed on the whole time interval as follows:

N

e For the parabolic part, from the discrete solution {u"}_; corresponding to the time step size

.
~ . . . . _ 0 1 Ny .
Let u; denote the linear spline interpolating (to =0, b(ug)) , (tl, b(uz)) ey (th b(u, )), ie.

b(up) — b(u; ™)
¢

Up(t) = blup ™) + (t —tn_1) for t € [ty 1,tn], (n=1,2,...,Np).

e For the elliptic part and source data, let u, denote the piecewise constant function such that
uf(-at) ZU? lfte (tn—latn]7 (n: 1727"'7Nf)7 uf('ao) :u%
And also the piecewise constant in time approximation f; is defined by

fg(',t) = f(-,tn) ifte (tn_l,tn], (Tl =1,2,... ,Ng), fg(-,()) = f(-,tl).

4.1. Convergence of the numerical solution (uy)

The first result of this paper can be summarized by the following Lemma.

Lemma 8. Let ug € L?(Q) and f € L'(0,T; L?(f2)). Consider the numerical solution of (1) by the
scheme (13) on a sequence of finite dimensional subspaces such that (12) is satisfied, and time step
sizes which tend to zero and are bounded away from one. For the approximation of the initial value,
assume (17).

Then, there is a subsequence, denoted by ¢', and element u € L>(0,T; L?(Q)) with Vu € (L,(Q))?
and ~ou(-,t) = 0 for almost all t € (0,T), z € L*(2), a € (L5(Q))4, such that, as £ — oo,

b(ug) — U — 0 in L*(Q);  b(up), by — b(u) in L=(0,T; L*(Q)), (18)
(-, T) = blug (- T)) — b(2) in L3(Q);  Vup — Vu in (Ly(Q))", (19)
K(up) — K(u) weakly-* in (Lz(Q))% a(-, Vug) — a weakly-* in (L5(Q))%. (20)

Proof.
1. By (17), the sequence {ul} is bounded in L?(Q2). Using the definition of u, and i; we obtain

Ny
. T " .
1b(ue) — Tell3.o = 3 Z [b(u™) = b(u" "5

n=1

and by (15), lll)rgo ||b(we) — ’QIZ”%Q =0.
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Also the definition of the approximate solutions allows us to get

16(ue) | o 0,122 (02)) = _inax sz( "z,

el oo (0,7522(02)) =, _mmax sz( 2,0,

and the inequality (15) shows the boundedness of {b(u,)} and {7} in L>(0,T; L?(£2)). Thus weak*
convergence of a subsequence in L>(0,T; L?(2)) is stated.
Since the difference of both the sequences, tends to zero in L?(Q), their limits must coincide and
denoted w. The condition (2) allows us to write o in the form w = p(u). That is b(ug), Uy — b(u)
in L>=(0,T; L%(9)).

2. Since |[T(-, T)||l2.0 = [|b(ue) (-, T)|l2.0 = [|b(u™e)||2,0, the a priori estimate in (15) proves the weak
convergence of a subsequence of {ty(-,7)} in L?(Q2) and also its limit can be written as b(z) where
z € L3(Q).
Likewise by definition (17)

/ o(z, |Vug|) d:z:dt—TgZ/ x, |Vu"|)d

is uniformly bounded (see (15))). However, from the boundedness of the modular boundedness of
the Luxemburg norm follows. Therefore, {Vu,} C (£,(Q))? C (L,(Q))? is bounded with respect
to |||lp,@- Since (Ly(Q))* = Ep(Q) is separable Banach space, we obtain weak* convergence of a
subsequence in (L, (Q))? to an element ¢ € (L,(Q))? such that Vuy —* €.

On the other hand it is known that C°(Q2) ® C2°(0;T) C Ez(Q), then for all g € C°(Q), ¢ €
C(0;T) we get

/ggi/)dzndt: lim /Vug/gzbdzndt: lim /w/Vgi/)d:Edt:/qu¢dxdt
Q V' —00 Q V' — 00 Q Q

since up — u weakly in L°°(0,T; L%(2)), thus ¢ = Vu and in view of Lemma 5, we get Vu €
(L,(22))%. Since the trace of up is zero and,

/ Vup zdx dt — / Vuzdx dt, / up'Vzdrdt — / uVzdx dt
Q Q Q Q

for all z € L®(0,T; W4(Q2)) with ¢ > 2 as £ — oo, also the limit v must have vanishing trace for
all t € (0,7).
3. Finally in view of (15) and (3)

/a(x,ya(x,vay)y)dxdtg/ oz, | Viug]) da;dt_TgZ/ 2, |Vl |)d
Q

and by (6) and (11)

/Q¢<$,|K<W>|>dxdt</Q < ‘)\’>d$dt ”CZ/ Vi

are uniformly bounded. Consequently there exist a and 3 in (Ly(Q))? such that a(-, Vuy) — «
and K(up) — B weakly in (L,(Q))? for a subsequence. And by Lemma 5, a € (£,(Q))? and

B e (Lo(Q))7
On the other hand using (14), |K(u¢) — K(u)| < vi|lug — u| and as uy — w a.e. in Q and K is
continuous, we obtain 8 = K (u). -

Remark 2. We omit writing ¢ for the sequence from Lemma 8 and z from a(x, Vu) for the sake of
simplicity.
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Theorem 2. Convergence of approximate solutions. Let ug € L*(Q) and f € L*(0,T; L?(52)). Con-
sider the numerical solution of (1) by the scheme (13) on a sequence of finite dimensional subspaces
such that (12) is satisfied, and time step sizes which tend to zero and are bounded away from one. For
the approximation of the initial value, assume (17).

Then there are subsequences denoted by {uy} and {up} of piecewise constant in time and piece-
wise linear in time prolongations, respectively, of the numerical solutions converging weakly-* in
L>(0,T; L*(Q)) to an exact solution u € Cy([0,T]; L?(2)) to (1) and to p(u) respectively. More-
over, and

b(ug (-, T)) =t (-, T) — b(u(-,T)) weakly in L*(Q), (21)
Vauy — Vu weakly* in (L,(Q))? and Vu € (L,(Q))?, (22)
a(Vug) — a(Vu) weakly* in (L(Q))? and a(Vu) € (L5(Q))%. (23)

Proof. Step 1:
Remark that by definition of uy, the numerical scheme (13) can be written as

/Q [ataw + (a(Vuy) + K(Ug))Vv] dr = /Qfgvda; for all v eV, (24)
this equation holds almost everywhere in (0,7") as well as in the weak sense. This implies
- /Qﬁnglv Y dx dt+/Qng(-,T)Rmevw(T)da: — /Qﬁg(-,O)Rmevl/J(O)da:
+ /Q(a(Vw) + K(w))VRpy, v dedt = /Qngmszda; dt for all v eV, € CY([0,T]),
where (-, T) = b(u™*) and g(.,0) = b(ul) and by (2) we have

[b(u™*) = b(2)| < bifu™* — 2| and [b(up) — bluo)| < bfuf — uol,

then using Lemma 8 and (17) we obtain respectively @(-,T") — b(z) and @y(-,0) — b(ug) strongly in
L?(Q) and also f; — f strongly L'(0,T;L?(52)).
Let now tends £ to oo for the others terms,
Ry, v — vy’ in LY(0,T; L3(Q)),
Rp,v— v in L),
VR, v — Vuy in (ESD(Q))d,
Ry, vp — v in LY(0,T; L3(Q)).

(25)

After applying Lemma 8 and (25), as ¢ — oo the next is true:
_ / bu)o o da dt + / b(2)o (T dz — / b(ug)v b (0)dx
Q Q Q
+ / (a+ K(u))Vvy dedt = / fudrdt forall veV,yecC0,T]). (26)
Q Q
This follows from (12) and the definition of the norm in V. Observe that ||[VR,,,vi) — Voo <

9] 00,0,y max(1, T)||V Ry, v — Vo0 and V — WH1(Q) N L?(Q). Relation (26) implies, by density
arguments,

—/Qb(u)&gwdajdt+/Qb(z)w(-,T)diE—/Qb(uo)w(',o)dfn

—l—/(oz—l—K(u))de:Edt:/fwdajdt for all w e W. (27)
Q Q
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Now, remark that the tensor product V ® C'([0,T]) C W, which shows that (26) is a particular case
of (27). The function w, that exists in view of Lemma 6 for any w € W can be approximated, with
respect to the strong convergence in C'(Q), by a polynomial vanishing at 9 x [0, 7], which possesses
a tensor structure and thus belongs to V ® C1([0,T]). For any u € L>(0,T;L*(Q)), z,uo € L*(2),
a € (LH(Q)%, f € C(0,T;L*(Q)), any ¢ > 0 w € W, there is hence (recalling also the continuous
embedding of W1(0,T; L?(Q)) into C(0,T; L*()) an element w. € V ® C*([0,7]) such that

' /Q () (. — w)dz dt‘ | [ o) w1

/Qb(uo)(wg(-,O)—w(',O))dx —|—‘/@(a+K(u)) da;dt‘ ‘/ Fw dxdt‘

On the other hand, since uw € L>(0,T;L?(Q)), with Vu € (£,(Q))? C LY(0,T;L,(Q)), a €
(L5(Q) € LY0,T; L(Q)), and f € L*(0,T; L%(£2)), we see that for any v € V the functions

_l’_

tn—>/ ))vdz, tn—>/ t)Vu dz, tb—>/K - t)Vude, tH/gf(-,t)vdw
are in L'(0,T) and with (26),
%/ﬂb(u(-,t))vdx:/Q(f(-,t)’uda:—/ﬂ(a(-,t)+K(u)(',t))Vv)dx (28)

holds true in the weak sense.

Thus, the function ¢ — [, b(u(-,t))v dx is absolutely continuous and since V' is dense in L*(Q2) with
respect to the strong convergence in L?(£2), we obtain b(u) € Cy (0, T; L%(R)).

Step 2: Initial and final values

e We now prove b(u(-,0)) = b(ug) € L?(£2). For any v € V, we have with (24)

t—11"
/ﬁ?levdaj = [/ (-, t) R, v d ]
Q Q T ]
t—T
/ </ Oy Ry, v dx +/’LLngZUd:E >dt
T Q
t—T - 1
/ {[/ foeRm,vdx — /( (Vue)—l-K(ug))VRmZvd:E] —I—/qumlvd:ET}dt.
Q
Pass to the limit, integrating by parts and using (28)
-T 1
/b(uo)vdznz/ <[/fvda:—/(oz—|—K( ))Vvd:n] +/p(u)vd:nf> dt
Q Q
= [/ b(u)vda: } /b ))v dz.
Q

e Changing now the function t — % by t — % and using the same argumentation as above provides

that the limit p(z) of Uy(-,T) = b(ue(-, T)) weakly in L?(Q), is exactly b(u(-,T)),
(-, T) — b(z) = b(u(-,T)) € L*(Q) as £ — oo.

Step 3:
e For the convergence of the term fQ K (up)Vb(uy) dx dt, we use (14) and Lemma 8, to deduce that
K (ug) converges to K (u) in (L5(Q))? and

/ K (1) Vb(uy) dav dt — / K (w)Vb(u) da dt.
Q Q
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e For the source term, we know that
/ fob(ug) dx dt — / folu)dxdt as £ — oo.
Q Q

e Let show that a = a(Vu). To do so, we employ a variant of Minty’s monotony trick. Using
(a—ba > %(a2 —b?),

Ny
ub(uy) dz dt = u") — byt u™)dz
| o) do ;/ﬂ(w ) — b(u"1)) b(u™)d

> 2 (1) B — 1) )
= 2 (I T) B~ I B)

which implies, because of the weak lower semi-continuity of the norm, the weak convergence of
ug(-,T) to z = u(T) in L?(2) and the strong convergence (17),

% (Hb(u(,T))H%Q — Hb(uO)H%Q) hmlnf/ Oyub(uy) dx dt. (29)

For all n € (L>(Q))¢ with (2) and (4),
/ a(Vug)Vb(ug) dx dt > bo/ a(Vug)ndx dt + bo/ a(n)(Vuy —n) dz dt.
Q Q Q

Remark that a(n) € (E5(Q))? since n € (L=(Q))¢ and a is continuous one. In the limit, we thus
obtain (see again Lemma 8)

lim inf/ a(Vug)Vug dx dt > bo/ andzdt+ bo/ a(n)(Vu —n) dx dt. (30)
Q Q Q

{—00

Now taking v = uy(-,t) € Vi, in (26) and using (29) and (30),

% (”b(u(T))”QQ — Hb(UO)HZQ) + bo/Qan dx dt + bo/QCL(U)(VW —n)dxdt

+ /Q K (u)Vb(u) dz dt < /Q o) dzdt. (31)

Therefore the centered Steklov average of u, given by is considered

t+h
(Shu)(-,t):%/t_h bul-,s))ds, € [0,T],

where h > 0 and where u is extended by zero outside [0, T]. The properties of b and u imply that
Spu € W. It is known that

hm/fShud:Edt /fb ) dz dt.

On the other hand, one can find with (27)

/fShudwdt:—/ b(u)@tShudxdt—i—/ b(u(-,T))Spu(-,T) dx
Q Q

Q

—/ b(u(-,O))Shu(-,O)dx+/(a+K(u))VShudwdt,
Q Q

where Oy Spu(-,t) = b(u("t+h))2_hb(u("t_h)), and thus
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/b(u)@tShud:Edt / /b ( £+ h)) — b(u(t — ) da dt
Q
T—h
/b (-t +h)) da:dt——/ /b ,t —h))dzdt =0. (32)
Moreover,
/b(u(-,T))Shu LT / / ,8))dxds
) T 20 Jr,
5 [ a1 = 5||b<u<-,T>>H§,Q as ho 0. (33)
Q

Recall here that u € Cy([0,T]; L2(Q)) and thus s = T is a Lebesgue’s point of the mapping
0,75 5 > fo b(u( T)b(u(’, 5))da
Similarly, we have
1
b(u(-,0))Spu(-,0)dr — §Hb(u0)\|§g as h—0.
Q
Finally, we observe that

/QaVShudxdt /aVb )dx dt = / /tHh/Qa(-,t)V(b(u(',s))—b(u(-,t)))da:dsdt

/ / / (b4 7h)) — b(u(- 0)) dudrdt —0 as h—0. (34)

Also, in analogy,

/ K(u)VSpudx dt —/ K(u)Vb(u)dzdt -0 as h— 0. (35)
Q Q

Since the translation of a function in the Musielak space L,(Q) is continuous with respect to the
weak convergence in E,(Q) (see [22]).
Finally, as h — 0, then

5 (BT 2~ [0 2) + bo |

Q
and from (31), (36) and (2), for all n € (L>®(Q))?

0< /Q[boa(n) — (b1 = bo)a](n — Vu) dz dt = by /Q(a(n) —a)(n — Vu) dz dt.

Following the modification of Minty’s trick in [1], we set Qr = {(z,t): |Vu(x,t)| > k} for any
k € N. For arbitrary 4,7 € N with j < i, arbitrary A > 0, and arbitrary ¢ € (L>®(Q))¢, we take
0 in Qia
n= VUXQ\QZ- + /\<XQ\Qj = Vu in Qj\Qi7
Vu+ A in Q\Qj.

aVb(u) d dt + /Q K (w)Vb(u) do dt = /Q () dadt, (36)

Thus

0<— / (a(0) — o)Vudz dt + )\/ (a(Vu+ X)) — a)( dx dt.
i Q\Q;

Since (a(0) — a)Vu € L(Q), we have

/(a(O)—a)Vudxdt—)O as 1 — 00,

2
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then

0< A (a(Vu + X)) — a)( dz dt.
Q\Qj

On the other hand since a is monotone, for A € [0, 1] it yields

a(Vu+ X)¢ < a(Vu+ )¢ € LYQ),

then by Dominated Convergence Theorem,

/ (a(Vu+ X)) — ) dx dt — (a(Vu) —a){dxdt as X —0,
Q\Q;

Q\Q;
and thus
0

N

J -
The choice { (= [a(Vu)—a] if a(Vu)# «

¢ = o allows us to get
0, otherwise

/ la(Vu) — a|dzdt <0,
QA\Qj

/ (a(Vu) —a)¢dzdt for any j € N and any & € (L™®(Q))%.
Q\Qj

and thus o = a(Vu) almost everywhere in Q\Q)j, since j was arbitrary, this proves the equality

almost everywhere in @), which complete the proof.

Step 4: Uniqueness

Let u and v be two solutions to the problem with the same data (ug, f). From the proof above,

/ (b(u) — b(v))Ow dzx dt + / (b(u(-,T)) = b(v(-,T)))w(-, T)dx
Q

Q

+ / (a(Vu) — a(Vv))Vw dz dt + / (K(u) — K(v))Vwdxdt =0 for all weW.
Q

Q
Thus

/ O (b v))w dx dt < /Q(a(Vu) —a(Vv))Vwdz dt — / (K(u) — K(v))Vwdz dt.

Q
For all £ € [0; T, taking w = T (b(u) — b(v))w, ; where

1 if 0<t<t—c¢,
wp(t) =49 = if T-e<t<d,

€
0 otherwise.

In the same way as the above

lim [ (K(u) — K(v))Vwdzdt =0,

k=0 /g
and by the monotonicity of a,
/ (b v)) sign(b(u) — b(v))w, ;dr dt = %13% . O¢(b(u) — b(v))wdx dt <
On the other hand,
/ (b v)) sign(b(u) — b(v))w, 7 dx dt
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t—¢ t 7
_ / By (b(u) — b(w)) sign (b(w) — b(v)) da di + / L=t / (b 0)) sign(b(u) — b(v)) dx dt.

0o Jao
Employing Dominated Convergence Theorem, as € — 0 we get

td
0> [ [ o6t b)) signts) ~ b0 et = [ L) b0 o
and B ~ B
1b(u(7)) = b D)y =0 forall T e (07

and thus the uniqueness is proved. [
Appendix

Error estimate for the temporal semi-discretization: we just give the error estimate in the
temporal semi-discretization case since in the complete discretization is far from being easy to make.
Let e, = u(+,t,) — u, be the error between the exact solution and the numerical solution.

Theorem 3. Let up,u® € L*(Q), f € LY(0,T;L*(Q)), u, Ou, 03u € L(0,T; L*(Q)) with u(-,t) €
V=1{vel*Q):Vve (£¢(Q))d,70u = 0}, a(Vu(-,1)), K(u(-,1)) € (£¢(Q))d for all t € [0,T]. Let
u" € V with a(Vu™), K (u") € (Lz(Q))? be an approximation of u(.,t,) such that n =1,2,..., N,

/Q [b(un) e )’U—i-a(Vu ")Vu + K(u )VU] dr = / f(,tp)vde forall ve.

i
Then forn=1,2,...,N,

el i) < C <H“O - uoHLl(Q) +7 Haft“HLl(o,T;Lz(Q)) + H? - fHLl(Q)> ’ (38)
where f denotes the piecewise constant in time interpolation of f with respect to (tn)gzl.

Proof. Let R™ = b(u(-,t,)) — b(u™) then
R R bud) <M b)) b b
/Q dr = /Q d /Q dz.

T T T

Integration par parts and(13) results as

n _ pn—1 tn
/ivdm:/@b(u(-,tn))vdm—l/ /(t—tn_l)&tb(u(-,t))vda:dt
Q T Q T Jtn_1JQ

[ A g,
Q

T

:/(f(',tn) fn)vdw—/( (Vu(.,tn)) —a(Vu™))vde
Q

—/Q(K(u(',t ) — K(u")) vdx — —/t /Q(t—tn_l)(‘)ttb(u(-,t))vdwdt. (39)
Taking vy = +7(R™) and using (4),

/(f(',tn) — fa)vdr| <[f(tn) = fallr ) —/(G(W(wtn)) —a(Vu"))Vude
Q Q

< —po/ (a(Vu(.,t,)) — a(Vu™)) V(u(., t,) —u")dx <0,
{|rR™|<k}

tn tn
l/ /(t—tn_l)aftb(u(-,t))vdxdt < l/ /(t—tn_l)laftb(u(-,t))]da:dt,
T tn—1 Q T tn—1 Q
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and
/ (K (u(- 1)) — K(u™)) v dx\ < u(-, tn) — ™| [Vu(-, t,) — Vu| dz
Q ko Jirn i<k
< o |Vu(-,t,) — Vu"| dz.
ko Jirn i<k

Since |Vu(-,t,)) — Vu"| € L'(Q), we pass to the limit as k — 400, and

Jim [ (1) K () vde =0,

and also . - . -
lim R R v dr = / Ui sign(R") dx.
QO T

k——+oco QO T

Recalling (39),
- t Rn—l
| ‘dm <17 Cota) = Fulliren / / tn_1)|02b(u (.7t))|d:ndt+/ | ‘d:n.
o T tn v

Thus summation n = 1,..., N and using (2)

N T
bolle™lrr@) < 7 3 _I1F(otn) = fullrre +27/ 07:b(u(-, 1)) 1 ydt + p1lle’| L1 (o
n=1

Thus, together with the estimate ngzl 1 (o tn) = Falligy < ellf = flliq), and LH0,T; L*(2)) C
LY(0,T; L' (2)), we deduce (38). [

Comments: the lack of regularity results for weak solutions in Museilak spaces makes the task of
showing convergence results for such regular solutions very difficult.
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OvckpeTHUii po3B’s1I30K HeNiHIMHNX NapabonivYHUX pPIBHSIHL i3
AndpysiviHnmMmn yneHamn B npoctopax Myceiinaka

AGepxki A1, Enpmacyi M.2, Xanmywmi M.3

L Vinieepcumem Cidi Moxammeda Bern Ab6deanu, Hayionaavra wrose npuriadnus Hayxk,
Jlabopamopis LAMA, ®ec, Mapoxxo

2 Vuisepcumem Cidi Mozammeda Ben A6desru, Paxysvmem nayx drap Eav Mazxpas, aabopamopia LAMA,

Kagedpa mamemamuxu, B.P 1796 Amaac @ec, Mapokxo
3 Vuieepcumem Cidi Moxammeda Ben A6dearu, Horiducyunainaprut daxyavmem Tasu,
Jlabopamopis LSI, P.O. Box 1228 Tasa I'ap, Mapokko

VY 1miit cTaTTi JOCTIIKYEThCA KIaC HEMHINHUX eBOJIONINHNX PIBHIHD 31 3aracaHHsIM, 110
BUHUKAIOTH Y TiapoguHamili Ta peosorii. Heminifiuuit wieH MOHOTOHHUN 1 Ma€ OMyKJIHit
MIOTEHITiaI, ajie HeCTaHIaPTHO 3pocTae. Biamoiganm GyHKITIOHAILHIM KapKACOM JIJIsI Ta-
KUX PiBHSIHB € MOyJIbHI TpocTopu My3eitnaka. JloBeeHo icHyBaHHS Ta €IUHICTD CJIAOKOTO
PO3B’sI3KY, BAKOPUCTOBYOYUN HADJIMKEHUIA I11/1X17T Ta KOMOIHYIOUN BHY TPIITHE HAOINKEHHST
3i 3BOpOTHOIO cxemow Eilyiepa, a TakoXK MaHO alpPIiOPHY OIHKY ITOXUOKHW YaCOBOI HAITIB-
JUCKPETH3AIi.

Kntouosi cnosa: duckpemmnuti po3e’asoxr, napabosivne pieHAHHsA, CAGOKUL Po36°A30%,
npocmopu Mycetinaka, necmandapmme 3pocmanns, 360pomns crema FEisepa, enympiwmne
HAOAUINCEHHA.
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