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The question of interest for the presented study is the mathematical modeling of wave
propagation in dissipative media. The generalized fractional Zener model in the case of
dimension d (d = 1,2, 3) is considered. This work is devoted to the mathematical analysis
of such model: existence and uniqueness of the strong and weak solution and energy decay
result which guarantees the wave dissipation. The existence of the weak solution is shown
using a priori estimates for solutions which are also presented.
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1. Introduction

Fractional calculus is used to model various problems in mechanics, physics, engineering and biology,
etc. [1-6]. Fractional viscoelasticity is among the first areas where fractional operators have been
applied. In addition, it has proven to be a tool important for the description of the memory property
of many materials and processes since the fractional derivative of a function takes into account the
entire history of the function and does not only reflect instantaneous characteristics as in the case of
the elastic. It also fits naturally into the mechanical modeling of materials that retain the memory of
past transformations |7, 8|.

There are many different approaches to define fractional derivatives, the approaches that are fre-
quently used in applications are Riemann—Liouville [1] and Caputo [7]. In our model, there is used
Caputo approach, among its properties, the derivative of a constant equals zero and it is more suitable
for numerical simulation [9-11].

We are interested in the analysis and mathematical study of the viscoelastic problem using the
fractional Zener model in the general case. In particular, Moczo and Kristek [12| showed the full
equivalence of the generalized Zener model and the generalized Maxwell model in definition by Em-
merich & Korn [13]. On the other hand, in order to show the existence of the strong solution, Konjik
et al. [14] used the fractional Zener model with the left derivative of Riemann-Liouville. Atanackovic
et al. [7] used the fractional space-time distributional Zener model with the left Riemann—Liouville
derivative and the symmetric Caputo derivative for the constraint. In [15] we used semi-group theory
to study the existence and uniqueness of the strong solution in space-time for fractional Zener model
with the derivative of Caputo. In addition, Atanackovic et al. [16] proposed a constitutive equation for
a generalized Zener-type viscoelastic body that includes fractional derivatives of stress and strain of
real and complex order. Also he presented a solution for the model studied in the form of a convolution
based on the Laplace transform. In the present paper, the existence and uniqueness of both: strong
and weak solutions for the generalized fractional Zener model are studied. Similar results are obtained
in [17] in the case of integer derivative.
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Introduction ends with a brief summary. In section 2, interesting results on the analysis of plane
wave propagation in homogeneous media are presented. Section 3 is devoted to the study of heteroge-
neous media. First, we show the existence and uniqueness of the strong solution using the semi-group
theory. Then, we present an energy decay, a result that guarantees the dissipation of the model. A
priori estimates of the solution are also obtained. Finally, using this, the existence and uniqueness of
the weak solution are shown. Conclusions are given in section 4.

2. Studies of homogeneous media by plane waves

In this section, we conduct a plane wave analysis in the case of a 3D isotropic viscoelastic medium.
The isotropic problem in a homogeneous medium is considered (see [17])

p02u — dive = 0, (1)
o+ 10080 = NTr (e(u)] + 2pe(u) + 7o [YaTr (e(0fw)) I + 2puy,e(85 u)].

Form of the particular solution we are interested in is the next:

u(z,t) = ugeW-kx)d, @)
o = ope!Wi—kr) D

with k = (k17k27k3)t7 T = (x17w27‘7:3)t7 d= (d17d27d3)t7

Dy1 D12 Dis
D = [ Dy1 Dy Do
D3y D3y D33

Let ¥ = ei(“’t_km).Using expressions (1), one can get the equations:

(0Zu = —wuoVd,
dive = —iogV Dk,
Ofo = (iw)*ooV D,
o+ Toatad = (1 + (iw)aTQ)UO\I’D,

kidy (k?gdl + k‘ldg)/2 (k‘3d1 + k?ldg)/Q (3)
75‘(u) = —jugW (kldg + kgdl)/Q kods (kgdg + k‘gdg)/2 ,
(kids + k3d1) /2 (kod3 + k3dz)/2 ksds
e(0fu) = (iw)*e(u),
Tr (s(u)) = —jugVk - d,

C Tr (e(0u)) = (iw)*Tr(e(u)) = —i(iw)*uoVk - d,

Replacing these equations in (1), the dispersion relation is obtained :

A A
<i%a+2+w2—<%+(z’w)%“—y> |k|2> _[ ::”Jr( )%Ow (k- d)k (4)

By introducing the velocity v, and vs and the relaxation times 7, and 75, the equation (4) becomes:

(w2 + w? — 02 (1 + (iw)*75) [kl*) d = [va(1 + (iw)*7y) — v2(1 + (iw)*7)] (k- d)k,  (5)

)\+2u ; oMt 2
s L) e — )\+2N’ s 0V -
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The scalar product of this relation by k implies in particular
k-d[w? ((iw)* +1) — vf,(l + (iw) 1) k[?] - (6)

Two cases are then presented, depending on k - d:

1. The P waves (compression waves): k - d # 0.
In this case, the equality (5) shows that k and d are collinear and (6) gives the dispersion relation
of the P waves:
w2 ((lw)*+1) = vf,\k:\z(l + (iw)*7p). (7)

2. The S waves (shear waves): k-d = 0.
The vectors k and d are therefore orthogonal and (5) gives the dispersion relation of the S waves:

w? ((iw)® 4+ 1) = v2|k|?(1 + (iw)*7s). (8)

We can notice that, if we change the variable S = iw, then the equations (7) and (8) are written in
the form

708°F% + S% + vl |k[PS* + 03 [k[> =0, Vj=p,s, (9)
with 0 < a < 1, this equation admits one real root and two conjugated complex roots, we are proving
that numerically. Let us note that a real root S = S* corresponds to a non-propagative mode (purely
damped mode) and two conjugated complex roots S = 1 £ iw* corresponds to two propagative modes
(see [17]). The properties of these modes:

— a purely amortized mode corresponding to S = S*. The high frequencies are less damped (relaxation
time 71) than the low frequencies (relaxation time 79 < 71);

— two amortized propagative modes corresponding to S = n+iw. High frequencies are more damped
than low frequencies;

— for propagative modes, high frequencies propagate faster but are more damped.

3. Study of heterogeneous media

3.1. Model Problem

The fractional Zener model for wave propagation is considered in the general case. Our goal is to
determine the displacement u: R? x [0, 7] + R and the stress o: R? x [0,7] + R which verify:

d%u

p(w)w—diva:f(w,t), (x,t) € RY x 0,77,
o(x,t)+ To(w)% = Ce(u) + mo(x)De <%> , (x,t) € R? x 0,77, (10)
u(@,0) = uo; (@,0)=w; o(@0) = Celu), @R

Where div is the divergence operator, p(x) is the volume density, 7y is a relaxation time, f is the
source density, and C' and D are two tensors 4 x 4 that satisfy:

Cijkt = Cjak = Cijrt,  Dijit = Djar = Dyij-
We assume that there exist B_, By two positive constants, such as
0< B_|o|>? < Co:0 < By|o)?, VYoel¥"(RY ae xecR% (11)
0< B_|o|>< Do: o < By|o]?, VoeL£¥™(RY), ae xcRL (12)
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Where the functional space £V (R?) is defined by:
ﬁsym(Rd) = {O’Gﬁl(Rd), Oij = 0ji VZ,jzl,,d}
In addition, we will consider the following assumptions:

0<p_ <plx) <pr <+oo ae xR
0< 7 <7(r) <74 < 400 ae. x € R

3.2. Reformulation of the model problem

As in the monodimensional case (see [15]), we write the problem (10) as a first-order evolutionary
system using the following auxiliary differential equation [18|:

o 0s
{ a(wvug) = —51/1(337’575) + a(:l),t), (13)

U(x,0,8) = 0.
We have the following proposition (see [15]).

Proposition 2. Suppose that 1 is the solution of the ordinary differential equation (13). Then

o - aas - +o0o - —+00 8(,0
at S(ZI},t) - ata ($7t) - 0 ¢($,t,§) dMl—oc(f) - /0 Z?t ($7t7§) dMl—a(g)a (14)
) sin(am) dy
Wlth dMa(é) = Tg ad& and 'IJZ) = E

And by introducing the variables ;u = v and s = o — Ce(u) (the difference between viscoelastic and
elastic stress) and by deriving the second equation from af with 8 =1 — «, then we get:

ou
g ;
(% .
a_é — ;le (Ce(u)) — —=divs = 5’
0Fs 0s
W + T()a — T()ZE(’U) = 0,
L u(xz,0) =up, v(x,0)=u;, s(x,0)=

With Z = D — C is the absorption condition is defined positive :
0<M_|of? < Zo:o < Mylo|?, Yo e L£V™(RY) ae xcRL (15)

By using the approach (14) of 8? s, it follows:

% —v =0,

9 Ly (Ceu)) - Ldivs = 2L,

gﬁ 1 [T®0p ! ¢ (16)
E—FT—O/O a(m,t,f)dMa(g)—Ze(v) =0,

8_;0 +&p—s=0,

u(x,0) =ug, v(x,0)=uy, s(x,0)=0, ¢(=x,0,§) =0.
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Using the last equation and replacing 0;p in the third one, one can rewrite:

ou

2
v

— — —div (Ce(u)) — —divs = =,

gt q JEOO " ’ g 0 (17)
s U

? + T_o/o (s —&p)dMu(§) — Ze (E) =0,

8_(‘:_‘_590_3:07

\ ’LL(QZ‘,O) = Uo, ’U(ZL’,O) = Uy, 8(33‘,0) = 0790($707£) =0.

The problem (10) becomes as follows:
au
— +AU=F
{ —+AU=F,
U(0) =U,,

with U = (u,v,s,¢)!, Ug = (ug,u1,0,0)t, F = (0, f/p,0,0)! and

—ldiv (Ce(u)) — 1divs
AU=| | & p . (18)
L / (s — €)M (&) — Ze(v)
T0.J0
§p—s

3.3. Existence and uniqueness of strong solutions

Functional spaces are considered:

L2(RY, L9 (RY)) = {0: RY — ﬁSW(Rd)//d|a|2d:c < oo} :
H™(div;R?) = {o € L*(R?, LV (R?)), dive € [L2(RH))},

sym .. 19
HY™ = {p € LA(Ra, dMa(©)), 9y = 951 Virj = L,....d}, (19)
nym = {90 € LZ(R+,£dMa(£))7 Pij = Piji, \V/Z,j = 17 s 7d}7
For any symmetrical tensor C, we denote by:
— (- :-)¢ the scalar product in £5¥™(R%) and | - |¢ its associated norm:
LY™(RY) x L3Y™(RY) +— R,
(0,6) +— Co:e=(0,¢)c;
~ (- : )¢ the scalar product in L?(R?, £5¥™(R?)) and ||. ||¢ its associated norm:
L2(RY, £v™(R?)) x L2(R?, £¥™(RY)) +— R
(0,8) +— Co:edx = (0,¢)c.
R4
Let introduce the Hilbert space:
H = [H' (R x [LPRY]? x [L2RH]? x L2(RE V). (20)
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Let Uy = (u1,v1,81,01)" and Uy = (ug,v2, 82, p2)" are two elements of H. Then note 7 = Z19. The
scalar product in H is defined by:

(Ur,U2) yp = (u1,u2), + (e(u1) : e(uz))e + (vi,v2)p + (s1,82) 71 + (@1, 902) g1 77, »

with (u1,ug)y = [pan(@)uy - ugde, Vn=p,C,Z7" and (p1,92) 51 T = Jo Z~ Y1, 09) g, da.
We define the operator domain A, D(A) C H — H the space defined by:

v e [H RN
D(A) =< (u,v,8,0) € H,| s — Ce(u) € H¥™(div; R?)
(s — &p) € LR V)

The operator A: D(A) C H — H is well defined, it is a bounded operator, we will show it in the
same way when the modimensional case (see [15]).

The proof of the existence and uniqueness of the strong solution of the model problem (10) is based
on the use of Hille—Yosida theorem, which requires the following lemma.

Lemma 1. The operator A+ A is maximal monotone for all A > 1/2 .

Proof.
— Monotonity:

Let U = (u,v,s,p)! € D(A). Then:
1
AU, U) ;= —(u,v), — (e(u), (v — | =div (Ce(u) + s),v
(AU, U} = ~(00), = () o) (v (€ 910)

n (l /Om(s — &) dM,, — Ze(v), s> + (s = &9), @) -1 7,

70 Z—1

= —/ pu-vdr | Ce(u):e(v)dr — / div(Ce(u) +s) - vdx
Rd Rd Rd

+2z71 /Rd /Om(s — £p)sdM, dx — /Rd e(v)sdx — Z71 /Rd /0+oo Ep(s — Ep) dM, dx.

Using the green formula:

<AU,U>H:—/ pu-vdm+/ Z_le—fgoH%symd:E,
Rd Rd “

1 -
(AU U) y > —3 </ pud$+/ pvd:n> +/ Z s —590H[2algym dz,
R4 R4 R

on the other hand,

HU||H:/ p|u|2d:17—|—/ C’s(u):s(u)dm+/ p|v|2d:17+/ Z_ls.sd:E—I—Z_l/ HgoH%/sym dx
Rd Rd R4 Rd R4 @

thus,

so that,

<AU,U>H+)\HU||H:—/ pu-vdm—l—/ Z_le—&pHH;ymd:E+)\/ plul? dz,
R Rd R

A Ca(u):s(u)da:—i—)\/ plv]? dx—i—)\/ Z_ls'sda:—l-)\Z_l/ HQOH%’/sy'm dx
Rd Rd Rd Rd @
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Consequently,

1 1
(AU, U) y + AUl > <>\ - —> / pluf? dz + <A - —> / olol? da.
2 R4 2 Rd

Namely, A + Al is monotony for all A > %

— Surjectivity:

Let us show that (A +nl): D(A) — H is surjetive for all n > 1. This is equivalent to show that
for all F' = (f1, fo, f3, fa)! € H, there exist U = (u,v,s,¢)" € D(A) solution of the system:

(—v+nu=fi, (21a)

- %div (Ce(u)) — %divs +nv = fo, (21b)
“+oo

- [ o) dutafe) - ze(w) s = £ (210)

(&p — 5 +np = fi. (21d)

If the above system is solvable, v and ¢ can be easily eliminated and we find that (u, s) satisfies the
following system:

—divs —div (Ce(u)) + pnPu = pfa + i,

Z To Z 1 too ¢ (22)
S - S — M, (€),
O e e e £ O
with ¢, = 0+OO ﬁ dM, (&) < +o0, Vn > 0. Replacing s in the first equation of (22) gives the next:
. Z . 2 .. T0 . Z
—div <m€(u)> — le(CE(U)) + pniu = div <mf3> — div <m€(f1)>
+ div (é /+OO < Ja dMa(§)> +pf2 +pnfr (23)
(cn —70)1 Jo §+n ’

The variational formulation of (23) can be written as follows:

Find v € H'(R) such that:
(24)
{ a(u, @) = (@), Vi € H'(R),
with
a(u, ) = L +C| e(u),e(@) | + (pn’u,e())
AN ICEED) | R

N 0 . Z A\ (L +oo ¢ .
(@) - <(Cn+70)nf3 el >) (s [ e (oo

+ (pfa + pnfr,a),
where (-,-) and (-,-) designate the scalar product in L2(RY) and L?(R%; £5v™(R?)).

According to (11), (15) and Korn’s Inequality [19], the bilinear form a(-, -) is continuous and coercive
on [H'(RH)]? for any n # 0. Lax-Milgram theorem allows then to affirm that the problem (24) admits
a unique solution u in [H!(R%)]4.

We can conclude the proof of surjectivity by showing that, for U = (u,v, s, )" € D(A) using same
step in our work [15]. n

Therefore it is demonstrated that the operator A + nl is surjective Vi > 1. Finally, to prove the
lemma, it is enough to reason with n =A+1 > 1.
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Theorem 1. For all initial conditions (ug,uy,00) € [HY(RY)]? x [H(RH)]? x HY™(div; R?) and all
feCH(0,T;[L?(R?)]9), there is a unique solution (u,o) the problem (10) which satisfies:

ue C(0,T;[H*(RY))Y) n C(0,T; [H' (RT)]4) N C2(0,T; [L*(RF)]),
{ o € C(0,T; H*¥™(div,RY)) N C1(0,T; L3(RY, £3¥™(RY))).

Proof. Under the assumption Uy € D(A) and the Hille-Yosida’s theorem, we deduce that the prob-
lem (10) has a unique solution U € C°(0,T; D(A)) N C*(0,T; H), then

e ue C0,T;[H*(RM)]) N 01(0 T [H(RH)]4).

e v=20u € 00(0 T; [L2 (R N CH (0, T; [L*(RY)]?) = w € C1(0,T; H(R)) N C?(0,T; L*(R)).

o 0 =154 pdyu € CO(O T;[H'(R)]%) and s € C*(0,T; L*(R, ﬁsym(Rd)))

This leads to:

ue C°0,T; [H2(RY)]?) nCH(0,T; [H'(RD)]?) N C2(0, T; [L*(RF)]9),
{ o € C0,T; H¥™(div,RY)) N C1(0,T; L3(RY, £3¥™(R?))).

and completes the proof. [

3.4. Energy decay result

Definition 1. Let (u,0) be the strong solution of system (10). We call the energy of (u,o) at time t

the quantity:
1
E() ==
=1 ('

Remark 1. We notice that the quantity of energy is composed of three parts

oul|?

8tp

 lle@IZ + llsl% - + / d Z*M%ﬂ) . (25)

With )
s=0—Ce(u), Z=12Zmn.

e the quantity % (‘ %!!i + Hs(u)Hé) corresponds to the classical energy of the purely elastic case

(i.e. when 79 = 0 is null);

e the quantity %”SH%—l, due to the effects of viscoelasticity, is expressed as the standard of the
difference between visco-elastic stress and elastic stress;

e the quantity [p, Z 1||(,0||2 it is added when working with the fractional derivative.

Theorem 2. The E(t) energy associated with the problem (10) satisfies the identity:

dE(t 0 -
= (1) L e, o (20

and it decreases in the absence of a source term (f = 0).

Proof. Let’s multiply the equation

ov f
5 ;dIVS — —d1V (Ce(u)) = P

by at7

s [T 10
z7 +/0 27 50 (@,1,€) dMa(€) — () = 0,

by s, let’s integrate in space

Weputv—%?,s— 5 + &
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/0+°° aa(de /+oo< +£> dM,, /+m<<a>2+£a@—f¢> dM, (€)

1d
st +5 [ 60O MO,
Then 9u2 5 9
u” ou . u . U
pﬁadx—/ div (Ce(u ))a—dx /Rddlvsadw— f—dw

+o00o
/ —sdx+/ / %de )dw—/ €<@>sdw:0,
R4 R4 R4 (915

which equals to

1d ou\? Ou _ Ou Ou
T dp<a> d:n—l—/RdC%(u).z—: <E> d:n—/Rddlv.sEdaj— fadzn

2dt/ sda:+/Rdd1std:E+/ ||s—£<,0HHa d:L"—I—th/ ||<,0H‘~/a dzx = 0.

By summing them we obtain:

dE o
=[G [ 2 s gelh, dn
R4
n
3.5. Estimations a priori
In this section we are interested in the a priori estimation of the solution of the model problem (10).
Theorem 3. The solution to the model problem (10) satisfies the following estimates:
o t
%] <vEE@+ [ 1s@lpan w0 (21)
)
t
[u(®)llp < lluollp + t1/2E(0) +/0 = (P)ll1ypdr, VE>0, (28)
t
IVuol + oz <€ (VEED + [ 10lhypar) v >0 (29

where C' = C(d, M_, M) and E(0) is the initial energy:
1 2 2
E(0) = 5 (]} + leuo)lI%)

Proof. By integrating between 0 and ¢ equality (26):

/—d —/ (f g?) dT—/0t</RdZ—1 s — o % dx)dT,

¢ 0 t 0
s <50+ [ (£.5) ar<EO+ [ 1|5 4
p

on the other hand, by definition of the energy quantity (25):
2
‘ ou(r)

ot
E(t) < E(0) + ﬂ/o 111 v/EC) dr.
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Thanks to Gronwall’s lemma, the next inequality is true:

1 [t 2
H < (\/E<o>+ﬁ / uful/pdf> . (30)

Using the definition of the quantity of energy (25), then:

‘ Ju(t)
So the first estimate (27)is obtained:

ot
ou !
S| < 2E(0)+/0 £ ()l1/p dr
P

For the second estimate (28), we notice that w is a primitive of dyu:

< V2E().
p

t ou(r)
t) = d
u() Uug + ; ot T,
which implies
t Ou(T) H| ou(r)
< <
Il < ool + | [ 252 ar| <ol + [7] %52 a
since the first estimate:
ou(T) T -
—— | <V2E(0) + ; £ (F)l1yp dTs
p
we have g .
w(T
[IB2| ar<ovzm@+ [ €= nlswlhy,ar
o Il ot |, 0
we get the second estimate (28):
t
)l < lolly+ tZE@ + [ (¢ = )7l
For the third estimate (29),
t
VAL < leu®)llc < V2ED < VRO + [ 150l (31)

on the other hand, we first use the inequality of Korn [19,20]: there is a constant C} depending on d
the dimension of the space, such as that:

IVull < Crlle(w)]- (32)
From the equality s = 0 — Ce(u), one deducts
lo@®llz-1 <lls@®)llz-1 + [[Ce(w)ll z-1,
with

Hllz- < V2EO) + /O 1£() ) dr

Finally, from (31) and the last inequality, we obtain:

Oul(t) t
%2 + 1ot < CO/ZED + [ 15,
“w 0
where C' is a constant depending on d, M_, M. [

Mathematical Modeling and Computing, Vol. 8, No. 4, pp.601-615 (2021)



Mathematical modeling of wave propagation in viscoelastic media with the fractional Zener model 611

3.6. Existence and uniqueness of weak solutions

Let note:
Qr =R x[0,T], Q5 =Rx]0,T], (33)

and the spaces

H(Qr) = {v € C%(0,T; [L2(RY)]) nC(0, T; [H' (RY)]?), v(T) = 0 and dyv(T) = 0},

34
L(Qr) = {5 € C'(0,T;L* (R, £3¥™ (RY))) , 6(T) = 0}. 59
It is said that (u, o) is a weak solution of the problem (10) if it verifies:
/ [pu-Ofv+o:e(v)— f v]dedt = / plui - v(z,0) —up - Opv(x,0)] de,
Qr R
/ [0:6—10:0;'c — Ce(u) : 6 + 10 De(u)05 5] dz dt
Qr (35)

= /R [TOII_Q(UO) :6(z,0) — ToDe (Il_a(uo)) :6(x,0)] da,

V(v,0) € H(Qr) x L(Q7).

The integral per part with fractional derivative is used, see [9]. For any 0 < a < 1, I 1=a i5 the
fractional integral of Caputo

1 ¢ Cu
m/o (t—71)"%g(7)dr.

The existence and uniqueness theorem of the weak solution can be formulated.

I'~g(t) =

Theorem 4. If the initial data verify

(ug, 1,00, ) € [H'(R]? x [L2RY]? x L2(RY, £ (RY)) x L (0, T; [L* (RD)]Y).
Then the problem (35) admits a unique solution:

(u,0) € C°(0,T; [H'(RY)]?) N C (0, T; [L*(RY)]?) x C°(0, T; L*(RY, £54™(R?))).

Proof.
— Existence.
By density, there is a sequence

(ufy, u, of, f7) € [H*RD]! x [HRD] " x X (RY) x (0, T; [L*RD))Y),
verifying: "
uy — ug in (H1 (Rd)) )
u —u;  in (L2 (Rd))n,
oy — oo in  L? (R, LV (RY)),
fm—f in LY(0,T, (L% (RY))").
Let (u™, ™) be the strong solution of the problem (10) associated with the initial data (ug,u?, oy, ™)
(cf. theorem 1). Let us apply the estimations of the theorem 3 to the differences (u? — u?, o? — 0?), we

notice that the continuation (u",0") is a continuation of Cauchy in the space of Banach W (0, T ]Rd)
defined by:

CY(0,T; [HY(RH]Y) x C*(0,T; [L2(RH)])4) x C°(0,T; L*(R?, L™ (RY))),
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its assocaited norm:

I llw = sup [Ju®ll+ Borull, + IVa(®l + o)) (36)

)

We deduce the existence of (u,0) € W (O, T; Rd) verifying:

u s uin CO0,T; [HY(RY)]Y) x C1(0, T; [L2(RY)]?),
o"—o in  C°0,T;L*(RY, L3v™(R?))).

Finally, just note that if (u™,0™) is a strong solution then in particular it is a weak solution to the
problem:

/ [pu”-@ftv+0”:z—:(v)] dz dt = f-vd:ndt—l—/
Qr

, pluf - v(z,0) — ui - Opv(z,0)]dz,
R

Qr
/ [0": 6 —T190™ : 05 — Ce (u") : 6+ 19De (u") : 07| dx dt
Qr

= /Rd (oI ™*(08) : 6(x,0) — oD I'"%¢ (uf) : 5(x,0)] da,

V(v,6) € H(Qr) x L(Qr)

by passing the limit when n — 400

— Uniqueness.

By linearity, it is enough to show the uniqueness of the solution of the problem (35) in no source
and with zero initial data. Let (u,o) be a solution to the problem (35) with uy = 0,u; = 0,09 = 0
and f=0:

/ [pu - Drv+o: e(v)] dzdt =0,

T

/ [0:6—7190:076 —Ce(u) : 6 +19De(u) : 0] dedt =0, (37)
T

V(v,6) € H(Qr) x L(Qr).
The next problem is considered:

p 02— dive = u, (z,t) € RY x [0, 7],

G — 10086 = Ce(u) — 10 De (08a), (z,t) € R x [0,T], (38)

a(z,T) = dyu(z,T) =0, o(z, T) =0, xR
This problem admits a unique strong solution (u,d) in space:
CH0, 75 [H' (RD))" N C?(0, T [L2(RY)]?) x C°(0,T; X*¥™(R)) N C*(0,T; L*(RY), L™ (R)),

because as u € C! (O,T; [Lz(Rd)]d) simply apply the theorem 1 by rewriting the last problem in the
form of the system (10), by making the change of variable s = T'— ¢ and taking as data the functions

(UO,’LLl, 00, f) = (0707 O,U(T - S))

Noting m = o — De(u), the system (37) is rewritten in the following form:

/ [pu- O2v 41 :e(v) + De(u) : e(v)]dxdt =0,

/ [7:6 —7om: 076 + Ze : 6|dadt =0, (39)
\V/(U7O-) € H(QT) X E(QT)
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Due to the construction of (u,5) we can choose as test functions in (37):
(v,6) = (a,Z7'%) e H(Qr) x L(Qr). 7 =& —De(q). (40)

The system (39) then gives:

/ [pu- 05t + 7 : e(@) + De(u) : £(@)] da dt =0, (41)

T
/ [Z_lﬂ'Zﬁ'—Z_lT()ﬂ':ataﬁ'-i-Eiﬁ'] drdt =0, (42)
Qr

where ¢ = €(u) and &€ = e(u). We then make the scalar product in the sense of the tensors of the
second system equation (38) with Z~'m. After integration on Qr:

/ [Z_lﬁ:W—TOZ_lﬁf‘TT:W—I—E:W] dz dt = 0. (43)

T

This last equation and the equation (42) imply:

/W:dedt:/ 7 edxdt.
Qr Qr

Hence (41) becomes:

/ [pu'ﬁiﬂ—ﬁ:E—FDszé]da:dt:O. (44)
Qr
By replacing 7 by its value given by (40) and after an integration by part:
/ ulpoju—dive| dedt = 0. (45)
Qr
Now, since (@, ) is the solution to the problem (38):

/ (i, 1)|2 da di = 0. (46)

T

which results in w = 0. Finally, we show that 0 = 0 using the second system equation (35):
/ [0:6 — 190 : 07 c] dedt =0, Vo e L(Qr).
Qr

Hence the uniqueness of the solution is proved. [

4. Conclusion

Mathematical modeling of waves propagation in viscoelastic media associated with a generalized frac-
tional model are studied. Firstly, we have studied homogeneous media using plane waves, this method
allows us to distinguish the different modes and their properties. Secondly, we have introduced some
auxiliary variables which permit us to transform the hyperbolic second order system to a first order
evolution one, then via Hille-Yosida theory, it is showed the existence and uniqueness of the strong
solution. Afterward, it was obtained an energy decay result which guarantees the dissipation of the
model problem. Finally, a prior estimation of the model solution is given to show the weak solution of
the model problem.
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MaTemaTnyHe mogesitoBaHHSI NMOWUNPEHHSA XBU/1b Y B A3KOMPY>XXHUX
cepeaoBuuiax 3a gonomoroto apobosoi mogeni 3eHepa

Air Tyoy M.12, Ens Ampi X.!, Enriani A2

L Tabopamopia LMA ENS, Ywisepcumem Xacana II Kacabaanxu, Kacabaarxa, Mapoxko
2 Jla6opamopis MAEGE FSJES Ain Cebaa, Ynieepcumem Xacana II Kacabaanru, Kacabaanka, Mapokko

V 1t poboTi po3ryIgHyTa 33/1a9a MaTEeMATHI0I0 MOJIEJIIOBAHHS IIOIIIUPEHHS XBUJI1 B JUCH-
[MATUBHUX CEPEIOBUIIAX. PO3IIIsHYTO y3arajbHeHy ApobOBYy MO b 3eHepa BUMIPHOCTI d
(d =1,2,3). Ia pobora npucBsiyeHa MaTeMaTUIHOMY aHAJI3y TAKol MOJel, a came: icHy-
BAHHSI Ta €IUHICTb CUJILHOTO Ta CJIA0KOT0 PO3B’SI3Ky Ta 3aracaHHs eHeprii, mo 3abe3mnedye
po3citoBaHHS XBUJIb. TaKO0XK IMOJAIOTHCS ANPIOPHI OIMHKU PO3B’dA3KiB, MO JTOIOMAraioTh
MIOKA3aTH iICHYBaHHSA CJIaOKOTO PO3B’I3KY.

Knw4osi cnosa: dpobosa noxidna, cusvrull po3e’a3ok, caabkull po3e’a30k, 3a20CaHHA
EHEP2IL, NAOCKL TEUAL, 8 AZKONPYHCHI TEUAL, MOdead 3enepa.
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