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In this work, an implicit algorithm is used for analyzing the free dynamic behavior of
Functionally Graded Material (FGM) plates. The Third order Shear Deformation Theory
(TSDT) is used to develop the proposed model. In this contribution, the formulation
is written without any homogenization technique as the rule of mixture. The Hamilton
principle is used to establish the resulting equations of motion. For spatial discretization
based on Finite Element Method (FEM), a quadratic element with four and eight nodes
is adopted using seven degrees of freedom per node. An implicit algorithm is used for
solving the obtained problem. To study the accuracy and the performance of the proposed
approach, we present comparisons with literature and laminate composite modeling results
for vibration natural frequencies. Otherwise, we examine the influence of the exponent of
the volume fraction which reacts the plates “P-FGM” and “S-FGM”. In addition, we study
the influence of the thickness on “E-FGM” plates.
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1. Introduction

Since a long time composite materials play a major role in the overall industry (Automotive, aero-
nautics, civil engineering, etc). These industries are in permanent search of performance in terms of
production gain, lifespan, maintenance and functionality. Currently, most research and development
activities in structural applications have mainly focused on areas of joining two basic constituents,
such as ceramic and metal. The joint between two constituents with two different materials encounters
a problem on the structural interfaces. In 1987, the researchers proposed to use Functionally Graded
Materials (FGMs). These particular composite materials having a gradual and continuous variation
of the volume fractions of each constituent. In this kind of materials, properties vary from one point
to another eliminating interface problems. In FGM materials, material fraction varies continuously
through the thickness to have a material with two facets made up of ceramic and metal. The change
in material fraction is made between these two facets by laws describing the manufacturing process of
the FGM. Many benefits are expected from using this class of FGM. For example, the ceramic face
can provide high wear resistance, while the metal face offers the high hardness. Thus, these materials
are highly desirable for automotive applications because of the wear resistance and high hardness. The
use of FGM materials in the automotive industry is still limited at the moment, due to the high cost
of production. However, the material is used in very important parts of vehicles, where the use of this
kind of material is justified by scientific reasons. Present applications include pistons, cylinder liners
for diesel engine, leaf springs, combustion chambers, transmission shafts, shock absorbers, some parts
of the bodywork, etc. Also, FGMs are used in bodywork coatings, such as graduated coatings with
particles, for improved rigidity of cars. Research activity on FGMs is centered around the calcula-
tion of residual stresses, analysis and study of the temperature evolution in FGMs (thermal stresses),
calculation of interfacial stresses in FGMs, modeling of stresses and strains in the different vibration
studies of FGMs structures.
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In the following, we present some scientific research on FGMs. Vinh et al. (2021) [1] proposed
a modified plate theory of shear strain to analyze the free vibration of rectangular P-FGM plates.
Using the equilibrium of forces equations, the relationship between the bending and shear parts is
established, so that the displacement fields and the equation of the modified theory of plates contain
only a single unknown variable. Auada et al. (2019) [2] investigated an isogeometric analysis of the
FGM plates. The kinematic model is based on the Reissner-Mindlin theory for flexural and shear strains
and the von Karman theory for nonlinear membrane strains. Isogeometric formulation is applied to
study buckling and post-buckling of FGM plates. Kim et al. (2019) [3] presented a semi-analytical
approach to study the nonlinear dynamic response and the vibration of an eccentrically oblique rigid
plate in FGM resting on elastic foundation. Fu et al. (2018) [4] analyzed the sound transmission
loss through corrugated core FGM sandwich plates filled with porous material. They considered two
types of FGM sandwich structures, one with FGM face sheets and homogeneous ceramic or metal
core, and the other is reversed with homogeneous face sheets and FGM core. Sharma et al. (2021) [5]
studied the free vibrations of the two-dimensional P-FGM square plate. The natural frequencies
are calculated for various boundary conditions using COMSOL-5.5 finite element software. Kar and
Srinivas (2020) [6] used the materials modeling and finite element analysis to study the behavior of the
P-FGM hydroxyapatite/titanium plate under thermo-mechanical loads. Unlike other studies in which
the plates are separately exposed to thermal or mechanical loads, a simultaneous analysis is performed
in this work. Katili et al. (2021) [7] performed a static and dynamic (free vibration) analysis of P-
FGM plates using an efficient quadrilateral finite element based on the discrete shear projection method
(DSPM). Zheng et al. (2021) [8] developed a hybrid meshless/displacement discontinuity method for
FGM Reissner’s plate with cracks. In addition, Multi-term extended Kantorovich method (MTEKM)
and the classical plate theory are used by Hassan and Kurgan (2020) [9] to examine the bending of thin
skew FGM plate embedded in the Winkler elastic foundation under uniformly distributed transverse
load. Various configurations of boundary conditions are considered. Yang et al. (2020) [10] analyzed the
postbuckling of multi-directional perforated FGM plates using NURBS-based on isogeometric analysis
and finite cell method. TSDT and von Karman nonlinear assumptions are used to determinate the
nonlinear deformation of plate, where shear correction factors are not needed in this model. Minh et
al. (2021) [11] introduced the high order shear strain theory (HSDT) to calculate the free vibration
of cracked plates (P-FGM) resting on elastic Pasternak foundations. A linearly variable thickness and
a crack in the center are considered for the rectangular plate. Li et al. (2021) [12] studied composite
laminated and FGM plates using higher-order shear deformation theories with a novel unified plate
model. The parameters of free vibration of plates of cracked P-FGM materials whose thickness varies
nonlinear according to the symmetrical function of parabola under temperature studied. Minh and
Duc (2020) [13] investigate the free vibration parameters of cracked FGM plates under temperature
using the symmetric parabola function for nonlinear varying thickness. Tran et al. (2021) [14] used
ES-MITC3 element and prediction of artificial neural network to examine free vibrations of P-FGM
plates in the thermal environment embedded in elastic foundations. Timesli (2021) [15] investigated
analytical modeling of buckling behavior of porous FGM cylindrical shell embedded within an elastic
foundation uisng Donnell shell theory. In the work of Bourihane et al. (2020) [16], the free vibration and
forced nonlinear dynamic behavior of plate material (P-FGM) are analyzed using TSDT. FGM plates
operate as a laminated composite, and the power-law governs the variation of the material properties
of FGM. The resulting equations of motion established according to Hamilton’s principle.

In the present work, we are interested to the vibrations of FGM plates using TSDT and FEM.
We suppose that the material properties change continuously through the thickness of the plate using
the different laws which govern the variation of materials namely: the exponential law “E-FGM”, the
power-law “P-FGM”, and the “S-FGM” sigmoid law. The equations of motion obtained by applying the
Hamilton principle and the fundamental frequencies calculated by solving the equations governing the
eigenvalue problem. Firstly for validation, we compare the results of the “P-FGM” plate obtained with
those of the literature. Afterward, we examine the influence of the exponent of the volume fraction
which governs “P-FGM” and “S-FGM” plates. Then we study the influence of the thickness on the
“E-FGM” plates with different boundary conditions.
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2. The laws of the variation of the material properties depending on the thickness of
FGM plates

The material gradation methods of the variation of the material properties of FGM plates are given
as follows.

2.1. Material properties of P-FGM plates (Power law gradation)
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Fig. 1. Variation of Young’s modulus in a P-FGM plate.

Many researchers use a power law function “P-
FGM” to describe the material properties of
materials with graduated functionality. Once
the local volume fraction V (z)m is defined,
the material properties of “P-FGM” plate can
be determined by the rule of mixtures:

• Young’s Modulus:

E(z) = (Ec − Em)× V (z) + Em, (1)

• Poisson’s ratio:

ν(z) = (νc − νm)× V (z) + νm, (2)

• Mass Density:

ρ(z) = (ρc − ρm)× V (z) + ρm, (3)

where Ec, vc and ρc define the properties of the ceramic material and Em, vm and ρm define the
properties of the metal material. The expression of volume fraction of the P-FGM is given by a power
law function:

V (z) =
( z

h
+

1

2

)N

, (4)

where h is the thickness of the plate and N (0 6 N 6 ∞) is an exponent of the volume fraction which
represents the variation of the material through the thickness of the layer in FGM. The variation of
Young’s modulus through the thickness of the P-FGM plate is shown in Fig. 1.

2.2. Material properties of E-FGM plates (Exponential law gradation)
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Fig. 2. Variation of Young’s modulus in a E-FGM plate.

For E-FGM plates, the exponential function
is used to describe the material properties.

• Young’s Modulus:

E(z) = Ec × exp

(

B

(

z +
h

2

))

(5)

with B = 1
h
ln

(
Ec

Em

)

,

• Poisson’s ratio:

v(z)=vc × exp

(

B

(

z +
h

2

))

(6)

with B = 1
h
ln

(
vc
vm

)

,

• Mass Density:

ρ(z) = ρc × exp

(

B

(

z +
h

2

))

(7)

with B = 1
h
ln

(
ρc
ρm

)

.

The variation of Young’s modulus through the thickness of the E-FGM plate is shown in Fig. 2.
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2.3. Material properties of S-FGM plates (Sigmoid law gradation)

In power and exponential laws, stress concentrations appear in one of the interfaces, this problem is
overcome by the sigmoid law [17] which combines two power laws. The expressions of this law for
unidirectional S-FGM are given by:

• Young’s Modulus:
E(z) = (Ec − Em)× V (z) + Em, (8)

• Poisson’s ratio:
ν(z) = (νc − νm)× V (z) + νm, (9)

• Mass density:
ρ(z) = (ρc − ρm)× V (z) + ρm. (10)

The expression of volume fraction is given by power laws in the form:







V (z) = 1− 1
2

(
h

2
−z
h

2

)N

for 0 6 z 6 h/2,

V (z) = 1
2

(
h

2
−z
h

2

)N

for −h/2 6 z 6 0.

(11)

3. Mathematical formulation

3.1. Mechanical characteristics and Kinematics

Considering a FGM plate in Cartesian coordinates as shown in Fig. 3 with the following geometric
characteristics: length b, width a and thickness h. The displacement of each point of the FGM plate is
defined by 〈U〉T = 〈u, v, w〉T which is correspond to the displacement of a point between the reference
state and the deformed state of the plate. The displacement components u, v, and w are defined
according to the coordinates (x, y, z). The components u0 and v0 correspond to the displacement
in the middle plane (x, y, 0). The middle plane is positioned in z = 0 with u(x, y, 0) = u0(x, y) and
v(x, y, 0) = v0(x, y). The mechanical properties of plate E(z), ν(z), and ρ(z) depend on the coordinate
z and vary from values Ec, νc, and ρc) to values Em, νm, and ρm. Note that Ec, νc, and ρc are the
properties of the top face (z = h/2) of the shell and Em, νm, and ρm are the properties of the bottom
face (z = −h/2) as shown in Figs. 3 and 4.
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Fig. 3. FGM plate in Cartesian coordinates. Fig. 4. Material properties through the thickness of
the FGM plate.

To adapt TSDT for elasticity problems, we assume a non-linear elastic behavior of the plate. The
field of displacements of a point M of the plate is written in the form:
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U(M) =







u(x, y, z, t) = u0(x, y)− z ∂w0(x,y)
∂x

+ f(z)ϕx(x, y),

v(x, y, z, t) = v0(x, y)− z ∂w0(x,y)
∂y

+ f(z)ϕy(x, y),

w(x, y, z, t) = w0(x, y),

(12)

where u0, v0, and w0 are the membrane displacements. ϕx(x, y) and ϕy(x, y) are given by:
{

ϕx(x, y) =
∂w0(x,y)

∂x
+ θx,

ϕy(x, y) =
∂w0(x,y)

∂y
+ θy,

(13)

where θx and θy are the rotations around the axis x and y.
For Reddy’s TSDT f(z) = z(1− cz2) with c = 4

3h2 , hence displacement field can express as:

U(M) =







u(x, y, z, t) = u0(x, y) + zθx − c z3
(∂w0(x,y)

∂x
+ θx

)
,

v(x, y, z, t) = v0(x, y) + zθy − c z3
(∂w0(x,y)

∂y
+ θy

)
,

w(x, y, z, t) = w0(x, y),

(14)

3.2. Deformation field

The strain tensor of Green–Lagrange γ is related to the displacement field by the following relation:

γij =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)

+
1

2

3∑

k=1

∂Uk

∂xi

∂Uk

∂xj
. (15)

The small displacement assumption allows us to write the strain tensor of Green–Lagrange in the
following vector form:

{
γij

}
=







γxx
2γxy
2γxz
γyy
2γyz







=







∂u
∂x

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂v
∂y

∂v
∂y

+ ∂w
∂y







+
1

2







(
∂u
∂x

)2
+

(
∂v
∂x

)2
+

(
∂w
∂x

)2

2
(
∂u
∂x

∂u
∂y

+ ∂v
∂x

∂v
∂y

+ ∂w
∂x

∂w
∂y

)

2
(
∂u
∂x

∂u
∂z

+ ∂v
∂x

∂v
∂z

+ ∂w
∂x

∂w
∂z

)

(
∂u
∂y

)2
+

(
∂w
∂y

)2
+

(
∂w
∂y

)2

2
(
∂u
∂y

∂u
∂z

+ ∂v
∂y

∂v
∂z

+ ∂w
∂y

∂w
∂z

)







. (16)

This tensor can be written as follows:
{
γ
}
=

{
ε
}
+ z ∗

{
κ
}
− 3c ∗ z2

{
ϕ
}
− cz3

{
ψ
}

(17)

with
{
ε
}

is given by:

{
ε
}
=







∂u0

∂x
∂v0
∂y

∂u0

∂y
+ ∂v0

∂x
∂w0

∂z
+ θx

θy +
∂w0

∂y







+
1

2







(
∂u0

∂x

)2
+

(
∂v0
∂x

)2
+

(
∂w0

∂x

)2

(
∂u0

∂y

)2
+

(
∂v0
∂y

)2
+

(
∂w0

∂y

)2

2
(
∂u0

∂x
∂u0

∂y
+ ∂v0

∂x
∂v0
∂y

+ ∂w0

∂x
∂w0

∂y

)

2
(
∂u0

∂x
θx +

∂v0
∂x
θy
)

2
(
∂u0

∂y
θx +

∂v0
∂y
θy
)







(18)

or in short form:
{
ε
}
= [H1]

{
θ
}
+

1

2
[A(θ)]

{
θ,
}

(19)

where the displacement gradient vector {θ} is written as follows:

{θ}T = 〈u0,x, v0,x, w0,x, u0,y, v0,y, w0,y, θx, θy, θx,x, θy,x, θx,y, θy,y, w,xx, w0,yy, w0,xy〉 (20)
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and the matrices [H1] and [A(θ)] are given by:

[H1] =









1 0 0 0 0 0 0 0 . . .
0 0 0 0 1 0 0 0 . . .
0 1 0 1 0 0 0 0 . . .
0 0 1 0 0 0 1 0 . . .
0 0 0 0 0 1 0 1 . . .









(21)

and

[A(θ)] =









0 0 w0,x 0 0 0 0 0 . . .
0 0 0 0 0 w0,y 0 0 . . .
0 0 w0,y 0 0 w0,x 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .









. (22)

3.3. Behavior law

The second Piola–Kirchhoff stress tensor S and the Green-Lagrange strain tensor γ are connected by
the following relation:

γi,j =
1 + v(z)

E(z)
Si,j −

v(z)

E(z)
Skkδi,j , (23)

where δi,j is the Kronecker symbol. This relation can be written in the matrix form:






Sxx
Syy
Sxy
Sxz
Syz







=
[
D(z)

]







γxx
γyy
2γxy
2γxz
2γxy







, (24)

where [D(z)] is the matrix of the elastic behavior,

[
D(z)

]
=

E(z)

1− v(z)2










1 v(z) 0 0 0
v(z) 1 0 0 0

0 0 1−V (z)
2 0 0

0 0 0 1−V (z)
2 0

0 0 0 0 1−V (z)
2










. (25)

4. Application of Hamilton’s principle

The equations of motion are derived from Hamilton’s principle which is given by the following expres-
sion:

δH = δ

∫ t1

t0
(T − P )dt = 0, (26)

where T is the kinetic energy, P is the total potential energy, H is the Hamiltonian of the system, t0
and t1 are the initial and final time, respectively, and dt is the time variation. The kinetic energy T is
given by:

T =
1

2

∫

ρ(z){U̇ (M)}2dΩ, (27)

where {U̇ (M)} is velocity field. The variation of the kinetic energy is then given by:

δT =

∫

ρ(z){δU̇}T {U̇}dΩ. (28)
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Integrating the kinetic energy from time t0 to time t1 one can obtain:
∫ t1

t0

δT dt =

∫ t1

t0

∫

ρ(z){δU̇}T {U̇} dΩ dt, (29)

∫ t1

t0

δT dt =

∫ t1

t0

∫

ρ(z){δU̇}T {U̇} dΩ dt
∣
∣
∣

t1

t0
︸ ︷︷ ︸

a

−

∫ t1

t0

∫

ρ(z){δU}T {Ü} dΩ dt

︸ ︷︷ ︸

b

, (30)

where the first term “a” is zero because δU = 0 at times t = t0 and t = t1. Hence the expression of
kinetic energy becomes:

δT = −

∫

ρ(z)(üδu+ v̈δv + ẅδw) dΩ, (31)

where ü, v̈, ẅ are the components of the acceleration vector and δu, δv, δw are the variation of
displacements at point M . Subsequently, to facilitate the calculation of the operations, we set βj =
θj + wj, where j = x, y, and Mi =

∫
ziρ(z)dz where i = 0, 1, 2, 3, 4, 6 and Mi is a component of the

mass matrix. The variation of the kinetic energy is then given by:

δT = −

∫ [

M0(üδu+ v̈δv + ẅδw) +M1(üδθx + v̈δθy + θ̈xδu+ θ̈yδv)

+M2(θ̈xδθx + θ̈yδθy)− cM3(üδβx + v̈δβx + β̈xδu+ β̈y.δv)

− cM4(θ̈xδβx + θ̈yδβy + β̈xδθx + β̈yδθy) + c2M6(β̈xδβx + β̈yδβy)
]

dS (32)

or by the following compact form:

δT = −

∫

〈δU〉[M ]{Ü} dS, (33)

where
〈δU〉 = 〈δu, δv, δw, δβx , δβy , δθx, δθy〉 (34)

and

[M ] =













M0 0 0 −CM3 0 M1 0
0 M0 0 0 −CM3 0 M1

0 0 M0 0 0 0 0
−CM3 0 0 C2M6 0 −CM4 0

0 −CM3 0 0 C2M6 0 −CM4

M1 0 0 −CM4 0 M2 0
0 M1 0 0 −CM4 0 M2













. (35)

The variation of the total potential energy is written as follows:

δP = δWd + δWext, (36)

where δWd is the variation of strain energy and δWext is the variation of work done by the external
force. δWd is given by:

δWd =

∫

{δγ}T {S} dΩ, (37)
which allows to obtain:

δWd =

∫ (

〈δε〉[D0]{ε} + 〈δκ〉[D1]{ε} − 3c〈δϕ〉[D2 ]{ε}

− c〈δψ〉[D3 ]{ε}+ 〈δε〉[D1]{κ} + 〈δκ〉[D2]{κ} − 3c〈δϕ〉[D3 ]{κ}

− c〈δψ〉[D4 ]{κ} − 3〈δε〉[D2 ]{ϕ} − 3c〈δκ〉[D3 ]{ϕ}

+ 9c2〈δϕ〉[D4]{ϕ} + 3c2〈δψ〉[D5]{ϕ} − c〈δε〉[D3]{ψ} − c〈δκ〉[D4]{ψ}

+ 3c2〈δϕ〉[D5]{ψ} + c2〈δψ〉[D6]{ψ}
)

dS, (38)
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where

[Di] =

∫

zi[D(z)] dz with i = 0, 1, 2, 3, 4, 5, 6, (39)

{
κ
}
=







κxx
κyy
2κxy
2κxz
2κyz







=







θx,x
θy,y

θy,x + θx,y
0
0







= [H2]
{
θ
}
, (40)

{
ϕ
}
=







ϕxx

ϕyy

2ϕxy

2ϕxz

2ϕyz







=







0
0
0

θx + w0,x

θy + w0,y







= [H3]
{
θ
}
, (41)

{
ψ
}
=







ψxx

ψyy

2ψxy

2ψxz

2ψyz







=







θx,x
θy,y + w,yy

θx,y + θy,x + 2 ∗ w,xy

0
0







= [H4]
{
θ
}
. (42)

On the other hand, δWext is given by:

δWext = λ(t)

∫ (

{δq}T {Fe}+
{
δθ
}T {

Me

})

dS, (43)

where λ(t) is a loading parameter depend on time, Fe is the force vector expressed by {Fe}
T =

〈Fx, Fy, Fz〉 and {Me} is the moment vector given by {Me}
T = 〈0, 0, 0, 0, 0, 0,Mx ,My, 0, 0, 0, 0, 0, 0, 0〉.

Taking into account the equations (33), (38) and (39), the Hamilton’s principle is written in the
form:

∫

〈δU〉[M ]{Ü}dS +

∫ (

〈δε〉[D0]{ε} + 〈δκ〉[D1]{ε} − 3c〈δϕ〉[D2 ]{ε}

− c〈δψ〉[D3 ]{ε}+ 〈δε〉[D1]{κ} + 〈δκ〉[D2]{κ} − 3c〈δϕ〉[D3 ]{κ}

− c〈δψ〉[D4 ]{κ} − 3〈δε〉[D2 ]{ϕ} − 3c〈δκ〉[D3 ]{ϕ}

+ 9c2〈δϕ〉[D4]{ϕ} + 3c2〈δψ〉[D5]{ϕ} − c〈δε〉[D3]{ψ} − c〈δκ〉[D4]{ψ}

+ 3c2〈δϕ〉[D5]{ψ}+ c2〈δψ〉[D6]{ψ}
)

dS = λ(t)

∫ (

{δq}T {Fe}+
{
δθ
}T {

Me

})

dS. (44)

4.1. Discretization with the finite element method

Spatial discretization is performed by the finite element method which consists to discretize the domain
S into several subdomains Se called element. The displacements {U} are related with the nodal dis-
placements {r}e on each element via a matrix [N ] of interpolation functions, as follows {U} = [N ]{r}e.
Likewise, the displacement gradient vector {θ} is expressed as a function of the nodal displacements
{r}e via a matrix [G] of gradients of interpolation functions, as follows {θ} = [G]{r}e. Note that there
is seven degrees of freedom per node, four independent components (u, v, θx, θy), the transverse dis-
placement w and its derivatives (wx, wx). To ensure a good approximation, for interpolation functions,
we adopt bilinear Lagrange functions for axial displacements (u, v) and rotations (θx, θy) and high
degree Hermite functions for the transverse displacement w. In this work, we choose the quadrilateral
element which is the optimal choice. The passage of the reference elements to the real elements is
carried out by a geometric transformation which is called “Jacobian transformation”. Consider the
coordinates of the real elements x and y and the coordinates of the reference elements ξ and η, so we
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can write: 





x =
nn∑

i=1
Ni(ξ, η)xi,

y =
nn∑

i=1
Ni(ξ, η)yi.

(45)

Where nn is the number of nodes per element.
After the spatial discretization, the tensors

{
ε
}
,
{
κ
}
,
{
ϕ
}
, and

{
ψ
}

can be written in the following
forms:

{
ε
}
= [H1][G]

{
re
}
+

1

2
[A(θ)][G]

{
re
}
= [B1(θ)]

{
re
}
, (46)

where [B1(θ)] = [Bl] + [Bnl],
{
κ
}
= [H2][G]

{
re
}
= [B2]

{
re
}
, (47)

{
ϕ
}
= [H3][G]

{
re
}
= [B3]

{
re
}
, (48)

{
ψ
}
= [H4][G]

{
re
}
= [B4]

{
re
}
. (49)

Injecting these expressions above in the Hamilton’s principle equation, one can get the following
equations of motion:

ne∑

e=1

∫ (

[B1(θ)]
T [D0]{ε} + [B2]

T [D1]{ε} − 3c[B3]
T [D2]{ε}

− c[B4]
T [D3]{ε} + [B1(θ)]

T [D1]{κ} + [B2]
T [D2]{κ}

− 3c[B3]
T [D3]{κ} − c[B4]

T [D4]{κ} − 3c[B1(θ)]
T [D2]{ϕ}

− 3c[B2]
T [D3]{ϕ} + 9c2[B3]

T [D4]{ϕ} + 3c2[B4]
T [D5]{ϕ}

− c[B1(θ)]
T [D3]{ψ} − c[B2]

T [D4]{ψ} + 3c2[B3]
T [D5]{ψ} + c2[B4]

T [D6]{ψ}
)

dS

+
ne∑

e=1

∫

[N2]
T [M ][N2]{r̈e}dSe =

ne∑

e=1

λ(t)

∫

{δre}
(

[N1]
T {Fe}+ [G]T

{
Me

})

dSe, (50)

where ne is the total number of elements. Using the assembly technique, equations of motion can be
rewritten in the following global form:

[
Mg

] {
r̈
}
+

[
Kg(θ)

] {
r
}
= λ(t)

{
Fg

}
. (51)

4.2. Eigenvalue equations

The theoretical formulation of free vibration is the same as nonlinear vibration, except that the strain
tensor must be linear and the work of the external forces is zero. To determine the eigenmodes, we
assume that the displacement field can be written in the following form:

{r} = {∅} cos(ωt), (52)

where ∅ is a vector which corresponds to a mode. We inject the approximation (52) in the equation (51)
to obtain the following equation:

(
−ω2

[
Mg

]
+

[
Kgl

])
{∅} =

{
0
}
, (53)

where
[
Kgl

]
is the linear part of the stiffness matrix. This is the eigenvalue problem where the existence

of solution to matrix equation (53) leads to:

det(M−1K − ω2I) = 0. (54)

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 691–704 (2021)



700 Janane Allah M., Belaasilia Y., Timesli A., El Haouzi A.

5. Numerical result

In this numerical section, we are interested to determine the natural frequencies of each FGM plate and
to examine the influence of the exponent N which represents the variation of the material properties
of P-FGM and S-FGM plates. In addition, we determinate the natural frequencies of E-FGM plates
and examine the influence of the thickness on this kind of plates. In this study, the effect of different
boundary conditions has been taken into account as shown in Fig. 5, material properties of FGM
plate given in Table 1 are used, and the obtained numerical results are compared with those given in
references [18] and [16] in particular case of P-FGM plates.

(A) (B) (C)

Fig. 5. Different boundary conditions SSFF, SSSS and CCCC.

Table 1. Material properties of FGM plate.

Material characteristics E (GPa) ν ρ (Kg/m3)
Metal material (T i− 6Al − 4V ) 122.56 0.31 4429

Ceramic material (Zro2) 244.27 0.288 3000

5.1. Influence of the exponent N of the volume fraction for P-FGM and S-FGM plates

In this part, we examine the influence of the exponent N of the volume fraction for P-FGM and S-
FGM. We consider a simply supported square plate SSSS (see Fig. 5-(B)) of side 0.2m with uniform
thickness h = 0.025m and material properties given in Table 1. Note that the Poisson’s ratio of the
FGM plate is considered constant and equal to the average of the given coefficients for two materials.
The plate is discretized by 5×5 elements. The eigen-frequencies have been calculated by the proposed
approach for a square P-FGM plate and compared with the results of references [16] and [18] as shown
in Table 2. Table 3 presents the calculated eigen-frequencies by the proposed approach for a square
S-FGM. These results show that when the exponent N increases the frequencies decrease.

In Fig. 6, the first eight eigen-frequencies of the P-FGM plate and the S-FGM plate are illustrated.
We notice that the results of the P-FGM plate are very close to those obtained with the S-FGM plate.
Also note that the fundamental frequencies depend on the volume fraction of materials of FGM plates.

5.2. Influence of the length-to-thickness ratio (a/h = b/h) of the E-FGM plates

Consider three E-FGM plates of the same proprieties material with different aspect ratios
(length/thickness): Plate 1 with a/h = b/h = 4, plate 2 with a/h = b/h = 8, and plate 3 with
a/h = b/h = 12, knowing that a = b = 0.2m. There are the same discretization 5×5 elements and the
same boundary conditions of a simply supported square plate SSSS (see Fig. 5-(B)) as in the previous
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Table 2. Eigen-frequencies of free vibration of a square P-FGM plate.

Mode Reference N=0 N=0.5 N=1 N=2 Nε[300,∞] E-FGM
(1.1) [18] 8.270 7.130 6.657 6.286 – –

TSDT [16] 8.968 7.530 6.980 6.513 – –
CPT [16] 9. 723 8.073 7.2429 6.930 – –
present 9.276 7.8 7.2022 6.6362 5.4253 4.1805

(1.2) [18] 19.261 16.643 15.514 14.625 – –
TSDT [16] 21.276 17.871 16.551 15.413 – –
CPT [16] 24.235 20.093 18.465 17.212 – –
Present 19.5621 17.27 15.8446 14.5588 11.3521 8.8075

(1.3) [18] 34.870 30.174 28.120 26.454 – –
TSDT [16] 36.343 30.813 28.276 25.850 – –
CPT [16] 36.34 30.827 28.296 25.867 – –
present 32.8 30.23 27.7465 25.4818 18.8694 15.1051

Table 3. Eigenfrequencies of free vibration of a square S-FGM plate.

Mode N = 0.5 N = 1 N = 2 N = 3 Nmax = 70 E-FGM
(1.1) 8.1466 7.3047 6.6754 6.4125 4.9332 4.1805
(1.2) 17.2766 15.51192 14.1992 13.6463 10.3765 8.8075
(1.3) 29.7124 26.7584 24.5242 23.5847 27.8321 15.1051
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Fig. 6. Comparison of the natural frequencies between
the P-FGM plate and the S-FGM plate.

Fig. 7. Eigenfrequencies of free vibration of a square
of a E-FGM plate with various boundary conditions.

example in the section 5.1. We present in Table 4 the first three eigen-frequencies of three plates 1,
2 and 3. This table shows that increasing the length-to-thickness ratio decreases the fundamental
frequencies. This means that the stiffness of the E-FGM plate decreases with increasing aspect ratio
(length/thickness).

Table 4. Eigen-frequencies of free vibration of a square E-FGM
plate with different aspect ratios (length/thickness).

Mode a/h = b/h = 4 a/h = b/h = 8 a/h = b/h = 12
(1.1) 7.2654 4.1805 2.8985
(1.2) 14.4294 8.8075 6.2119
(1.3) 23.1815 15.1051 10.8800

Fig. 7 shows the proportionality of
the fundamental frequencies with the
vibrational modes of E-FGM plates.
These fundamental frequencies be-
come significant for higher fundamen-
tal vibrational modes. From this fig-
ure, we also conclude that the fundamental frequencies depend on the boundary conditions type. The
fundamental frequencies of the plate CCCC are a little bigger than those of the plate SSSS. On the
other hand, the fundamental frequencies of the plate SSFF are much larger than those of the plate
SSSS and the plate CCCC.

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 691–704 (2021)



702 Janane Allah M., Belaasilia Y., Timesli A., El Haouzi A.

Other results are presented in the appendices in Figs. 8 and 9 to compare the results of simple
FGM plates with those of laminated FGM plates. For laminated FGM plates, materials are joined as
in laminated composite materials. For simple P-FGM plates, the Poisson’s ratio is the average of those
of two materials (ceramic/metal) using the power law.

6. Conclusion

Free vibrations of the FGM plates using the third-order theory (TSDT) are studied in this paper.
We considered that the material properties change continuously through the thickness of the plate
following the different laws which represent the variation of FGM properties, namely: the exponential
law (E-FGM), the power-law (P-FGM), and the sigmoid law (S-FGM). Using the Hamilton’s principle
and the finite element method with four nodes per element, we obtained the equations of motion and
then the eigenvalue equations. Solving these equations allows us to calculate the eigen-frequencies and
the eigenmodes. We conclude that the change of the fundamental frequencies depends on the type of
law of the volume fraction of materials. This is remarkable when comparing results obtained on for two
plates S-FGM and P-FGM. The results also show that the power law and the sigmoid law give roughly
the same eigen-frequencies. The study of the influence of the exponent N for the S-FGM plate and the
P-FGM plate shows that when N increases we observe the increase of the natural frequencies. This
means that the FGM plates have the advantage of improving material stiffness. In addition, the study
of the influence of the aspect ratio (length/thickness) of the E-FGM plates explains that increasing of
the aspect ratio decreases the fundamental frequencies. Other results are presented in the appendices,
these results show that laminated FGM plates give the natural frequencies lower than those of simple
FGM plates, the difference between them increases according to the number of modes. The objective
in the future is to apply this approach on other type of shells, such as FGM cylindrical Shells [15,19].
In addition, we will try to develop meshless models [20–27] based on TSDT theory for the analysis of
FGM plates.

7. Appendices
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Fig. 8. Comparison of natural frequencies between a
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Fig. 9. Comparison of natural frequencies between a
laminated P-FGM plate and a simple P-FGM plate

using the power law.

[1] Vinh P. V., Dung N. T., Tho N. C., Thom D. V., Hoa L. K. Modified single variable shear deformation
plate theory for free vibration analysis of rectangular FGM plates. Structures. 29, 1435–1444 (2021).

[2] Auada S. P., Pracianoa J. S. C., Barrosoa E. S., Sousa Jr J. B. M., Parente Juniora E. Isogeometric Analy-
sis of FGM Plates. Materials Today: Proceedings. 8 (3), 738–746 (2019).

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 691–704 (2021)



TSDT theory for free vibration of functionally graded plates with various material properties 703

[3] Kim S. E., Duc N. D., Nam V. H., Van Sy N. Nonlinear vibration and dynamic buckling of eccentrically
oblique stiffened FGM plates resting on elastic foundations in thermal environment. Thin-Walled Struc-
tures. 142, 287–296 (2019).

[4] Fu T., Chen Z., Yu H., Wang Z., Liu X. An analytical study of sound transmission through corrugated core
FGM sandwich plates filled with porous material. Composites Part B: Engineering, 151, 161–172 (2018).

[5] Sharma P., Meena M., Khinchi A. Modal study of bi direction FGM plate. Materials Today: Proceedings.
44 (1), 1604–1608 (2021).

[6] Kar U. K., Srinivas J. Material modeling and analysis of hydroxyapatite/titanium FGM plate under
thermo-mechanical loading conditions. Materials Today: Proceedings. 33 (8), 5498–5504 (2020).

[7] Katili I., Batoz J. L., Maknun I. J., Katili A. M. On static and free vibration analysis of FGM plates using
an efficient quadrilateral finite element based on DSPM. Composite Structures. 261, 113514 (2021).

[8] Zheng H., Sladek J., Sladek V., Wang S. K., Wen P. H. Hybrid meshless/displacement discontinuity
method for FGM Reissner’s plate with cracks. Applied Mathematical Modelling. 90, 1226–1244 (2021).

[9] Hassan A. H. A., Kurgan N. Bending analysis of thin FGM skew plate resting on Winkler elastic foundation
using multi-term extended Kantorovich method. Engineering Science and Technology, an International
Journal. 23 (4), 788–800 (2020).

[10] Yang H. S., Dong C. Y., Wu Y. H. Postbuckling analysis of multi-directional perforated FGM plates using
NURBS-based IGA and FCM. Applied Mathematical Modelling. 84, 466–500 (2020).

[11] Minh P. P., Manh D. T., Duc N. D. Free vibration of cracked FGM plates with variable thickness resting
on elastic foundations. Thin-Walled Structures. 161, 107425 (2021).

[12] Li M., Yan R., Xu L., Guedes Soares C. A general framework of higher-order shear deformation theories
with a novel unified plate model for composite laminated and FGM plates. Composite Structures. 261,
113560 (2021).

[13] Minh P. P., Duc N. D. The effect of cracks and thermal environment on free vibration of FGM plates.
Thin-Walled Structures. 159, 107291 (2021).

[14] Tran T. T., Nguyen P. C., Pham Q. H. Vibration analysis of FGM plate in thermal environment resting on
elastic foundation using ES-MITC3 element and prediction of ANN. Case Studies in Thermal Engineering.
24, 100852 (2021).

[15] Timesli A. Analytical Modeling of Buckling Behavior of Porous FGM Cylindrical Shell Embedded within
an Elastic Foundation. Gazi University Journal of Science (2021).

[16] Bourihane O., Hilali Y., Mhada K. Nonlinear dynamic response of functionally graded material plates using
a high-order implicit algorithm. Journal of Applied Mathematics and Mechanics. 100 (12), e202000087
(2020).

[17] Ghatage P. S., Kar V. R., Sudhagar P. E. On the numerical modelling and analysis of multi-directional
functionally graded composite structures: A review. Composite Structures. 236, 111837 (2020).

[18] Huang X. L., Shen H. S. Nonlinear vibration and dynamic response of functionally graded plates in thermal
environments. International Journal of Solids and Structures. 41 (9–10), 2403–2427 (2004).

[19] Timesli A. Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded
in an elastic foundation. Computer and Concrete. 26 (1), 53–62 (2020).

[20] Saffah Z., Timesli A., Lahmam H., Azouani A., Amdi M. New collocation path-following approach for the
optimal shape parameter using Kernel method. SN Applied Sciences. 3, Article number: 249 (2021).

[21] Timesli A., Braikat B., Lahmam H., Zahrouni H. An implicit algorithm based on continuous moving least
square to simulate material mixing in friction stir welding process. Modelling and Simulation in Engineer-
ing. 2013, Article ID: 716383, 1–14 (2013).

[22] Timesli A. Optimized radius of influence domain in meshless approach for modeling of large deformation
problems. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering (2021).

[23] Mesmoudi S., Timesli A., Braikat B., Lahmam H., Zahrouni H. A 2D mechanical-thermal coupled model
to simulate material mixing observed in friction stir welding process. Engineering with Computers. 33,
885–895 (2017).

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 691–704 (2021)



704 Janane Allah M., Belaasilia Y., Timesli A., El Haouzi A.

[24] Timesli A, Braikat B., Lahmam H., Zahrouni H. A new algorithm based on Moving Least Square method
to simulate material mixing in friction stir welding. Engineering Analysis with Boundary Elements. 50,
372–380 (2015).

[25] Belaasilia Y, Timesli A, Braikat B, Jamal M. A numerical mesh-free model for elasto-plastic contact prob-
lems. Engineering Analysis with Boundary Elements. 82, 68–78 (2017).

[26] El Kadmiri R., Belaasilia Y., Timesli A., Kadiri M. S. A coupled Meshless-FEM method based on strong-
form of Radial Point Interpolation Method (RPIM). Journal of Physics: Conference Series, 1743, 012039
(2021).

[27] El Kadmiri R., Belaasilia Y., Timesli A., Kadiri M. S. Meshless approach based on MLS with additional
constraints for large deformation analysis. Journal of Physics: Conference Series. 1743, 012015 (2021).

Теорiя ДЗТП для вiльних коливань функцiонально градiєнтних
пластин з рiзними властивостями матерiалiв

Джанане Аллах М., Белаасилiа Й., Таймслi А., Ель Хаузi А.

Унiверситет Касабланки Хасана II,
Нацiональна вища школа мистецтв та ремесел (ENSAM Касабланка),

20670 Касабланка, Марокко

У цiй роботi використовується неявний алгоритм для аналiзу вiльної динамiчної по-
ведiнки пластин iз функцiонально модифiкованим матерiалом (ФММ). Теорiя де-
формацiї зсуву третього порядку (ТДЗТП) використовується для розробки запро-
понованої моделi. У цiй статтi постановка здiйснена без застосування гомогенiзацiї
сумiшi, яке, як правило, проводиться в такого роду задачах. Принцип Гамiльтона
використовується для отримання результуючих рiвнянь руху. Для просторової дис-
кретизацiї на основi методу скiнчених елементiв (МСЕ), приймається квадратичний
елемент iз чотирма та вiсьмома вузлами iз використанням семи ступенiв свободи на
вузол. Для розв’язання отриманої задачi використовується неявний алгоритм. Для
вивчення точностi та ефективностi запропонованого пiдходу подано порiвняння з да-
ними, наведеними в лiтературi та результатами моделювання композитного ламiнату
для власних частот вiбрацiй. Iнакше кажучи, ми дослiдили вплив показника об’ємної
частки, на яку реагують пластини “П-ФММ” та “С-ФММ”. Бiльше того, вивчtyj вплив
товщини на пластини “Е-ФММ”.

Ключовi слова: теорiя деформацiї зсуву третього порядку (ТДЗТП), нелiнiйний
динамiчний аналiз, багатошаровий композит, функцiонально модифiкований ма-
терiал (ФММ).
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