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This paper deals with a machine-learning model arising from the healthcare sector, namely
diabetes progression. The model is reformulated into a regularized optimization problem.
The term of the fidelity is the L1 norm and the optimization space of the minimum is
constructed by a reproducing kernel Hilbert space (RKSH). The numerical approximation
of the model is realized by the Adam method, which shows its success in the numerical
experiments (if compared to the stochastic gradient descent (SGD) algorithm).
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1. Introduction

According to the International Diabetes Federation, one of eleven people worldwide lives with diabetes.
In recent years, the impact of diabetes has increased dramatically, making it a global threat. Today,
diabetes is consistently the leading cause of death. Therefore, early detection of diabetes is very
important so that measures can be taken in time and the progression of the disease can be prevented to
avoid further complications [1,2]. Through efforts of artificial intelligence, which enables early detection
and diagnosis of diabetes by an automated process, more beneficial than manual diagnosis [3–6].

The central contribution of this paper is the consideration of machine learning approaches in the
disease progression of diabetes. The importance of the diabetes dataset the features, in order to
determinate which covariates are important factors in disease progression is studied. Furthermore, two
features being the most important in disease progression to build our predictive model are selected.
The model is reformulated into a regularized optimization problem with the term of the fidelity is
the L1 norm and the optimization space of the minimum is constructed by a reproducing kernel
Hilbert space [7,8]. Indeed, reproducing kernel Hilbert spaces are particularly important in the area of
statistical learning theory because of the famous represented theorem which states that any function in
an RKHS that minimizes an empirical risk function can be written as a linear combination of the kernel
function evaluated at the training set. This is a useful result in practice, as it effectively simplifies the
problem of empirical risk minimization from an infinite-dimensional to a finite dimensional optimization
problem.

The use of L1 loss function for supervised learning problem gives more consistent results [9–13].
This consolidates the idea of converting the supervised problem based on absolute loss function into
a minimization one. However, the fidelity term of the resulting optimization problem is not differen-
tiable which precludes the use of standard optimization methods. In order, to overcome the difficulty
caused by the non-differentiability of the fidelity term, we introduce a smooth approximation tech-
nique [10, 14–16] to transform it into a differentiable and convex one. Furthermore, the fidelity term
of the resulting optimization problem is twice differentiable and convex, which is solved directly using
Tikhonov regularization and Adam algorithm [17, 18]. Finally, we present several numerical valida-
tions of the proposed computational approach and comparison with stochastic gradient descent (SGD)
algorithm on the basis of the relative error. Obtained experimental result on the diabetes data sets
indicates that the proposed approach is an efficient and helpful tool in machine learning.
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The organization of this paper is as follows. In section 2, we present the setting problem and its
reformulation as a minimization one, using absolute loss function. Section 3 is concerned to a smooth
approximation of the absolute loss function. Furthermore, a numerical algorithm based on Adam
algorithm is presented. In section 4, we evaluate the efficiency of the proposed approach using diabetes
data sets and compare it with stochastic gradient descent (SGD) algorithm.

2. Formulating the supervised problem

The problem of supervised learning can be stated in this way: given a set of examples D =
{(x1, y1), . . . , (xn, yn)}, where xi ∈ X ⊂ R

d called the input space and yi ∈ [−M,M ] is the output
space, M > 0, find the solution f∗ of the minimization problem

min
f∈H

1

n

n
∑

i=1

V (f(xi), yi), (1)

where V is a positive function, which measures the error between y and its prediction f(x), called loss
function and H is a reproducing kernel Hilbert space defined by the positive definite kernel K, which
we discuss in the next subsection.

2.1. Reproducing kernel Hilbert space (RKHS)

In what follows we briefly summarize the properties of RKHS [8] needed in this work.
Let X be a Hilbert space of real valued functions defined on X and equipped with an inner prod-

uct 〈. . .〉H.

Definition 1. A function K : X × X → R is a reproducing kernel of H if it verifies the following

properties:

• Kx(·) = K(·, x) ∈ H, ∀x ∈ X ;

• f(x) = 〈f,Kx〉H, ∀f ∈ H.

Such a Hilbert space H is called a reproducing kernel Hilbert space (RKHS). It is also known that
a kernel K(·, ·) is a reproducing kernel if and only if it is symmetric and positive definite, that is:

n
∑

i,j=1

aiajK(xi, xj) > 0,

for any n ∈ N, x1, . . . , xn ∈ X and a1, . . . , an ∈ R.
Since X is a compact set of Rn, then a kernel K defined on X × X is said to be a Mercer’s kernel

if it is continuous and positive semi-definite.
The space H can be read

H = span{Kx(·)|x ∈ X},

as the closure of the subspace of all linear combinations of Kx(·).

3. Smooth absolute loss function

In this section, we approximate the absolute loss function with a smooth one, which is twice differ-
entiable and convex. Recently, the absolute loss function shows its effectiveness on machine learning
task [10]. For this reason, we reformulate the supervised learning problem using the absolute loss
function. Thus, the minimization problem (1) became

min
f∈H

1

n

n
∑

i=1

|f(xi), yi|. (2)

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 726–735 (2021)



728 Lyaqini S., Nachaoui M.

−4 −2 0 2 4
0

1

2

3

4

5

6

7

8

9
(f(x)−y) 2

−4 −2 0 2 4
0

0.5

1

1.5

2

2.5

3
 |f(x)−y|

−4 −2 0 2 4
0

0.5

1

1.5

2

2.5

3

|f(x)−y| ε

Fig. 1. Absolute loss function.

From the figure above, we see that the absolute loss functions are non-differentiable. This precludes
the use of standard optimization tools, which required the assumption of differentiability of the ob-
jective function. For this reason, we approximate the absolute loss function with a differentiable one,
using the so called smooth approximation [10, 19]. This in fact allowing us to use the gradient kinds
method to solve the resulting optimization problems.

The absolute loss function can be accurately approximated by a smooth function which is twice
differentiable and convex, which would be defined as follows.

In order to approximate the objective function of the minimization problem (2), the absolute
function is written as

|u| = max(u, 0) + max(−u, 0).

For all u ∈ R, the max function is approximated by a smooth function,

max
α

(u, 0) =

(

u+
1

α
log
[

1 + exp (−αu)
]

)

, ∀α > 0.

Then we get the following smooth approximation for the absolute function

|u|α = max
α

(u, 0) + max
α

(−u, 0)

=
1

α

[

log
(

1 + exp(αu)
)

+ log
(

1 + exp(−αu)
)

]

=
1

α
log
[

(

1 + exp(−αu)
)(

1 + exp(αu)
)

]

=
1

α
log
(

2 + exp(−αu) + exp(αu)
)

, ∀α > 0.

Notice that the loss function is always a true function of only one variable u, with u = ω − y.
Let us denote by Vα(u) the smoothed loss function with parameter α of V (u) = |u| given by

Vα(u) =
1

α
log
(

2 + exp(−αu) + exp(αu))
)

, ∀α > 0.

As illustrated in Fig. 2, the smoothed absolute loss Vα approaches the absolute loss V as α goes to +∞.
In the sequel, we consider the approximate optimization problem of (1) given by

min
f∈H

1

n

n
∑

i=1

Vα(f(xi), yi). (3)

This problem is a strongly convex minimization problem. Moreover, the cost function in the problem (3)
is differentiable, thus a Adam’s method can be used to solve it.
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Fig. 2. Smoothed absolute loss function with different smoothing pa-
rameters.

The problem (3) is an ill-
posed problem [20, 21]. A stan-
dard approach to imposing well-
posed to a procedure is via the
concept of regularization. The
concept of regularization con-
sists in searching for approxi-
mate solutions by setting regu-
larity constraints on the repro-
ducing Hilbert space H. In par-
ticular, we use the Tikhonov reg-
ularization, replacing the mini-
mization problem (3) with the
following one,

min
f∈H

(

1

n

n
∑

i=1

Vα(f(xi), yi) + λ‖f‖2H

)

, (4)

where λ > 0 is the regularization parameter and ‖ · ‖H is the norm in H.
Due to the representer theorem [22], the solution fα

λ of the problem (4), can be written as a finite
linear combination of kernel evaluations in the data, namely

fα
λ (x) =

n
∑

i=1

ciK(x, xi), (5)

where ci ∈ R, i = 1, . . . , n and K the reproducing kernel of H. Therefore, the solution to the possibly
infinite dimensional optimization problem (4) can be found in the n-dimensional span of the functions
Kxi

(·), i = 1, . . . , n. To find the coefficients, it is sufficient to solve the following problem

min
c∈Rn

J α
λ (c), (6)

where

J α
λ (c) =

1

n

n
∑

i=1

(

1

α
log
(

2 + exp
(

− α(c⊤Ki − yi)
)

+ exp
(

α(c⊤Ki − yi)
)

)

)

+ λ c⊤Kc.

Denote

K =







K(x1, x1) · · · K(x1, xn)
...

. . .
...

K(xn, x1) · · · K(xn, xn)






, Ki =







Kxi
(x1)
...

Kxi
(xn)






, c =







c1
...
cn






and y =







y1
...
yn






.

There are many optimization tools for solving the problem (6) [23,24]. In this paper we use Adam
methods with line search methods for solving the resulting optimization problem (6).

Then we will treat the experimental results obtained after the simulation of diabetic data using the
proposed approach.

4. Experimental results

To evaluate this algorithm it is often desirable to have some standardized benchmark data sets. In our
case we choose to evaluate the proposed method through real-life data from the UCI machine learning
repository. To evaluate the efficiency of the proposed algorithm, we compared its cost function and its
relative error with the Stochastic gradient descent algorithm. The goal is to show that the proposed
approach is faithfully and faster to predict the considered models.
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Let use the Gaussian kernel, given by

K(x, x′) = exp

(

−
1

2σ2

n
∑

i=1

(xi − x′i)
2

)

,

as reproducing kernel of the space H, where σ is a free parameter and n is the size of training set.
Thereafter, we will study the effectiveness of the proposed method on a real world example, called

Diabetes Data Set [25]. These data comprise observations on 442 patients, with the response of interest
being a quantitative measure of disease progression one year after baseline.

Table 1. Diabetes data sets.

Data sets Number of Instances Number of Attributes

Diabetes 442 10

There are ten baseline variables
age, sex, body-mass index, average
blood pressure, and six blood serum
measurements, were obtained for each
one of n = 442 diabetes patients, as

well as the response of interest, a quantitative measure of disease progression one year after baseline.
The aim of this work is to build a model that predicts the y response from the ten baseline variables,
that produces accurate baseline predictions of response for future patients, and that the shape of the
model suggests which covariates are important factors in disease progression [25].

Table 2. Diabetes data description.

Attributes Description Type of data

Age age in years Digital
Sex Boolean
bmi body-mass index Digital
bp average blood pressure Digital
s1 tc, T-Cells (a type of white blood cells) Digital
s2 ldl, low-density lipoproteins Digital
s3 hdl, high-density lipoproteins Digital
s4 tch, thyroid stimulating hormone Digital
s5 ltg, lamotrigine Digital
s6 glu, blood sugar level Digital

The first 10 columns have been normalized to have mean 0 and Euclidean norm 1 and the output
column y has been centered. For the implementation, we construct our training set by taking 360
random observations form all data sets. Then by using the proposed approach, we generate the
turbulence model. Let’s first find the correlation of each of these feature pairs and visualize the
correlations using a heatmap. As shown in the heatmap, age, sex, bmi and bp all correlate significantly
with the outcome variable.

As it can be seen, from figures below that the predicted model faithfully follows the behavior of
unseen observations with high accuracy.

Table 3. The relative error obtained by
three different methods on diabetes data

sets.

Adam SGD

Relative Error 0.0024 0.05

In Table 3, we present the the relative error given by
‖f−y‖2
‖y‖2

. The quantitative results presented in this table
show that the proposed approach is not only the best one
on the training set but also has a very good testing set
accuracy. As a conclusion, we can say that the proposed
method becames more efficient in reaching accurate opti-
mal solution.
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Fig. 3. Diabetes data set information.

Fig. 4. Real and predicted model using Adam and Stochastic gradient descent algorithms, for σ = 0.5, α = 10
and λ = 10−5.

4.1. Feature importance
In this section, we study the importance of the features, in order to determinate which covariates are
important factors in disease progression. Furthermore, we select the two features which are the most
important in disease progression to build our predictive model.

One can see from Fig. 9 that the two important factors in disease progression are bmi (body-
mass index) and S3 (high-density lipoproteins). Consequently, we use Adam’s algorithm to build our
predictive model using only these two features.
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Fig. 5. Relative Error.
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Fig. 6. Cost function.
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Fig. 7. Real and predicted model using Adam and Stochastic gradient descent algorithms, for σ = 0.5, α = 10
and λ = 10−5.

Fig. 10, shows that the model obtained using features bmi and s3 of the diabetes dataset is also
better at predicting disease progression.
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Fig. 8. Real and predicted model using features 1 and 2 using Adam algorithm, for σ = 0.5, α = 10 and
λ = 10−5.
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Fig. 10. Sparsity Example: Fitting only features bmi and s3.

5. Conclusion

In this paper, Tikhonov regularization and Adam’s algorithm is proposed to predict the diabetes
disease progression. The comparison with the stochastic gradient descent (SGD) algorithm on the
basis of the relative error shows the performance of the proposed algorithm in the prediction of the
disease progression. As a perspective we will focus on the integration of other methods for solving the
non-smooth optimization problem directly without using the smoothing approximation.
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Прогнозування дiабету за допомогою вдосконаленого машинного
навчання

Лякiнi С., Нахауi М.

Математична лабораторiя та застосунки Бенi-Меллаль,

Унiверситет Султан Мулай Слиман, Марокко

У статтi розглядається модель машинного навчання, що походить з областi охорони
здоров’я, а саме: прогресування дiабету. Модель переформульовується в регуляри-
зовану задачу оптимiзацiї. Член правдоподiбностi — це норма L1, а оптимiзацiйний
простiр мiнiмуму побудований за допомогою вiдтворюючого ядра гiльбертового про-
стору (ВЯГП). Чисельне наближення моделi реалiзується методом Адама, який є
успiшним у чисельних експериментах (порiвняно з алгоритмом стохастичного гра-
дiєнтного спуску (СГС)).

Ключовi слова: контрольоване навчання, гладке наближення, алгоритм Адама,

дiагностика дiабету, регуляризацiя Тихонова, гладка оптимiзацiя.
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